

Neutron stars as multi-messenger laboratories for dense matter

Reconstructing Neutron Star Equation of State from Observational Data via Automatic Differentiation

Speaker: Lingxiao Wang (FIAS & GU)

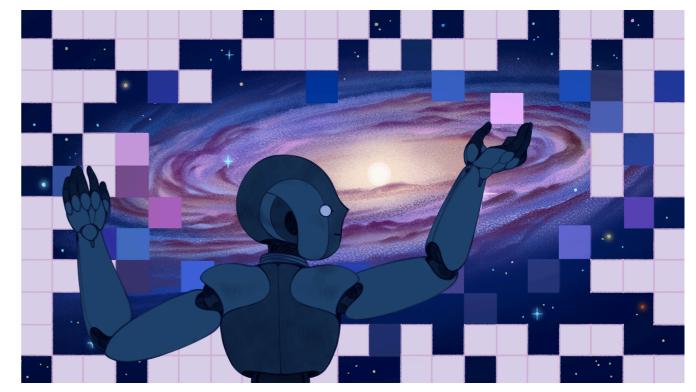
work with: Shriya Soma, Shzuhe Shi, Horst Stoecker, Kai Zhou

arXiv:2201.01756

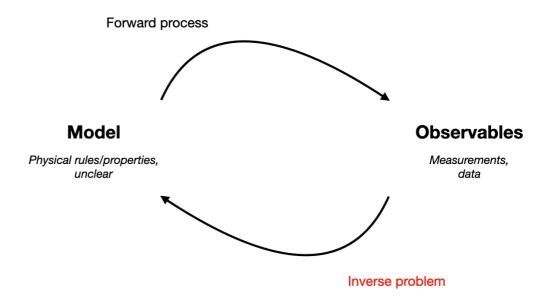
23 June, 2022 ECT* Workshop

Outline

- Machine Learning Physics
- Reconstructing EoS
 - Inverse problem
 - AD framework
 - Neural Network representations
 - Results
- Summary



Rachel Suggs for Quanta Magazine

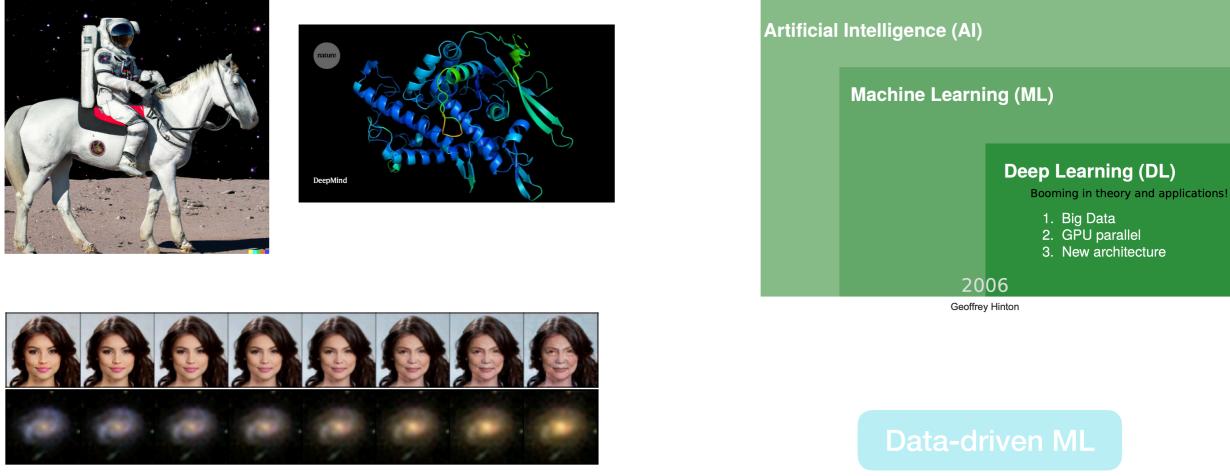


Machine Learning in

(Astro)Physics

DALL-E 2

Big Data + Deep Models ↓ GPU Successful Deep Learning!



Astronomy & Astrophysics 616 (2018): L16

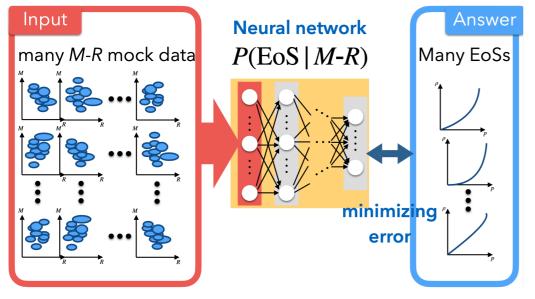
No explicit physical rules, but physical data

Machine Learning in

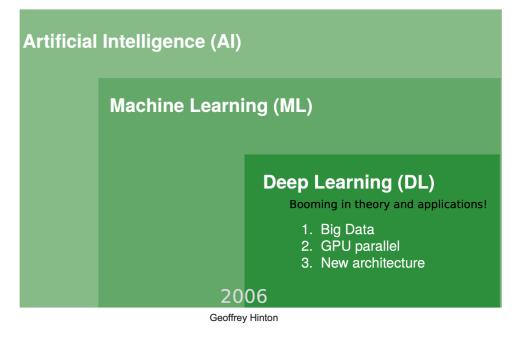
(Astro)Physics

Big Data + Deep Models ↓ GPU Successful Deep Learning!

Astronomy & Astrophysics 616 (2018): L16



@Fujimoto&Fukushima

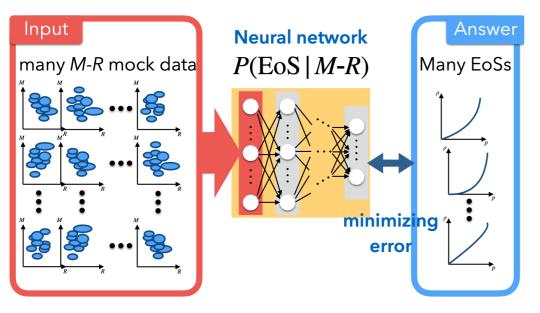


Data-driven ML

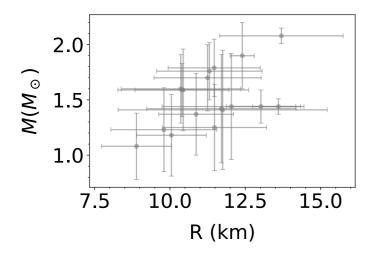
No explicit physical rules, but physical data

Machine Learning in

(Astro)Physics



@Fujimoto&Fukushima



Data-driven ML

No explicit physical rules, but physical data

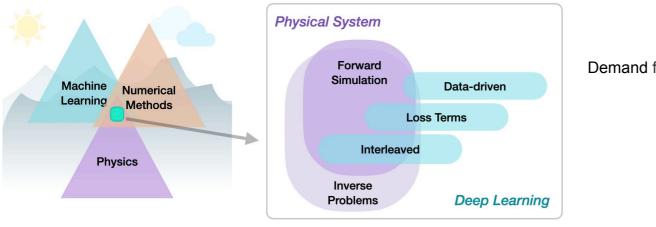
What if data is few, noisy and unlabelled?

