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INTRODUCTION & MOTIVATION

NEUTRON STARS IN A NUTSHELL

• most compact (M/R) stars:
1 ∼ 2M⊙ in radius of ≈ 10km

• extreme matter and gravity:
“nutshell” of matter can weigh 1015 g

• for some time most precise clocks:
extremely stable rotation

• have extremely flat surface:
tiny “mountains” (few mm)
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INTRODUCTION & MOTIVATION

NEUTRON STAR PHYSICS

Many disciplines and aspects required (not complete!):

• strong gravity, requires full general
relativity

• full composition unconstrained,
nuclear physics (and beyond?)

• “cosmic laboratory” for QCD at low
temperature/high density

• stability/formation of extreme
magnetic fields (magnetars)

• nucleosynthesis of heavy elements
(mergers)

Credit: Textbook Tipler/Mosca; Kokkotas,
Gaertig; ESA/Hubble & NASA
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INTRODUCTION & MOTIVATION

OBSERVATIONAL ASPECTS

From radio to X-ray and now gravitational waves (GWs)!

• first pulsar found by Jocelyn Bell
Burnell in 1967 (radio)

• hot spots on surface (e.g. via NICER,
X-ray)

• low mass/high mass X-ray binaries
(X-ray)

• indirect GWs via Hulse-Taylor binary
pulsar

• binary mergers via direct GWs
(LIGO/Virgo)

Weisberg and Huang, ApJ 829 55, 2016
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INTRODUCTION & MOTIVATION

NEUTRON STAR THEORY

For spherically symmetric (static) stars:

• stellar structure given by TOV1 equations
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mass m contained inside r is given by

m(r) = 4π
∫ r

0
r′2εdr′. (2)

• first law of thermodynamics connects with energy density

ρ dε = (ε + p)dρ. (3)

To close TOV equations, equation of state (EOS) P(ρ) is needed!

1Tolman-Oppenheimer-Volkoff
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INTRODUCTION & MOTIVATION

EQUATIONS OF STATE

Figure created by Norbert Wex, taken from website of Paulo Freire.
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INTRODUCTION & MOTIVATION

DESCRIBING THE EQUATION OF STATE

“Nuclear physics specific approach”:

• compute from first principles

• clear connection to microscopic physics

• hard to compute without assumptions

• yields tabulated “realistic EOS”

“Theory agnostic parametrization”:

• simple polytropic EOS: P = KρΓ

• extension to multi-piecewise EOS

• no microscopic physics, but easy to use

• can be mapped to realistic EOS
Read et al., PRD 79, 124032, 2009
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INTRODUCTION & MOTIVATION

NEUTRON STAR “OBSERVABLES”

Direct problem: Given an EOS, what are (in principle) “observable” properties?

• mass

• radius

• spin/spindown

• moment of inertia

• magnetic fields

• oscillation modes

• tidal deformability/Love number

• surface temperature/cooling

• . . .

Some properties are static/stationary, others are perturbative/dynamical
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INTRODUCTION & MOTIVATION

STELLAR OSCILLATIONS AND UNIVERSAL RELATIONS

Stellar Oscillations:

• perturbed stars have characteristic
frequencies/damping times

• rich families of modes: f -modes,
p-modes, g-modes, r-modes, w-modes,...

• details depend on underlying EOS and
stellar properties

Universal Relations:

• oscillations scale with stellar properties,
e.g., average density

• EOS insensitive relations can be found
empirically

• “asteroseismology”, relate modes directly
with bulk properties

Andersson and Kokkotas, MNRAS
299:1059-1068, 1998
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INTRODUCTION & MOTIVATION

MOTIVATION OF OUR WORK

Main aspect of our work is the inverse problem:

• Given (simulated) observables, how can one recover the underlying EOS?

• How does rotation impact the reconstruction?

• One framework to combine different observables from different stars

• Analysis via “post processed” data, directly from observed properties
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METHODOLOGY

OVERVIEW

Summary main parts:

• Mock Observations: mass, radius, spin, co- & counter-rotating f -mode2

full spin dependency!

• Model Observations: bulk properties via TOV, f -modes via universal relations
here is the “slow spin” part

• EOS: piecewise polytropic EOS by Read et al. (4 paramters)
pre-compute large TOV dataset on grid

• Inference: Bayesian approach via Markov-chain Monte Carlo (MCMC)
using EMCEE sampler

2quadrupolar l = m = 2 fluid
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METHODOLOGY

Modeling neutron star observables:

• leading corrections to mass and radius enter ∼ Ω2

• oscillation modes, e.g. f -mode(s) are modified ∼ Ω

• universal relations (UR) connect f with bulk properties

• for slow rotation describe (M,R,Ω, f i) via TOV and UR!

