Methodology 0000000 Summary 0

Fast cooling in neutron stars

Basic tests to check your EOS

Melissa Mendes^{* 1} Farrukh Fattoyev ², Andrew Cumming ¹, Charles Gale ¹

¹McGill University, Montreal, CA

²Manhattan College, Riverdale, US

*melissa.mendessilva@mail.mcgill.ca

Melissa Mendes

Methodology

Results

Summary 0

Neutron stars

Figure: From Watts et al, 2016 (Rev. Mod. Phys) [ArXiv: 1602.01081]

◆□ ▶ < □ ▶ < 三 ▶ < 三 ▶ < □ ▶ < □ ▶</p>

Methodology

Results

Summary 0

Data constraints

Figure: From Christian et al (Phys. Rev. D) [ArXiv: 2109.04191] Probe structure, limited prediction power of microphysics

문 문

Methodology

Results

Cooling data to complement

Transiently-accreting sources

Figure: From Wijnands, Degenaar and Page, 2017 (J. Astrophys. Astr.) [ArXiv:1709.07034]

Melissa Mendes

Methodology •000000

Results

Summary 0

Fast cooling rates

Main neutrino processes in $npe\mu\Lambda\Sigma^-$ matter^*)

(I) Baryon direct Urca	$Q \sim (10^{23} - 10^{27}) T_9^6 \text{ erg cm}^{-3} \text{ s}^{-1}$
(1) $n \to p l \bar{\nu}_l \qquad p l \to n \nu_l$	(2) $\Lambda \to p l \bar{\nu}_l \qquad p l \to \Lambda \nu_l$
(3) $\Sigma \to n l \bar{\nu}_l \qquad n l \to \Sigma \nu_l$	$(4) \Sigma \to \Lambda l \bar{\nu}_l \qquad \Lambda l \to \Sigma \nu_l$
(II) Baryon modified Urca	$Q \sim (10^{18} - 10^{21}) T_9^8 \text{ erg cm}^{-3} \text{ s}^{-1}$
(1) $nB \rightarrow nBl\bar{\nu}_l$ $nBl \rightarrow nB\nu_l$	(2) $\Lambda B \rightarrow n B l \bar{\nu}, \qquad n B l \rightarrow \Lambda B \nu$
(1) $nB + pBn l + nBn l$	(2) $MD \rightarrow pDt\nu_l \qquad pDt \rightarrow MD\nu_l$

Model	Process		$Q, {\rm erg} {\rm cm}^{-3} {\rm s}^{-1}$
Pion condensate	$\tilde{n} \to \tilde{p} l \bar{\nu}_l$	$\tilde{p}l \rightarrow \tilde{n}\nu_l$	$(10^{22} - 10^{26}) T_9^6$
Kaon condensate	$\tilde{n} \rightarrow \tilde{p} l \bar{\nu}_l$	$\tilde{p}l \rightarrow \tilde{n}\nu_l$	$(10^{22} - 10^{24}) T_9^6$
Quark matter	$d \to u e \bar{\nu}_e$	$ue \rightarrow d\nu_e$	$(10^{25} - 10^{26}) T_9^6$

*) l stands for e or μ ; \tilde{n} and \tilde{p} are quasinucleons (mixed n and p states); u and d are quarks.

Figure: From Yakovlev et al, 2000 (Phys. Rep.) [Arxiv: astro-ph/0012122] = 🔊 a

Methodology

Results

Summary 0

Hadronic direct Urca cooling

$$\begin{array}{ll} \text{Reactions like } n \to p + e^- + \bar{\nu}_e, \quad p + e^- \to n + \nu_e \text{ and} \\ n \to p + \mu^- + \bar{\nu}_{\mu^-}, \quad p + \mu^- \to n + \nu_{\mu^-}, \end{array}$$

which can only happen when energy and momentum are conserved, that is, ignoring muons:

$$P_{Fn} \leq P_{Fp} + P_{Fe} \Rightarrow \quad Y_p \geq \frac{[(\rho Y_n)^{1/3} - \rho Y_e)^{1/3}]^3}{\rho}$$

such that $\epsilon_0^{dUrca} = \frac{457\pi}{10080} G_{\rm F}^2 \cos^2 \theta_{\rm C} \left(1 + 3g_{\rm A}^2\right) \frac{m_n^* m_p^* m_e}{h^{10} c^3} (k_{\rm B} T)^6 \Theta_{npe}$