Physics-driven ML

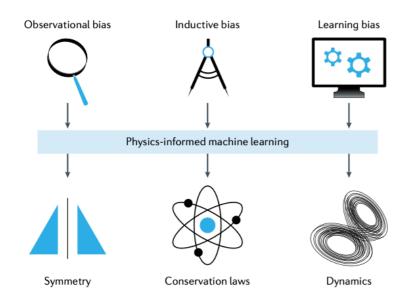
Physical rules as differentiable modules in learning

Demand for big-data

Physics in Machine learning



Physics-based Deep Learning (PBDL)



Karniadakis GE, Kevrekidis IG, Lu L, Perdikaris P, Wang S, Yang L. *Physics-informed machine learning*. Nat Rev Phys 2021;3:422–40.

Demand for physics

Data-driven ML

No explicit physical rules, but physical data

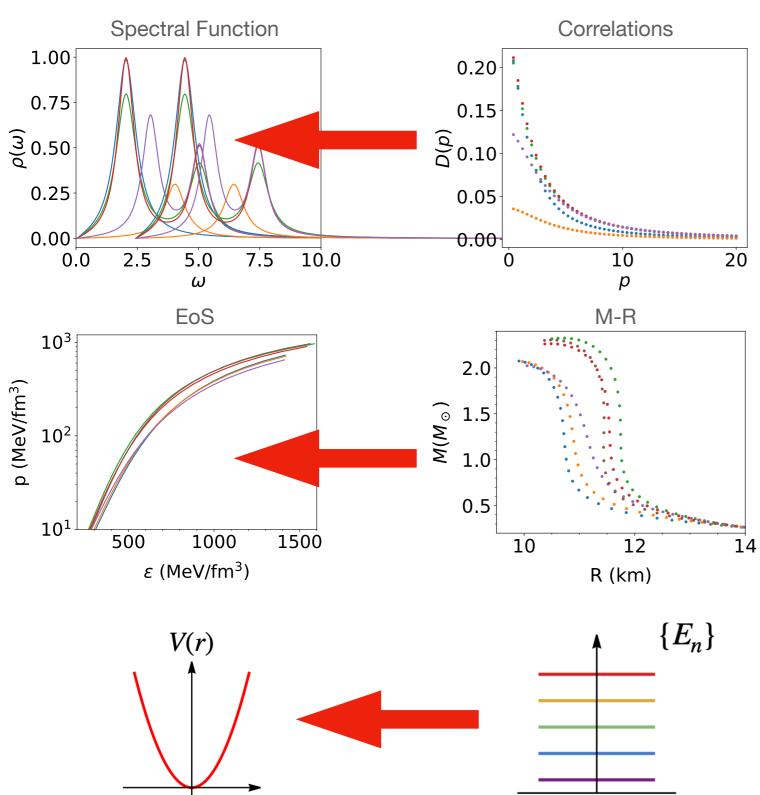
Physics-informed ML (Physical losses)

Physical rules as constraints in training

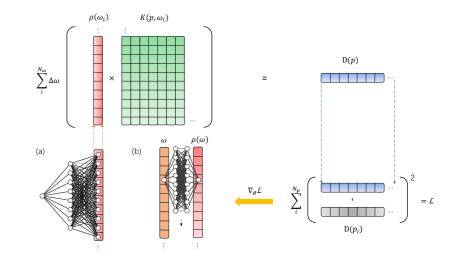
Physics-driven ML

Physical equations as differentiable modules in learning

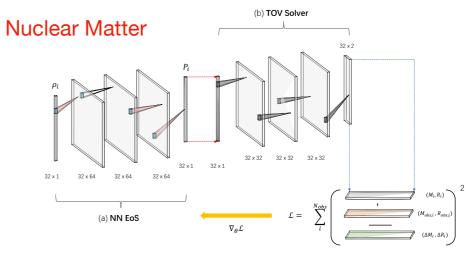
Inverse Problems



Lattice QCD

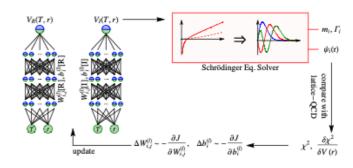


Lingxiao Wang, Shuzhe Shi and Kai Zhou, arXiv: 2111.147760; 2201.02564; NeurIPS 2021 ML4PS

