Quark formation and phenomenology in binary neutron-star mergers using V-QCD

Konrad Topolski, Goethe University

arXiv:2205.05691 S. Tootle, C. Ecker, K. Topolski, T. Demircik, M. Järvinen, L. Rezzolla

ECT* workshops 23.06.2022

EL

S

EN

Outline

- 1. Introduce the EoS with a novel contribution from the V-QCD.
- 2. Describe the binary neutron star merger setup and configurations.
- 3. Technicalities and tools.
- 4. Quark formation stages in the post-merger phase.
- 5. Phase transition signatures in the gravitational wave signal (or lack thereof).
- 6. Future perspectives.

- V-QCD is a non-perturbative gauge-gravity duality model of QCD; includes sectors both for quarks and for gluons
- based on a string theory setup in the Veneziano limit
- action of the model is tuned to agree with QCD data at finite number of colours and flavours
- remaining freedom lattice data
- gauge/gravity duality provides a mapping between solutions in strongly coupled four dimensional field theory (various phases!) to classical five dimensional gravity

The equation of state

- ▶ low density nuclear matter: HS(DD2) EoS + APR model
- dense baryon and quark matter: V-QCD model of the gauge/gravity duality
- ► temperature dependence: van der Walls model & an effective potential
- electron fraction dependence: HS(DD2) for NM and free electron model for QM GOETHE

The equation of state - cd.

The construction provides, in a consistent manner:

- agreement with perturbative QCD at large densities
- an agreement with nuclear theory at low densities
- a strong first-order phase transition (mixed NM-QM phase) within the V-QCD framework, obtained via Gibbs construction

Cold slices & observational constraints

- p-QCD and nuclear theory constraints satisfied
- consistent with mass-radius observational data
- ▶ the upper bound on the binary tidal deformability $\tilde{\Lambda}$ < 720 respected

Our tools (technical slide)

To simulate the BNS mergers, we have used:

- The public Einstein Toolkit computational infrastructure with our private thorns - ANTELOPE for spacetime evolution and FIL-GRMHD for (magneto-)hydrodynamics.
 - solving the 3+1 formulation of EFEs in a Z4c formulation,
 - 4-th order finite differencing,
 - handling of tabulated EoS, $P = P(\rho, T, Y_e)$
- An elliptic equations' solver FUKA for initial binary configurations
 - solve the constraint equations (for the initial spacetime slice) in the XCTS scheme + an assumption of a time-symmetry moment
 - Iow (realistic!) eccentricity of the orbit
- roughly ~ 5M CPUh altogether, for all the ~ 20 simulations, ran at the HAWK supercomputing centre

GOE

Binary systems' configurations

Our simulations are characterized by:

- chirp mass fixed to $\mathcal{M}_{chirp} = 1.186 \, M_{\odot}(GW170817)$
- non-spinning components (GW170817 favours low-spin priors)
- equal mass (q = 1) and unequal-mass (q = 0.7) binaries
- 3 versions of the EoS (soft, intermediate & stiff), as well as a soft version without a phase transition
- $\blacktriangleright\,$ resolutions of $\Delta_L:=369\,m,\,\Delta_M:=295\,m$ and $\Delta_H:=221\,m$

Merger dynamics and quark formation

Tootle, Ecker, Topolski, Demircik, Järvinen, Rezzolla

Characterizing quark production channels

Tootle, Ecker, Topolski, Demircik, Järvinen, Rezzolla

The impact of stiffness and mass ratio

Tootle, Ecker, Topolski, Demircik, Järvinen, Rezzolla

Quark abundance

- quark formation highly correlated with shock heating shortly after merger,
- once the remnant stabilizes, quark formation correlates with the density
- the greatest abundance of deconfined matter overall is in the cold and dense region of the phase diagram and leads to collapse

Tootle, Ecker, Topolski, Demircik, Järvinen, Rezzolla

Impact on the GW signal - general PT classification

¹ arXiv:1912.09340, Weih, Hanauske, Rezzolla

Impact on the GW signal - V-QCD runs

40Mpc

52

 \log_{10}

OETH

In summary:

- three main quark production channels identified in the context of GW170817-like mergers
- possible constraining of the V-QCD critical point (admissible stiffness of the EOS) delicate point!
- ▶ no smoking-gun signatures of phase transition apart from an earlier collapse time

Avenues to explore:

- ▶ prolong the intermediate and stiff EoS runs to O(1s) e.g. in BHAC
- explore the 3D distribution of quark matter
- add magnetic fields & a neutrino cooling scheme
- analyze with greater accuracy the waveforms at quark-formation induced collapse for possible signatures - in particular beyond the (2, 2) mode