Modeling the EOS

• common approach fit multi-piecewise polytropic EOS

• Read et al. model has 4 parameters (θ = (p1,Γ1,Γ2,Γ3))

• very accurate to (sub-)percent level compared to realistic EOS table

Bayesian approach

• define likelihood (uncorrelated Gaussian for each observables D)

• going from EOS parameters θ to (M(θ),R(θ),...) is not trivial

• parametric minimization problem in each likelihood evaluation, “expensive”
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METHODOLOGY

COMMENTS ON LIKELIHOOD

• our likelihood is given by

log(P(D|θ)) =−1
2

ND

∑
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NO
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j −Mi
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σ̄ i
j

)2

, (4)

• model values are determined via

∆2
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≡ min
(
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k
)

(5)

• k ∈ Nseqgrid labels the values for the discretized EOS sequence and ∆2
k is defined
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METHODOLOGY

WORKFLOW

Before MCMC sampling:

• like LIGO, build template bank (here for M-R curves)

• θ grid range includes realistic EOS models

• at the moment 504 = 6.25×106 M-R curves, each with 50 stars

• in total 312.5×106 TOV integrations

• on 50 CPUs, 1 ∼ 2 days with efficient C-code

During MCMC sampling:

• for each θ proposal find closest dataset

• compute f -modes with UR along discrete Ω

• provide model proposal M(θ),R(θ), ... via minimization scheme

• reasonable sampling takes few hours on laptop/workstation
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APPLICATION & RESULTS

APPLICATION
Our simulated data:

• bulk properties R(Ω),M(Ω) full rotational dependency (RNS-code)

• f -modes from precise time evolution code (Krüger and Kokkotas, PRL 125,
111106, 2020)

• injected realistic EOS (MPA1 or SLy) using Read et al. model

Compactness vs spin frequency. Color coded a measure for breakdown of slow spin approximation
for M and R. Black dots our simulated data ( f -modes not shown). Dotted lines different constant
axis ratios (polar over equatorial radius).
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APPLICATION & RESULTS

RESULTS MPA1

Model works well with percent level data, here 3% relative error.

MCMC sampling of the four EOS
parameters. Blue Read et al. best fit
injection for MPA1 EOS.

Prior vs posterior sampling of the EOS with
95% highest probability density intervals.
Black dashed injected EOS.
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APPLICATION & RESULTS

RESULTS SLY

Model works well with percent level data, here 3% relative error.

MCMC sampling of the four EOS
parameters. Blue Read et al. best fit
injection for SLy EOS.

Prior vs posterior sampling of the EOS with
95% highest probability density intervals.
Black dashed injected EOS.
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APPLICATION & RESULTS

OUTLOOK/DISCUSSION

Aspects that need to be improved/extended in upcoming work:

• include M(Ω),R(Ω) also in the model

• include tidal Love numbers and moment of inertia (also Ω!)

• eventually beyond Read et al. EOS (more EOS pieces)

• include more realistic errors (correlations)
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CONCLUSIONS

CONCLUSIONS

• approached inverse problem for rotating neutron stars

• simulated observations M,R,Ω, f2+, f2− take into account rotational effects

• model takes into account (slow) rotation (not common)

• assumptions are reliable on percent level for slow rotation (≲ 200Hz)

• required precision calls for next generation detectors/experiments
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RESULTS MPA1: CONSISTENCY CHECK

Inject model as data: here 1% relative error.

MCMC sampling of the four EOS
parameters. Blue Read et al. best fit
injection for MPA1 EOS.

Prior vs posterior sampling of the EOS with
95% highest probability density intervals.
Black dashed injected EOS.
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DATA MPA1

n M R fspin σu σ s ar
[M⊙] [km] [kHz] [kHz] [kHz]

1 1.764 12.523 0.218 1.533 2.116 0.989
2 1.311 12.466 0.177 1.468 1.900 0.990
3 2.002 12.445 0.224 1.618 2.239 0.990
4 1.400 12.528 0.236 1.394 1.993 0.983
5 1.700 12.559 0.260 1.442 2.129 0.983
6 1.531 12.584 0.284 1.361 2.094 0.978

Simulated data used for the inverse problem. The assumed underlying EOS
is MPA1 with PPA coefficients θ MPA1 = (34.495,3.446,3.572,2.887). The
relative errors are discussed in the main text. The last column shows the axis
ratio (ar), which we report for completeness, but which did not enter our
analysis.
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DATA SLY

n M R fspin σu σ s ar
[M⊙] [km] [kHz] [kHz] [kHz]

1 1.282 11.827 0.192 1.590 2.075 0.990
2 1.200 11.902 0.238 1.486 2.082 0.983
3 1.363 11.792 0.211 1.603 2.143 0.989
4 1.924 11.013 0.272 1.862 2.649 0.990
5 1.601 11.637 0.283 1.618 2.368 0.984
6 1.788 11.340 0.247 1.798 2.476 0.990

Simulated data used for the inverse problem. The assumed underlying EOS
is SLy with PPA coefficients θ SLy = (34.384,3.005,2.988,2.851). The relative
errors are discussed in the main text.The last column shows the axis ratio
(ar), which we report for completeness, but which did not enter our analysis.
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