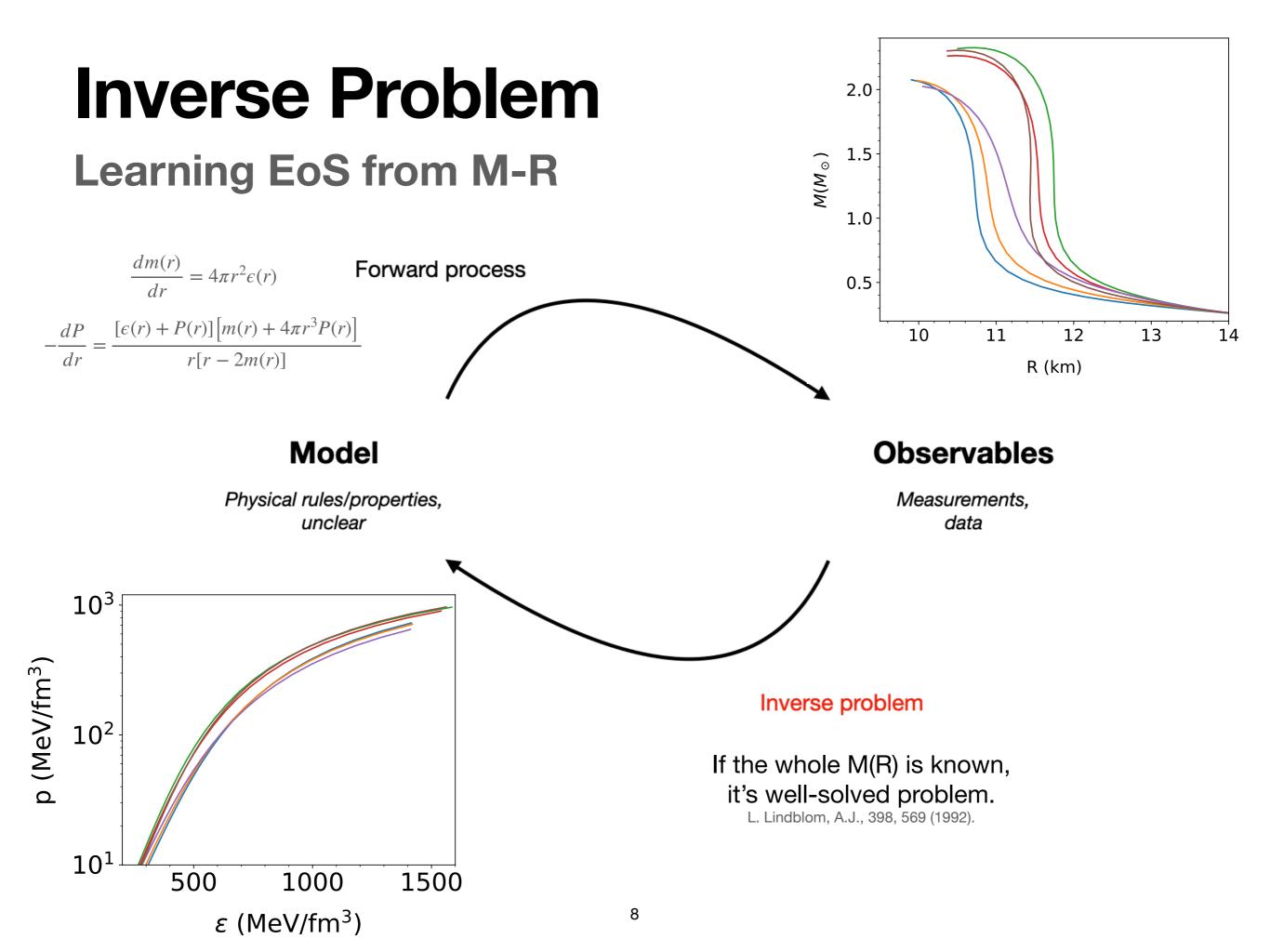


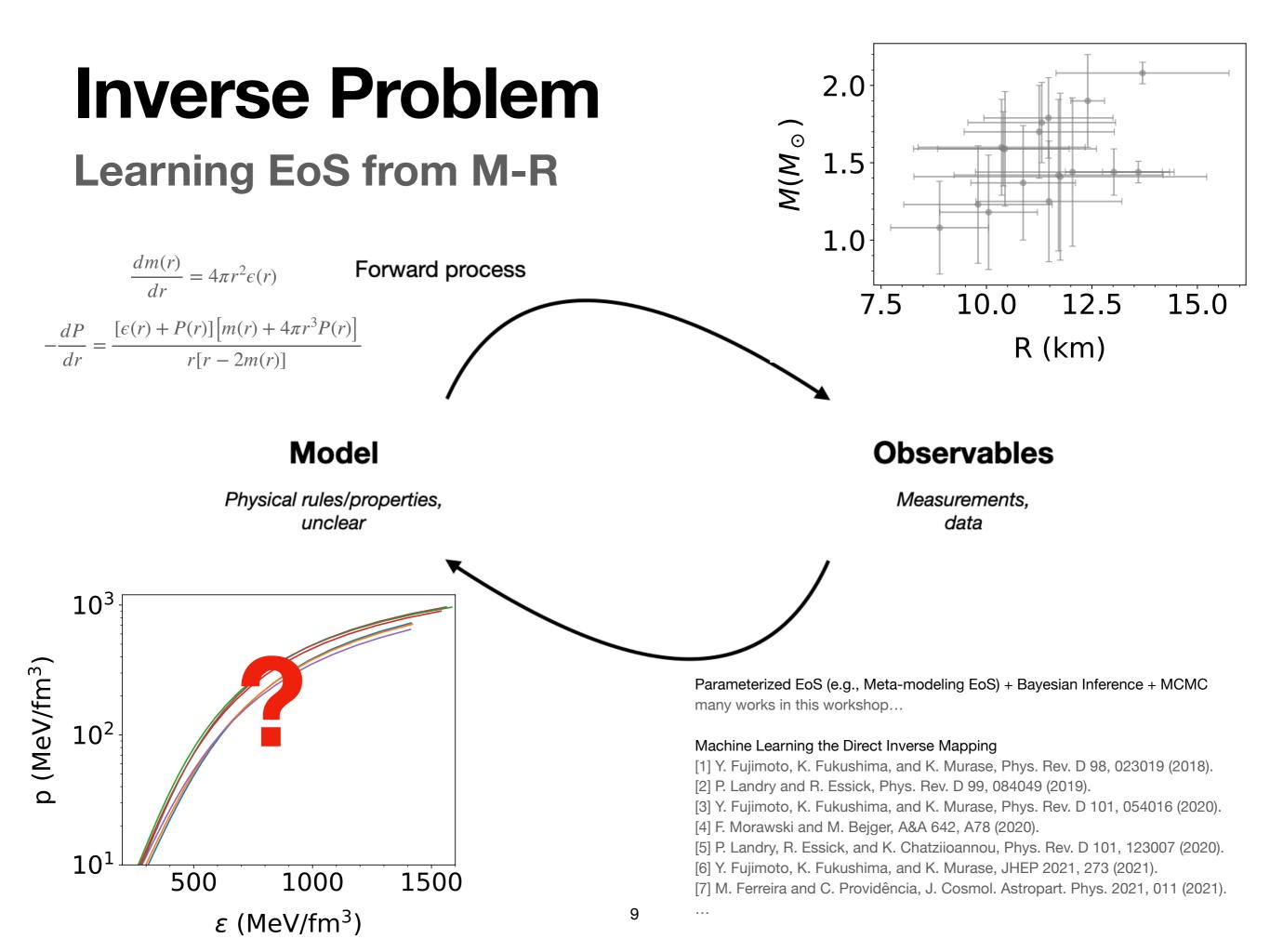
Shriya Soma, Lingxiao Wang, et al. arXiv 2201.01756