Results

Summary 0

Don't forget superfluidity

When superfluidity or superconductivity are considered, $\epsilon^{dUrca}=\epsilon_0^{dUrca}R$ where, for neutron triplets,

$$\begin{aligned} \tau &= T/T_c \\ v_{\rm T} &= \sqrt{1-\tau} \left(0.7893 + \frac{1.188}{\tau} \right) \\ R_{\rm L} &= \left[0.2546 + \sqrt{(0.7454)^2 + (0.1284 \, v_{\rm T})^2} \right]^5 \exp\left(2.701 - \sqrt{(2.701)^2 + v_{\rm T}^2} \right) \end{aligned}$$

When proton and neutron pairing are simultaneously present, $R_L \sim \min(R_{L \text{ singlet}}, R_{L \text{ triplet}})$

Results

Summary of general picture

- Cooling data can provide microphysics constraints in a way that other measurements cannot
- Make sure your EOS accommodates slow and fast cooling sources
 - high proton fractions in fully hadronic EOS
 - kaons, pions, quarks + hadrons EOS

Careful with suppression factors

Methodology

Results

Summary 0

Realistic hadronic EOS, with e^- and μ^-

Parametrizing $E(\rho, \delta) = E_0(\rho) + E_{sym}(\rho) \cdot \delta^2 + \mathcal{O}(\delta^4)$, where $\delta = (\rho_n - \rho_p)/\rho$,

Around $\rho_{\rm sat}\approx$ 0.15 fm $^{-3}$,

$$E_{\rm SNM}(\rho) = B + \frac{1}{2} \, \mathcal{K} \, \left(\frac{\rho - \rho_{\rm sat}}{3\rho_{\rm sat}}\right)^2 + \cdots$$
$$E_{\rm sym}(\rho) = J + \mathcal{L} \, \left(\frac{\rho - \rho_{\rm sat}}{3\rho_{\rm sat}}\right) + \frac{1}{2} \, \mathcal{K}_{\rm sym} \left(\frac{\rho - \rho_{\rm sat}}{3\rho_{\rm sat}}\right)^2 + \cdots$$

B = energy per nucleon, K = incompressibility coefficient of SNM, J = symmetry energy, L = slope of symmetry energy, $K_{sym} =$ incompressibility coefficient of symmetry energy at saturation density.

Methodology 00000●0 Results

Summary 0

Realistic hadronic EOS, with e^- and μ^-

Results

Summary 0

Varied nuclear pairing gap models

Many possible parametrizations, Ho et al, 2015 (PRC) [ArXiv:1412.7759]

Methodology

Results •0000000000000 Summary 0

dUrca threshold

Methodology 0000000

Can we reproduce MXB 1659-29 inferred luminosity?

Without superfluidity, yes! Note the volume fraction

Methodology 0000000 Results

• • • • • • • •

물 문 옷 물 문 물 물

Nuclear pairing suppression

When the gap closes after the dUrca threshold, those reactions are strongly suppressed

Methodology

Results

Summary 0

Nuclear pairing suppression

Late opening example

Methodology 0000000

Results

Summary 0

Can we reproduce MXB 1659-29 inferred luminosity?

With superfluidity, yes too! Note the still small range of masses for a given EOS

Ask me about PS+NT combinations :)

Results

A word about heat capacity

Knowing this source's temperature in 10 years, we could measure or constraint its heat capacity

Methodology 0000000 Results

Image: A match the second s

Conclusions pt 1

- Central proton fraction directly proportional to L, thus large L EOS needs strong superfluidity
- Fully hadronic EOS can describe MXB 1659-29 and potentially hotter and colder sources
- "Strength" of superfluidity better observed with core volume submitted to it than critical temperature

▲ ■ ▶ ■ ■ ● 9 Q @

What if... there are less effective dUrca reactions active?

