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Machine Learning in
(Astro)Physics
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Data-driven ML
No explicit physical rules, but physical dataAstronomy & Astrophysics 616 (2018): L16

Big Data + Deep Models

GPU

Successful Deep Learning! 
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Data-driven ML
No explicit physical rules, but physical data

Astronomy & Astrophysics 616 (2018): L16

@Fujimoto&Fukushima

Big Data + Deep Models

GPU

Successful Deep Learning! 
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Demand for big-data

Data-driven ML

Physics-driven ML

No explicit physical rules, but physical data

Physical rules as differentiable modules in learning

What if data is few, noisy 
and unlabelled? @Fujimoto&Fukushima



Physics in
Machine learning
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Data-driven ML

Physics-driven ML

Physics-informed ML

(Physical losses)

No explicit physical rules, but physical data

Physical rules as constraints in training

Physical equations as differentiable modules in learning

Demand for physics

Karniadakis GE, Kevrekidis IG, Lu L, Perdikaris P, Wang S, Yang L. 
Physics-informed machine learning. Nat Rev Phys 2021;3:422–40.

Physics-based Deep Learning (PBDL)



Inverse Problems

7

Shriya Soma, Lingxiao Wang, et al. arXiv 2201.01756

Shuzhe Shi, et al. PhysRevD.105.014017

Lingxiao Wang, Shuzhe Shi and Kai Zhou,  
arXiv: 2111.147760; 2201.02564; NeurIPS 2021 ML4PS 
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Lattice QCD

Nuclear Matter

Quantum Mechanics
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−
dP
dr

=
[ϵ(r) + P(r)][m(r) + 4πr3P(r)]

r[r − 2m(r)]

dm(r)
dr

= 4πr2ϵ(r)

Inverse Problem
Learning EoS from M-R

If the whole M(R) is known, 
it’s well-solved problem.


L. Lindblom, A.J., 398, 569 (1992).
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−
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[ϵ(r) + P(r)][m(r) + 4πr3P(r)]

r[r − 2m(r)]

dm(r)
dr

= 4πr2ϵ(r)

Inverse Problem
Learning EoS from M-R

? Parameterized EoS (e.g., Meta-modeling EoS) + Bayesian Inference + MCMC

many works in this workshop… 

Machine Learning the Direct Inverse Mapping

[1] Y. Fujimoto, K. Fukushima, and K. Murase, Phys. Rev. D 98, 023019 (2018).

[2] P. Landry and R. Essick, Phys. Rev. D 99, 084049 (2019).

[3] Y. Fujimoto, K. Fukushima, and K. Murase, Phys. Rev. D 101, 054016 (2020).

[4] F. Morawski and M. Bejger, A&A 642, A78 (2020).

[5] P. Landry, R. Essick, and K. Chatziioannou, Phys. Rev. D 101, 123007 (2020).

[6] Y. Fujimoto, K. Fukushima, and K. Murase, JHEP 2021, 273 (2021).

[7] M. Ferreira and C. Providência, J. Cosmol. Astropart. Phys. 2021, 011 (2021).
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−
dP
dr

=
[ϵ(r) + P(r)][m(r) + 4πr3P(r)]

r[r − 2m(r)]

dm(r)
dr

= 4πr2ϵ(r)

Inverse Problem
Learning EoS from M-R

? Unbiased EoS + Maximize Likelihood + 
High Effcient Optimization



Framework
AD
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• Automatic differentiation (AD) 

• It refers to a general way of 
taking a program which 
computes a value, and 
automatically constructing a 
procedure for computing 
derivatives of that value. 


• Example


How we compute the derivatives of logistic 
least squares regression in a neural net, 
 

 weights,  bias,  activation function 
x input, y output, t target,  loss function.
ω b σ(z)

ℒ

z = wx + b
y = σ(z)

ℒ =
1
2

(y − t)2

ℒ = 1
ȳ = y − t
z̄ = ȳσ′￼(z)
w̄ = z̄x
b̄ = z̄

Computing the loss: Computing the derivatives:

Chain rule:



AD Framework
Reconstruct EoS
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Framework
Neural Network EoS
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NN EoS

32 x 1

=

A feed-forward network with a single 
hidden layer containing a finite number 
of neurons can approximate arbitrary 
continuous functions.

Universal approximation theorem (1989,1991)

 weights and bias of the neural network

Size of  = 4353

{θ} :
{θ}

A Trainable Neural Network

https://en.wikipedia.org/wiki/Feedforward_neural_network
https://en.wikipedia.org/wiki/Neuron
https://en.wikipedia.org/wiki/Continuous_function
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Neural Network TOV Solver
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TOV

100,000 polytropic EoS functions for each low density model
A well-trained Neural Network
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A well-trained Neural Network
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Framework
 fittingχ2
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L = χ2 =
Nobs

∑
i=1

(Mi − Mobs,i)2

ΔM2
i

+ (Ri − Robs,i)2

ΔR2
i

δχ2

δθ
=

δχ2

δz
δz
δx

δx
δθ

z = (Mi, Ri), x = Pi(ρi)

Pθ(ρ)



Results
Test 1: mock data without noise
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A reasonable agreement of the M-R curve from the reconstructed EoS (red dashed line) with  
the ground truth curve is depicted in the mass region , 
with only 11 (M,R) pairs.

M > 1M⊙



Results
Test 2: mock data with noise
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On mock data,

Noise(Mi) ~ 

Noise(Ri) ~ 

𝒩(0, 0.1Mi)
𝒩(0, 0.1Ri)

500 samples give us different reconstructed EOSs and M-R curves.
Gaussian fitting for each  or  to get confidence interval(CI).ρi (Mi, Ri)



Results
On real data: M-R
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Gaussian Fitting  
on the posterior table

18  , batch size = 1000

Constraints: causality, Maximum mass 

(Mi, Ri)
≥ 1.9 M⊙



Results
On real data: EoS
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Blue dots: NN as direct inverse mapping
Yellow and Green dashed lines:  Bayesian Approaches



Results
Others
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 GW170817: Λ1.4 = 190+390
−120

Phase Transitions?

1st order PT/ cross-over  is not ruled out.


Need more accurate observations or new observables!

Consists with the GW observation



Summary
and Outlooks
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• Take-home messages 

• AD can solve inverse problem using 
uncertain observations unsupervisedly


• Neural network representations can help 
us to reconstruct EoS unbiasedly and 
can be trained easily


• Future works 

• Phase transitions


• Multi-messager observations


• Fully-physical AD


• Open package…
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Future
AD in Physics, opportunities and challenges

APS/Alan Stonebraker

http://alanstonebraker.com/


Backups
Calculate the uncertainty
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236 samples give us different batches of M-R pairs.

Gaussian fitting for each batch to get the uncertainty.



Backups
Closure test for TOV solver
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The NN TOV solver is not perfect. 

We are replacing it with fully-physical differentiable modules.



Backups
Training process
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Our interested area