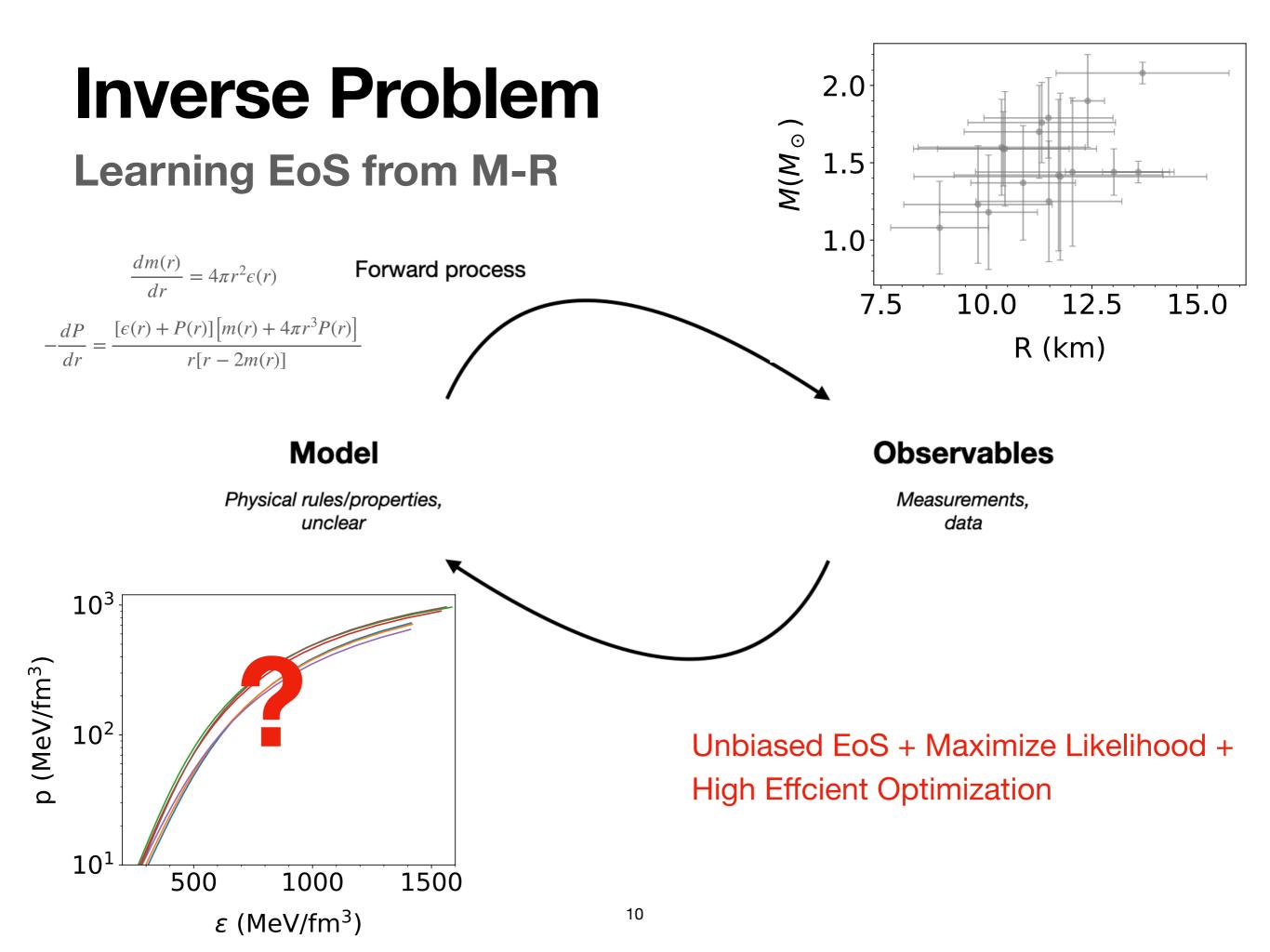
Quantum Mechanics



Shuzhe Shi, et al. PhysRevD.105.014017







Framework AD

Automatic differentiation (AD) ullet

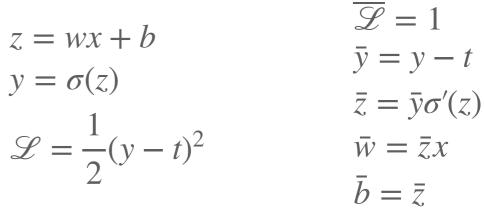
- It refers to a general way of taking a program which computes a value, and automatically constructing a procedure for computing derivatives of that value.
- Example lacksquare

How we compute the derivatives of logistic least squares regression in a neural net,

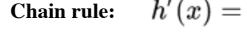
 ω weights, b bias, $\sigma(z)$ activation function x input, y output, t target, \mathscr{L} loss function.

Computing the loss:

Computing the derivatives:



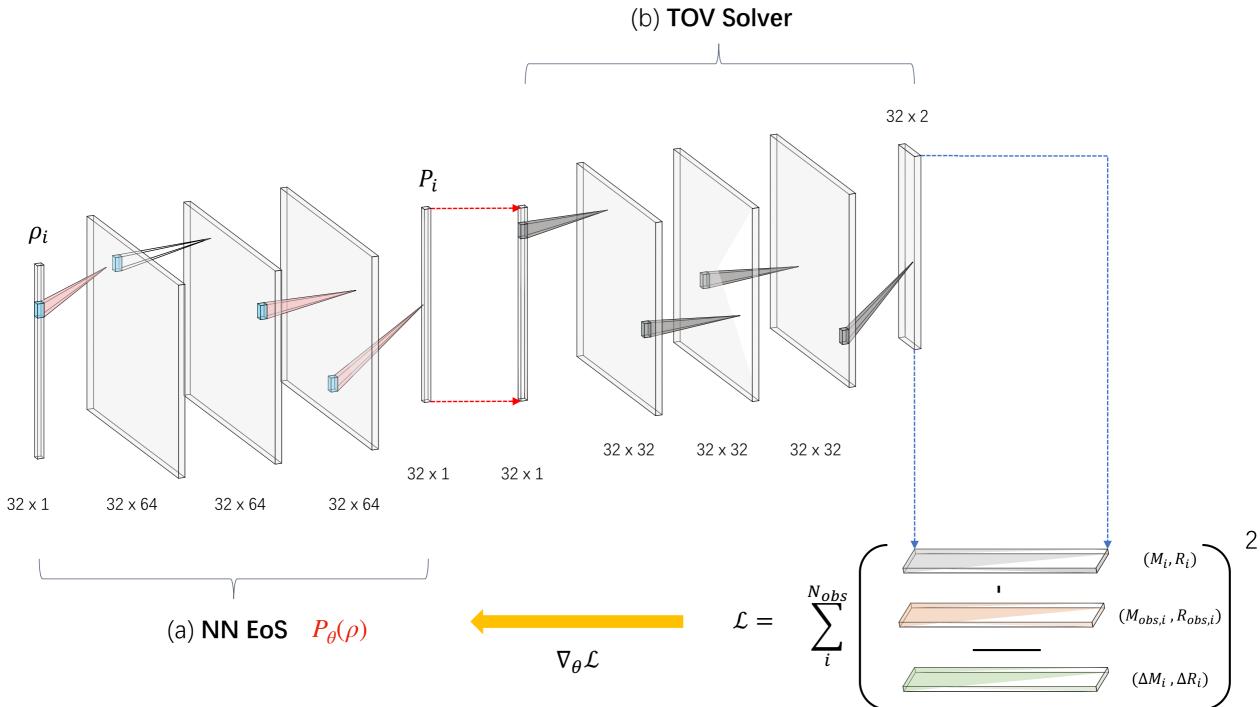
-1/ N



$$h'(x) = f'(g(x))g'(x).$$

AD Framework

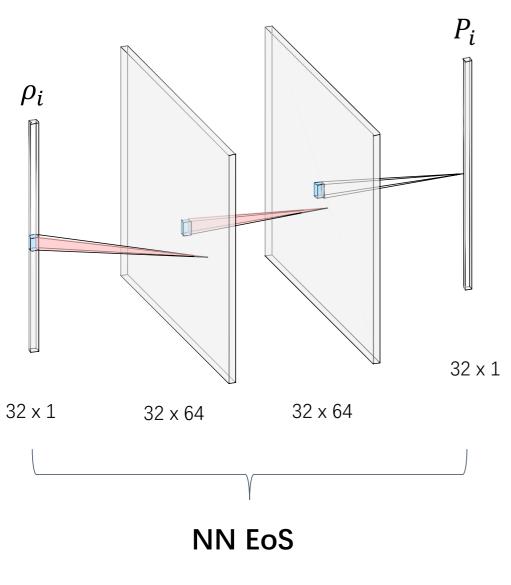
Reconstruct EoS

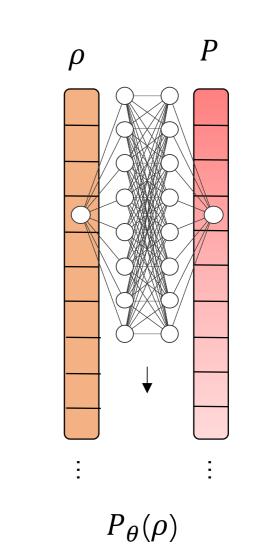


Framework Neural Network EoS

A **feed-forward network** with a single hidden layer containing a **finite number of neurons** can approximate arbitrary continuous functions.