Upper limit

Up to $10^{-3} < Q \le 10^{-2}$, depending on $L_{\rm B}$, and the set of the s

Melissa Mendes

Methodology 0000000

Results

Summary 0

What if... there are less effective dUrca reactions active?

PHAROS 2022 Meeting

-

Methodology 0000000 **Results**

Summary 0

Conclusions pt 2

- Increase in mass range is not significant for all L, oversimplified picture?
- 100 times less efficient process would have difficulty reproducing much colder sources, large L disfavored?
- Some gap model combinations unable to reproduce data if Q small, are they disfavored?

Methodology 0000000

Results

Summary O

Simulating hybrid EOS with quarks

Methodology 0000000

Results

Image: A matrix

토 · · · 토 · · 토

Summary 0

What if... there are quarks in the core?

Results 00000000000000000 Summary 0

What if... there are quarks in the core? - Mixed phase

Melissa Mendes

PHAROS 2022 Meeting

24 / 41

Methodology 0000000 Results

Summary 0

Conclusions pt 3

- Quark dUrca cooling dominant only if transition before dUrca threshold, careful calculations for small L
- Possibility of constraining quark-hadron transition with cooling data
- The possible presence of mixed phase does not change the picture significantly

Methodology

Results

Summary

Summary

- Fully hadronic EOS can describe MXB 1659-29 and potentially colder sources
- Less effective cooling processes not necessarily favored (cooler sources would need even larger volume fractions)
- If quarks present, careful study of the star's cooling is needed (including nuclear and color condensate(?) pairing)
- Let's talk about your favorite EOS so we can investigate these details together!

Thank you! melissa.mendessilva@mail.mcgill.ca

References I

[M. Mendes et al]

XVI Marcel Grossmann Proceedings, 2021, ArXiv: 2110.11077

- [Watts et al] Rev. Mod. Phys. 88, 021001 (2016)
- [R. Wijnands N. Degenaar and D. Page]
 - J. Astrophys. Astr., 38:49 (2017)
- [W. Ho et al]

Physical Review C 91, 015806 (2015)

```
[E. Brown et al]
Phys. Rev. Lett. 120, 182701 (2018)
```

TOV equations

$$\begin{aligned} \frac{\mathrm{d}P}{\mathrm{d}r} &= -\frac{\mathcal{E}(r)}{c^2} \frac{Gm(r)}{r^2} \left[1 + \frac{P(r)}{\mathcal{E}(r)} \right] \left[1 + \frac{4\pi r^3 P(r)}{m(r)c^2} \right] \left[1 - \frac{2Gm(r)}{c^2 r} \right]^{-1} ,\\ \frac{\mathrm{d}m}{\mathrm{d}r} &= 4\pi r^2 \frac{\mathcal{E}(r)}{c^2} ,\\ \frac{\mathrm{d}\phi}{\mathrm{d}r} &= -\frac{1}{\mathcal{E}(r) + P(r)} \frac{\mathrm{d}P}{\mathrm{d}r} \end{aligned}$$

with
$$\phi(R) = 1/2 \ln \left(1 - \frac{2GM}{Rc^2}\right)$$
 and $T(r) = \tilde{T} \exp(-\phi(r))$

◆□ > ▲母 > ▲目 → ▲日 > ▲日 > ● ●

Speed of sound and other parameters

Saturation density, $\rho_0 = 0.1504 \, \text{fm}^{-3}$, binding energy per nucleon, B = -16.26 MeV, incompressibility, $K_0 = 237.7$ MeV

Nuclear pairing parametrization

For the polynomial parametrization we use here,

$$\Delta(k_{\rm Fx}) = \Delta_0 \frac{\left(k_{\rm Fx} - k_0\right)^2}{\left(k_{\rm Fx} - k_0\right)^2 + k_1} \frac{\left(k_{\rm Fx} - k_2\right)^2}{\left(k_{\rm Fx} - k_2\right)^2 + k_3}$$

