Constraining nuclear physics parameters L_{sym}, K_{sym} and Q_{sat} from astrophysical data

Based on paper: Baillot d'Etivaux, SG, JM et al. 2019

Sebastien Guillot

IRAP, Toulouse, France

Measuring the radius precisely is rather difficult for neutron stars.

To measure the radius, we need to: • observe the surface thermal emission, • correctly model this emission, • know the distance independently. $L = 4\pi R^2 \sigma T_{\text{eff}}^4 \longrightarrow F = \left(\frac{R}{D}\right)^2 \sigma T_{\text{eff}}^4$

Neutron stars in <u>quiescent low-mass X-ray</u> <u>binaries</u>

Quiescent low-mass X-ray binaries are ideal systems for radius measurements.

Surface thermal emission at $T_{eff} \sim 10^6$ K, powered by <u>residual heat from the deep</u> <u>crust</u> radiating outwards through the **atmosphere** with $L_X = 10^{32-33}$ erg/sec

X-ray Spectral fitting of this surface emission gives us T_{eff} and $F_X \propto (R_{\infty}/D)^2$

$$R_{\infty} = R_{\rm NS} \left(1 + z \right) = R_{\rm NS} \left(1 - \frac{2GM_{\rm NS}}{R_{\rm NS} c^2} \right)^{-1/2}$$

Globular clusters host an overabundance of LMXB systems...

EINSTEIN

1980s

ROSAT

Chandra X-ray Obs.

1990s

2000s

Observatory

Optical Image

...and they have independently measured distances.

The first <u>globular cluster qLMXB</u> was discovered in Omega Centauri.

Because of gravitational redshift, the radius is degenerate with the unknown mass.

The degeneracy between M_{NS} and R_{NS} can be broken by measuring M_{NS} independently.

<u>Observing the binary</u> companion to the NS

To sum up, the X-ray spectra of thermally emitting neutron stars is used to extract their M_{NS} and R_{NS}.

We want to find which <u>equation of state</u> in M-R space is common to all these measurements.

$$R_{\infty} = R_{
m NS} \left(1 + z
ight) = R_{
m NS} \left(1 - rac{2GM_{
m NS}}{R_{
m NS} \ c^2}
ight)^{-1/2}$$

A solution consists in combining these observations in a statistical analysis.

i.e., the radius is the same for all neutron stars

Guillot et al. 2013, 2014, 2016

Analytical parameterizations

Read et al. (2009), Raithel et al. (2016)

Using a realistic, physically-driven, parameterisation of the equation of state is preferable.

$$e_{\text{sat}} = E_{\text{sat}} + \frac{1}{2}K_{\text{sat}}x^{2} + \frac{1}{3!}Q_{\text{sat}}x^{3} + \frac{1}{4!}Z_{\text{sat}}x^{4} + \dots$$

$$e_{\text{sym}} = E_{\text{sym}} + L_{\text{sym}}x + \frac{1}{2}K_{\text{sym}}x^{2} + \frac{1}{3!}Q_{\text{sym}}x^{3} + \frac{1}{4!}Z_{\text{sym}}x^{4} + \dots,$$

$$x = \frac{n - n_{\text{sat}}}{3n_{\text{sat}}}$$
With x

Margueron et al. 2018 Baillot d'Etivaux, SG, JM et al. 2019

Our measurements of these three parameters improve on previous estimates.

Baillot d'Etivaux, SG, JM et al. 2019 Our measurements (2σ) :

★ L_{sym} ~ 25 - 60 MeV
★ K_{sym} ~ -250 - 130 MeV
★ Q_{sat} ~ -200 - 1900 MeV

For comparison:

Ranges of value from experimental and theoretical estimates

• $L_{sym} \sim 20 - 90 \text{ MeV}$

★ K_{sym} ~ -400 - 200 MeV

◆ Q_{sat} ~ -1300 – 1900 MeV

Our analysis results in M_{NS} - R_{NS} or in P- ρ space are consistent with other measurements.

Baillot d'Etivaux, SG, JM et al. 2019

Summary

 By applying the meta-model of Margueron et al. (2018) directly to astrophysical data, we extract measurements of the parameters Lsym, Ksym and Qsat:

 $L_{\text{sym}} = 37.2^{+9.2}_{-8.9} \text{ MeV}$ $K_{\text{sym}} = -85^{+82}_{-70} \text{ MeV} \implies R_{\text{NS}} = 12.4 \pm 0.4 \text{ km}$ $Q_{\text{sat}} = 318^{+673}_{-366} \text{ MeV}$ Baillot d'Etivaux, SG, IM et al. 2019

 This requires assuming that <u>all neutron stars are</u> <u>described by the same equation of state</u>.

The cold surface of millisecond pulsars can also be used to measure their radius.

Gonzalez-Canuilef, Guillot & Reisenegger, 2019

The cold surface of millisecond pulsars can also be used to measure their radius.

Gonzalez-Canuilef, Guillot & Reisenegger, 2019

Conclusion

So far, results from different approaches are consistent with each other.

Gonzalez-Canuilef, SG et al. 2019 Baillot-d'Etivaux, SG, JM et al. 2019 Riley et al. 2019 Riley et al. 2021 Abbott et al. 2018