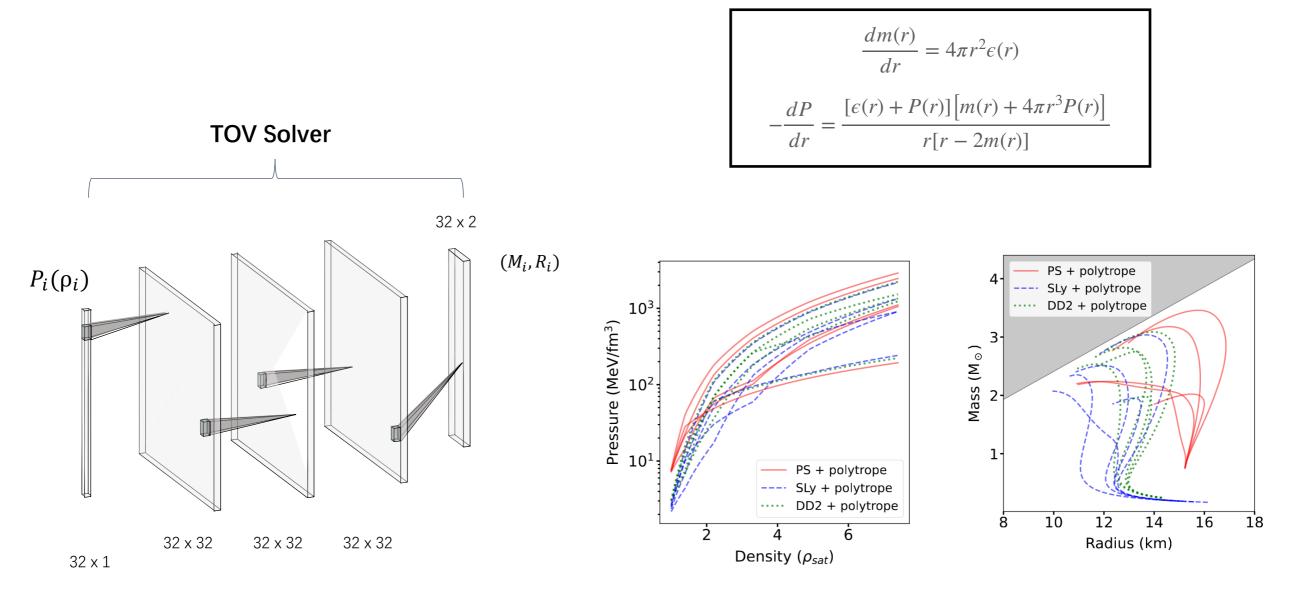
Universal approximation theorem (1989,1991)