Gap model	Δ_0 (MeV)	$k_0 \ (\text{fm}^{-1})$	k_1 (fm ⁻²)	(fm^{-1})	$k_3 (fm^{-2})$	Ref.
		Proto	n singlet ((ps)		
AO	14	0.15	0.22	1.05	3.8	[57,58]
BCLL	1.69	0.05	0.07	1.05	0.16	[39,58]
BS	17	0.0	2.9	0.8	0.08	[59]
CCDK	102	0.0	9.0	1.3	1.5	[49,58]
CCYms	35	0.0	5.0	1.1	0.5	[60]
CCYps	34	0.0	5.0	0.95	0.3	[60]
EEHO	4.5	0.0	0.57	1.2	0.35	[58]
EEHOr	61	0.0	6.0	1.1	0.6	[42]
Т	48	0.15	2.1	1.2	2.8	[61]
		Neutr	on triplet	(nt)		
AO	4.0	1.2	0.45	3.3	5.0	[38]
BEEHS	0.45	1.0	0.40	3.2	0.25	[62]
EEHO	0.48	1.28	0.1	2.37	0.02	[41]
EEHOr	0.23	1.2	0.026	1.6	0.0080	[42]
SYHHP	1.0	2.08	0.04	2.7	0.013	[11]
Т	1.2	1.55	0.05	2.35	0.07	[38,64]
TTav	3.0	1.1	0.60	2.92	3.0	[65]
TToa	2.1	1.1	0.60	3.2	2.4	[65]

FABLE II. Su	perfluid gap	parameters.
--------------	--------------	-------------

Figure: Modified from W. Ho et al (2015)

Heat capacity calculation details

Given the individual heat capacities of each species C_x , we find the total heat capacity by

$$C_{\rm total}^{\rm core} = \int_0^{R_{\rm core}} \frac{4\pi r^2 \sum C_x}{\left(1 - (2Gm(r)/c^2 r)\right)^{1/2}} dr$$

With superfluidity, it gets reduced such that $C_x^{pairing} = C_x R$. For neutron triplets,

$$\tau = T/T_c$$

$$u_{\rm T} = \sqrt{1 - \tau} (5.596 + 8.424/\tau)$$

$$R_c = \left[0.6893 + \sqrt{(0.790)^2 + (0.03983 \, u_{\rm T})^2} \right]^2 \exp\left(1.934 - \sqrt{(1.934)^2 + \frac{u_{\rm T}^2}{16\pi}} \right)$$

Heat capacities of the stars found

< 67 >

ъ.

Temperature variation and heat capacity

When the core is isothermal, a neutron star in quiescence has

$$Crac{d ilde{T}}{dt} = -L_{\gamma}(ilde{T}) - L_{
u}(ilde{T}),$$

neglecting $L_{\gamma}(\tilde{T})$ and knowing $C \propto \tilde{T}$ and $L_{\nu}(\tilde{T}) \propto \tilde{T}^6$, for dUrca processes, it can be shown that

$$\left(\frac{\tilde{T}_i}{\tilde{T}_f}\right)^4 - 1 = 4\frac{\Delta t \, L_\nu}{C \, \tilde{T}}$$

for $\Delta t << C\, { ilde T}/L_
u$, we expand in first order to get

$$\frac{C_{38}}{L_{\nu,35}} = \left(\frac{\Delta \tilde{T}/\tilde{T}}{0.3\%}\right)^{-1} \left(\frac{t_q}{10 \,\mathrm{yr}}\right) \tilde{T}_8^{-1}$$

Some Ps+Nt combinations

Melissa Mendes

Some Ps+Nt combinations

Melissa Mendes

Different Q for other Ps+Nt combinations

Melissa Mendes

Different Q for other Ps+Nt combinations

Melissa Mendes

Different Q for other Ps+Nt combinations

Melissa Mendes

Quarks and superfluid hadrons

< 17 ×

토 🕨 토

Quarks and superfluid hadrons

-

3

Appendix 0 00000000000000000

Quarks and hadrons mixed phase

-

ъ