Equation of state constraints from *NICER* and multimessenger observations*

*As part of the NICER (X-PSI) team including Svenja Greif, Kai Hebeler, Tanja Hinderer, Samaya Nissanke, Achim Schwenk, Tom Riley, Anna Watts, Jim Lattimer, Wynn Ho

Neutron stars as dense matter probes

QCD phase diagram

From nuclear physics to astrophysics

UNIVERSITY OF AMSTERDAM

Amsterdam

UNIVERSITY OF AMSTERDAM

GRAPP

From nuclear physics to astrophysics

Neutron star Interior Composition ExploreR

- NASA mission launched in 2017
- Installed on board of the ISS

UNIVERSITY OF AMSTERDAM

GRAP

- Measuring both energy and time of arrival in 0.2 - 12 keV band
- Rotation-powered millisecond pulsars

Pulse profile modeling

Mass-Radius measurements from NICER

Riley et al. (2019), ApJL, <u>1912.05702</u> & Riley et al. (2021), ApJL, <u>2105.06980</u>

https://github.com/xpsi-group/xpsi

See also Miller et al. (2019) & Miller et al. (2021)

From nuclear physics to astrophysics

UNIVERSITY OF AMSTERDAM

Amsterdam

From nuclear physics to astrophysics

UNIVERSITY OF AMSTERDAM

Theoretical equation of state models

Image credit: Norbert Wax

Theoretical equation of state models

Image credit: Norbert Wax

EOS parameterizations

Matched to low density EOS calculations around saturation density (cEFT)

EOS parameterizations

 Discrete sampling of precomputed set of EoS

Capano et al. (2020), Dietrich et al. (2020)

Non-parametric EoS inference

Landry & Essick (2018), Miller et al. (2021), Legred et al. (2021)

oa(P) [dvn cm^-2]

Multimessenger Observables

Tidal deformability measurement

Gravitational wave

signals

Radio timing

Mass measurement PSR J0740 Fonseca et al. (2021), 2104.00880

X-ray pulse profile modeling

Mass-radius measurement

Radio pulsars

Binary neutron star & black hole - neutron star mergers

X-ray pulsars

EoS constraints - radio timing

• Updated mass measurement of PSR J0740-6620 (Fonseca et al. 2021)

EoS constraints - Gravitational waves

Binary neutron star mergers GW170817 and GW190425

EoS constraints - Pulse profile modeling

 NICER x XMM measurement PSR J0740+6620 and NICER measurement PSR J0030+0451

EoS constraints - Multimessenger contributions

Combining all previously known observables shows impact of PSR J0740+6620

Impact of low-density EoS calculations

- 4 neutron star matter calculations at low density using chiral EFT
- Approximated with single polytrope up to 1.1no

14

PP

3.0

2.5

(© W) 2.0 W

1.5

1.0

10

GRAPPA * UNIVERSITY OF AMSTERDAM

12

R(km)

CS

12

R (km)

16

10

Can we rule out a phase transition?

- Even though J0740 is much more massive than J0030, radius is surprisingly similar
- But first order phase transitions predict a softening of the EoS

[Christian & Schaffner-Bielich (2021): <u>2109.04191</u>]

Outlook - other NICER sources

UNIVERSITY OF AMSTERDAM

GRA

Other possibilities include:

PSR J1614-2230, a 1.9 solar mass pulsar

Constraining the EoS with GW+EM measurements of BHNS mergers

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern

GW detections of BH-NS mergers so far

➡ No EM counterparts detected

Binaries to kilonova light curves end-to-end framework GEMMA*

*Gravitational waves and ElectroMagnetic counterparts Multimessenger Analysis

Parameter inference on a simulated signal

GRAPPA TO UNIVERSITY OF AMSTERDAM

Geert Raaijmakers - ECT workshop 2021

Parameter inference on a simulated signal

- Simulate optical data in grizbands
- Largest additional constraints on tidal deformability of the NS -> EoS constraints!

Outlook - summary