 $\{\theta\}$: weights and bias of the neural network Size of $\{\theta\}$ = 4353

Framework



Neural Network TOV Solver

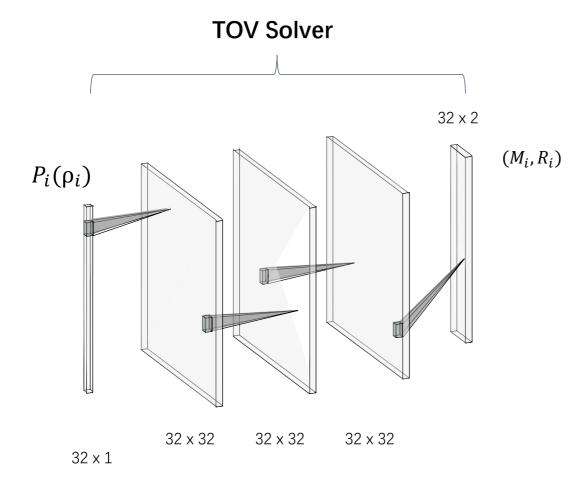
A well-trained Neural Network

100,000 polytropic EoS functions for each low density model

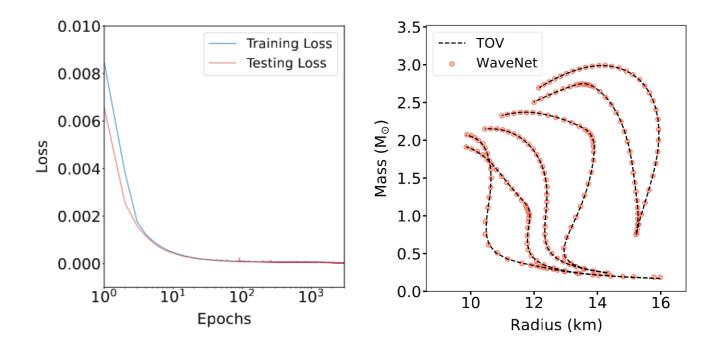
TOV

Framework

Neural Network TOV Solver

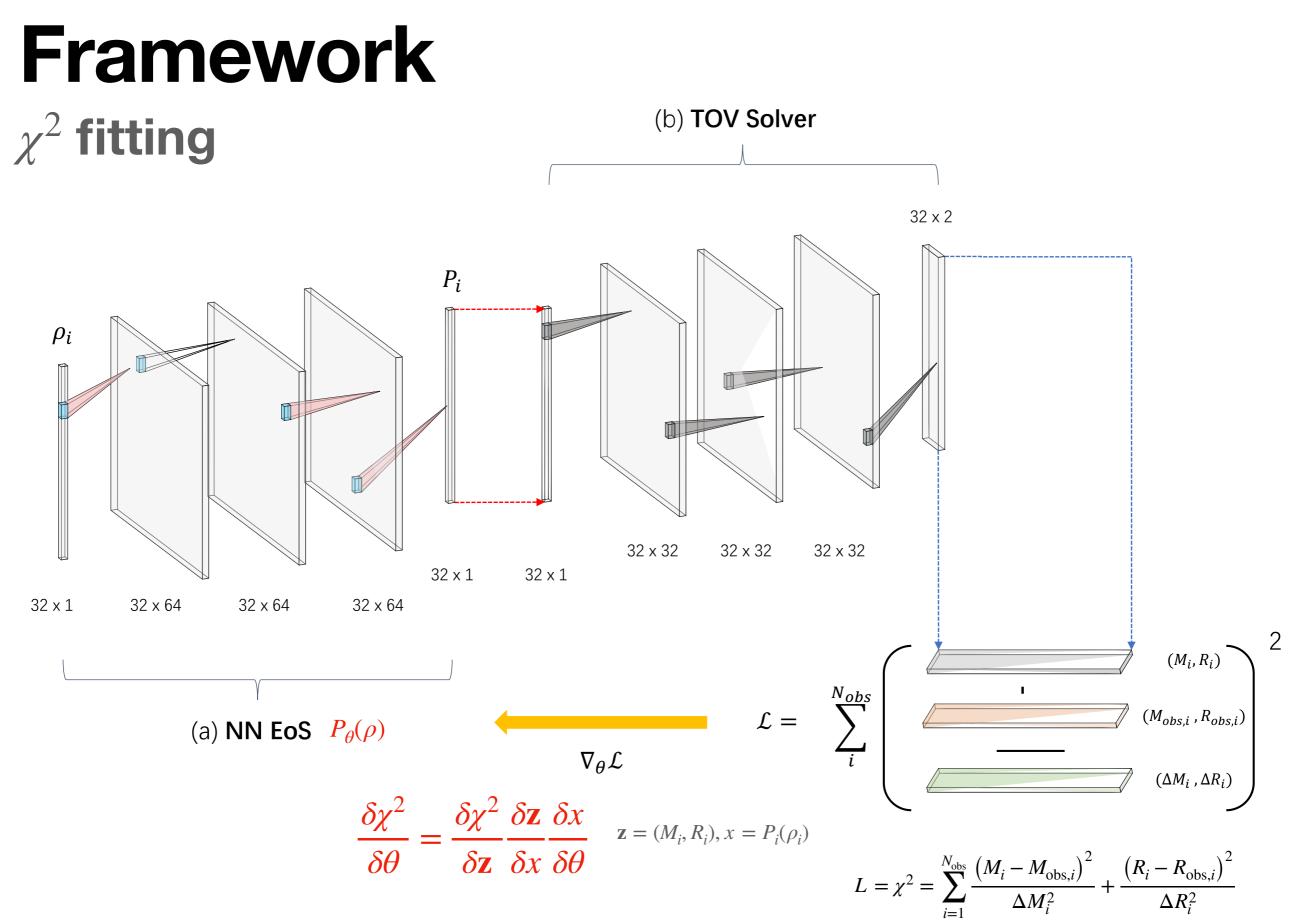


A well-trained Neural Network



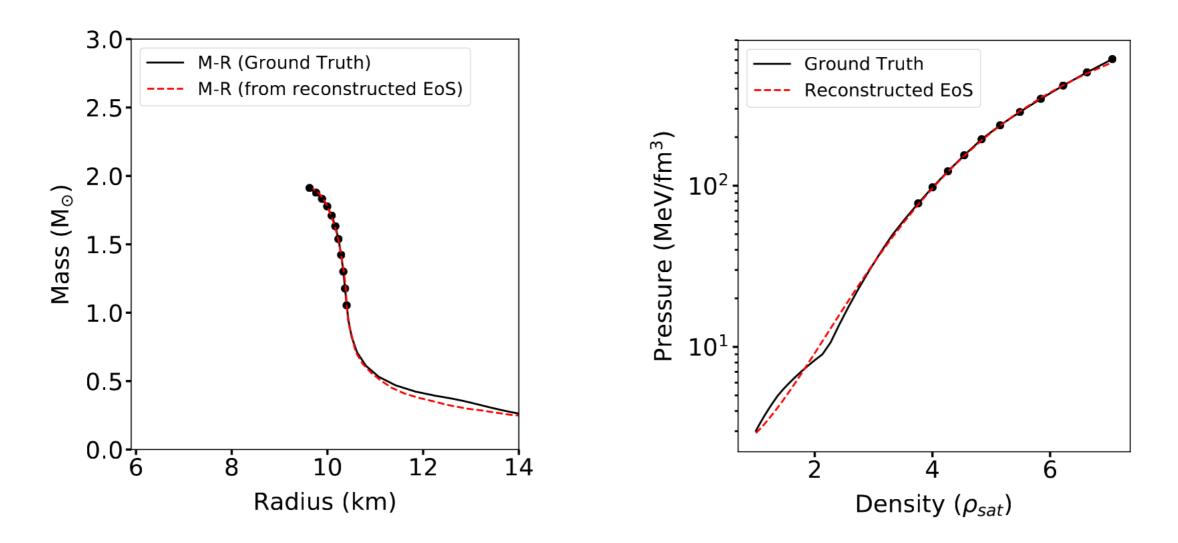
Comparison of the performance of different Neural Networks for solving the TOV equations.

$N_{ ho}$	NN	\mathcal{R}^2	MSE	Parameters	Epochs	Time
			$(\times 10^{-5})$	(#)	$(\times 10^3)$	$(\times 10^3 sec)$
128	CNN	0.9999	1.743	$170,\!176$	3.5	7.35
	FCN	0.9999	1.052	70,304	15	4.91
	LSTM	0.9998	0.741	$347,\!416$	3	32.5
	WaveNet	0.9998	3.003	296,706	3	64.7
	CNN	0.9999	3.019	$58,\!912$	3.5	2.15
32	FCN	0.9999	1.179	$23,\!936$	15	2.79
02	LSTM	0.9999	0.814	74,904	3	4.03
	WaveNet	0.9999	3.047	18,882	3	10.7



Results

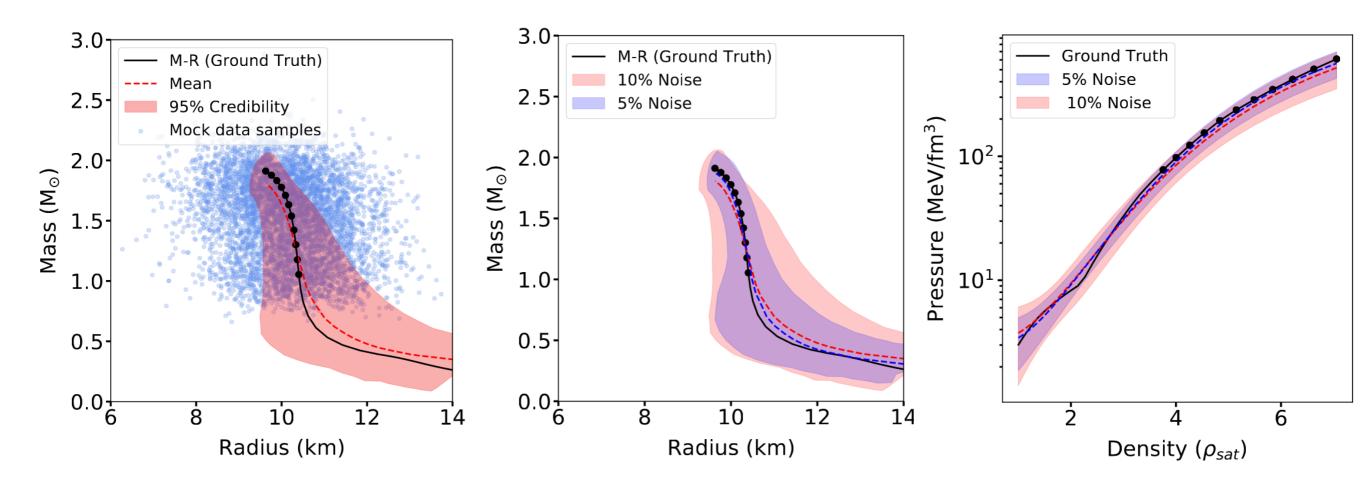
Test 1: mock data without noise



A reasonable agreement of the M-R curve from the reconstructed EoS (red dashed line) with the ground truth curve is depicted in the mass region $M > 1M_{\odot}$, with only 11 (M,R) pairs.

Results

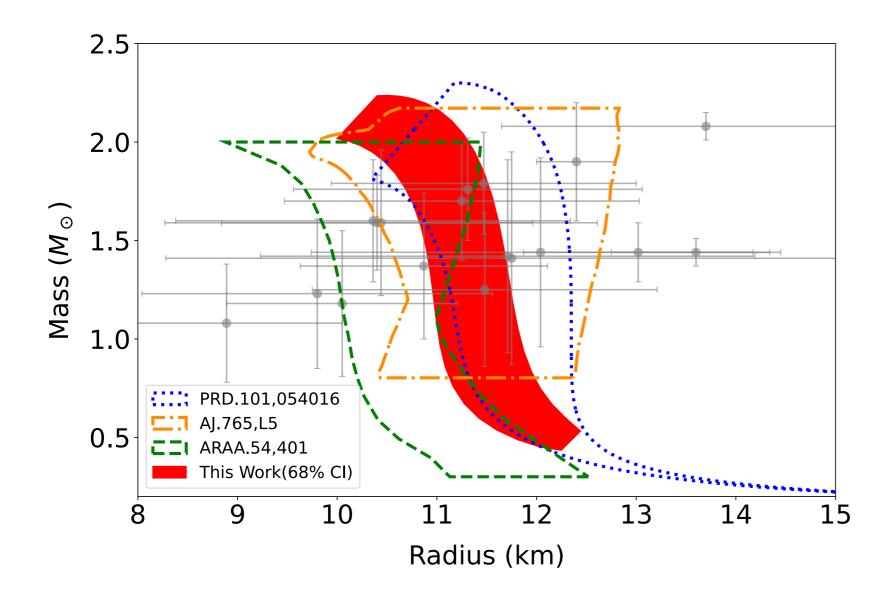
Test 2: mock data with noise

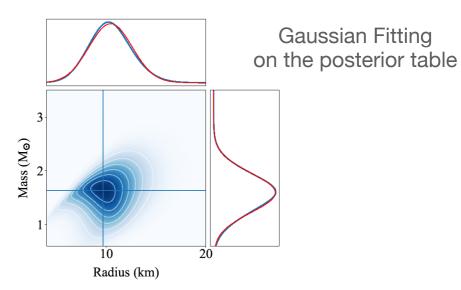


On mock data, Noise(Mi) ~ $\mathcal{N}(0, 0.1M_i)$ Noise(Ri) ~ $\mathcal{N}(0, 0.1R_i)$

500 samples give us different reconstructed EOSs and M-R curves. Gaussian fitting for each ρ_i or (M_i, R_i) to get confidence interval(CI).

Results On real data: M-R



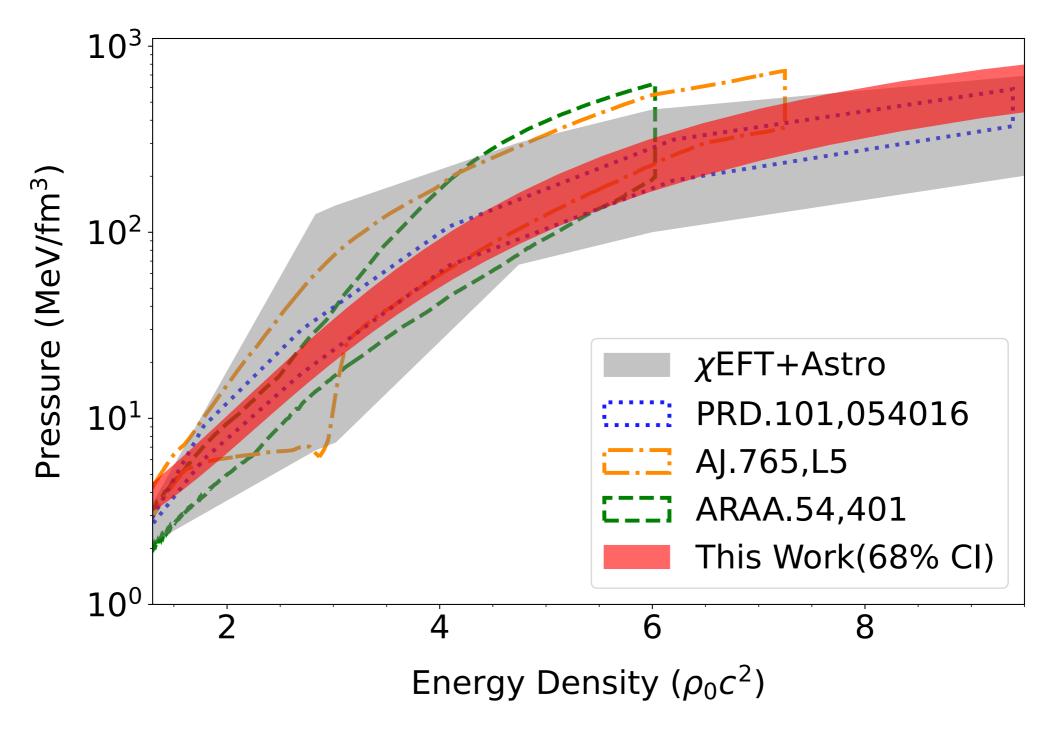


Observable	$Mass(M_{\odot})$	Radius(km)
M13	$1.42{\pm}0.49$	11.71 ± 2.48
M28	$1.08 {\pm} 0.30$	8.89±1.16
M30	$1.44{\pm}0.48$	$12.04{\pm}2.30$
NGC 6304	1.41 ± 0.54	11.75 ± 3.47
NGC 6397	$1.25 {\pm} 0.39$	11.48 ± 1.73
ω Cen	$1.23 {\pm} 0.38$	9.80±1.76
4U 1608-52	$1.60 {\pm} 0.31$	10.36 ± 1.98
4U 1724-207	$1.79 {\pm} 0.26$	11.47 ± 1.53
4U 1820-30	$1.76 {\pm} 0.26$	11.31 ± 1.75
EXO 1745-248	$1.59 {\pm} 0.24$	10.40 ± 1.56
KS 1731-260	$1.59 {\pm} 0.37$	10.44 ± 2.17
SAX J1748.9-2021	$1.70 {\pm} 0.30$	11.25 ± 1.78
X5	$1.18 {\pm} 0.37$	10.05 ± 1.16
X7	$1.37 {\pm} 0.37$	10.87 ± 1.24
4U 1702-429	$1.90 {\pm} 0.30$	12.40 ± 0.40
PSR J0437-4715	$1.44{\pm}0.07$	$13.60 {\pm} 0.85$
PSR J0030+0451	$1.44{\pm}0.15$	$13.02{\pm}1.15$
PSR J0740+6620	$2.08{\pm}0.07$	13.70 ± 2.05

18 (M_i,R_i) , batch size = 1000 Constraints: causality, Maximum mass $~\geq 1.9\,M_{\odot}$

Results On real data: EoS

Blue dots: NN as direct inverse mapping Yellow and Green dashed lines: Bayesian Approaches



Results Others 2000 Tidal Deformability A 1500 1000 **Phase Transitions?** GW170817: $\Lambda_{1.4} = 190^{+390}_{-120}$ 1st order PT/ cross-over is not ruled out. 500 Need more accurate observations or new observables! $0 \downarrow 1.0$ 1.0 1.2 1.8 1.6 1.4 Mass (M_{\odot}) 0.8 Consists with the GW observation $c_{s}^{2}(c^{2})$ 0.6 0.4 0.2 0.0 2 Ż 5 7 6 8 4 Density ($\rho_0 c^2$)

21

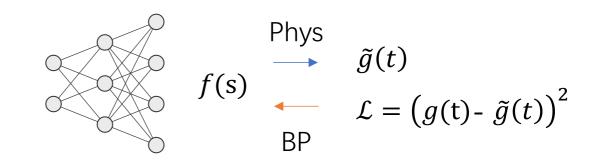
Summary and Outlooks

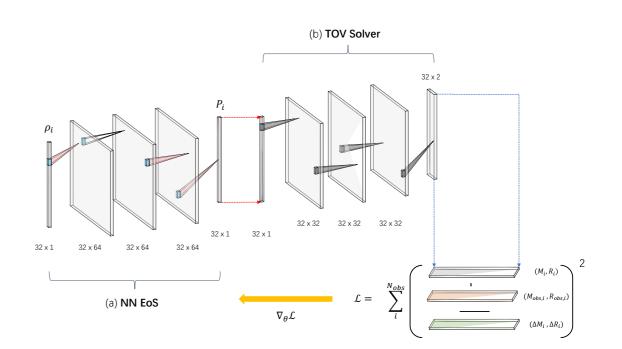
Take-home messages

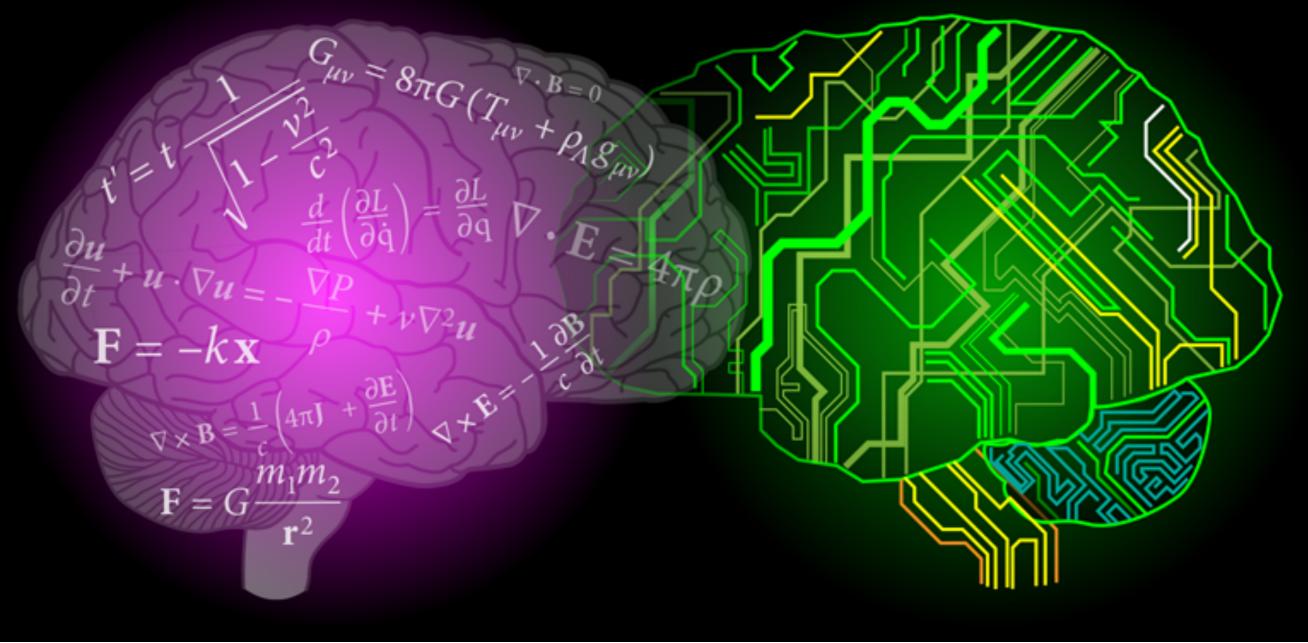
- AD can solve inverse problem using uncertain observations unsupervisedly
- Neural network representations can help us to reconstruct EoS unbiasedly and can be trained easily

Future works

- Phase transitions
- Multi-messager observations
- Fully-physical AD
- Open package...





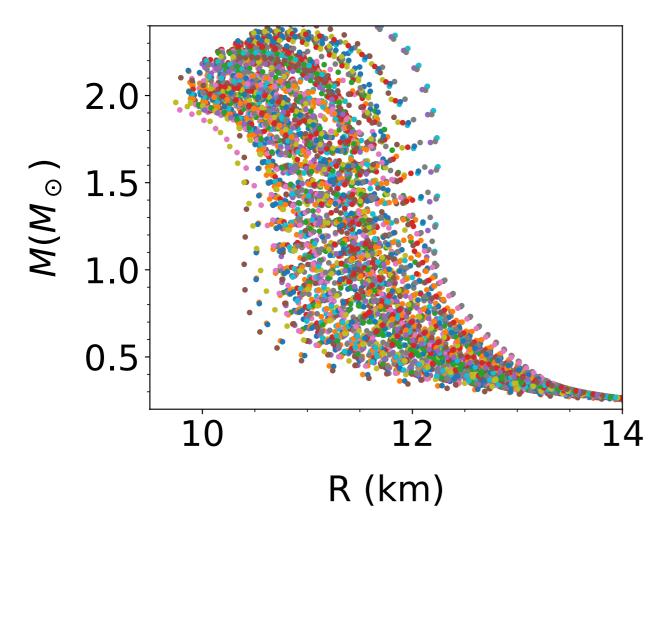


Future

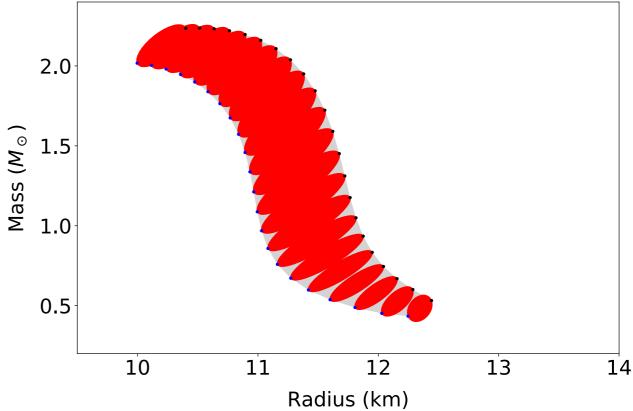
AD in Physics, opportunities and challenges

Backups

Calculate the uncertainty

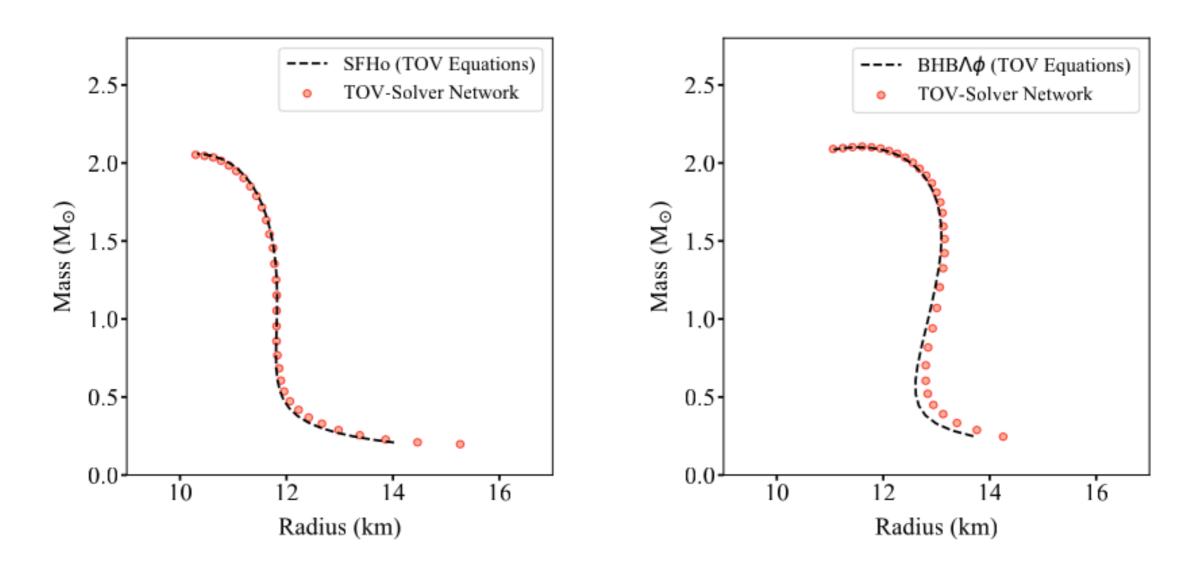


236 samples give us different batches of M-R pairs. Gaussian fitting for each batch to get the uncertainty.



Backups

Closure test for TOV solver



The NN TOV solver is not perfect. We are replacing it with fully-physical differentiable modules.

Backups

Training process

Our interested area

