Nuclear equation of state constrained by nuclear physics, microscopic and macroscopic collisions

TECHNISCHE UNIVERSITÄT DARMSTADT

Sabrina Huth

June 22, 2022 | ECT* workshop | Sabrina Huth | 1

Equation of state for astrophysical applications

EOS is key microphysics input in

- \rightarrow Core-collapse supernovae (CCSN) simulations
- \rightarrow Neutron star merger (NSM) simulations

Overall Goal:

EOS for simulations consistent with nuclear physics and observations

dit: NSE LIGO A Sim

Equation of state for astrophysical applications

EOS is key microphysics input in

- \rightarrow Core-collapse supernovae (CCSN) simulations
- \rightarrow Neutron star merger (NSM) simulations

Overall Goal:

EOS for simulations consistent with nuclear physics and observations

1. New EOS functional and EOS for astro applications

Yasin, SH, Arcones, Schwenk, PRL (2020); SH, Wellenhofer, Schwenk, PRC (2021)

2. Constraints on EOS using heavy-ion collisions

SH, Pang et al., Nature (2022)

Starting point for building new EOS: Nuclear theory up to around saturation density

Expansion of energy per particle around n_0 and $\beta = (n_n - n_p)/n$

$$\frac{E}{A}(\mathbf{n},\beta) = -\mathbf{B} + \frac{K}{18} \left(\frac{\mathbf{n}-\mathbf{n}_0}{\mathbf{n}_0}\right)^2 + \mathbf{S}(\mathbf{n})\beta^2 + \dots$$

Saturation density n_0 and energy B, incompressibility KSymmetry energy $E_{sym} \simeq S(n_0)$, slope $L \sim \partial_n E_{sym}|_{n_0}$

Starting point for building new EOS: Nuclear theory up to around saturation density

Expansion of energy per particle around n_0 and $\beta = (n_n - n_p)/n$

$$\frac{E}{A}(\mathbf{n},\beta) = -\mathbf{B} + \frac{K}{18} \left(\frac{\mathbf{n}-\mathbf{n}_0}{\mathbf{n}_0}\right)^2 + \mathbf{S}(\mathbf{n})\beta^2 + \dots$$

Saturation density n_0 and energy B, incompressibility KSymmetry energy $E_{sym} \simeq S(n_0)$, slope $L \sim \partial_n E_{sym}|_{n_0}$

	Nucl. Theory	LS220	Shen
$n_0 [{ m fm}^{-3}]$	0.164(7)	0.155	0.145
<i>B</i> [MeV]	15.86(57)	16.0	16.3
E _{sym} [MeV]	32(4)	29.3	36.9
L [MeV]	51(19)	73.7	110.8
<i>K</i> [MeV]	215(40)	220	281
$m^{*}/m(n_{0})$	\sim 0.9(2)	1.0	0.634

Hebeler et al., PRC (2011); Hebeler et al., APJ (2013); Drischler et al., PRC (2016, 2017); Drischler et al., PRL (2019)

Energy density functional

- DAR
- Construct new energy density functional depending on density, proton fraction, and temperature:

$$\frac{E}{V}(n, \mathbf{x}, T) = \sum_{t} \frac{\tau_t}{2m_t^*} + \sum_{i} \left[\frac{\mathbf{a}_i}{d + \mathbf{n}^{(\delta_i - 2)/3}} + \frac{4\mathbf{b}_i \mathbf{x}(1 - \mathbf{x})}{d + \mathbf{n}^{(\delta_i - 2)/3}} \right] \mathbf{n}^{\delta_i/3 + 1} - \mathbf{x} \mathbf{n} \Delta ,$$
SH Wellenhofer, Schwenk, PRC (2021)

with isospin t = (n, p)kinetic energy density τ nucleon effective mass m^*

- Choose δ , *d* to ensure good fit performance
- Fit parameters a_i, b_i to reproduce available EOS constraints

Energy density functional

- TECHNISCHE UNIVERSITÄT DARMSTADT
- Construct new energy density functional depending on density, proton fraction, and temperature:

$$\frac{E}{V}(n, x, T) = \sum_{t} \frac{\tau_t}{2m_t^*} + \sum_{i} \left[\frac{\mathbf{a}_i}{\mathbf{d} + \mathbf{n}^{(\delta_i - 2)/3}} + \frac{4\mathbf{b}_i \mathbf{x}(1 - \mathbf{x})}{\mathbf{d} + \mathbf{n}^{(\delta_i - 2)/3}} \right] \mathbf{n}^{\delta_i/3 + 1} - \mathbf{x} \mathbf{n} \Delta,$$
SH Wellenhofer, Schwenk, PRC (2021)

with isospin t = (n, p)kinetic energy density τ nucleon effective mass m^*

- Choose δ , *d* to ensure good fit performance
- Fit parameters a_i, b_i to reproduce available EOS constraints

Strategy: vary parameters to obtain broad EOS band

Constraints from nuclear physics

Zero-temperature properties

- 4 E_{sym} L pairs cover broad range of theoretical uncertainty
- Unitary gas serves as lower bound for PNM energy

Constraints from nuclear physics

Nucleon effective mass and thermal effects

 Effective mass governs proto-neutron star contraction in CCSNe through thermal effects → Accurate implementation of m^{*} is crucial

Constraints from nuclear physics

Nucleon effective mass and thermal effects

- Effective mass governs proto-neutron star contraction in CCSNe through thermal effects → Accurate implementation of m^{*} is crucial
- Ab initio calculations at finite temperature from chiral EFT Carbone & Schwenk, PRC (2019); Keller et al., PRC (2021)
- *m*^{*} increases after saturation density due to 3N forces
- Important impact on thermal index!

SH, Wellenhofer, Schwenk, PRC (2021)

Neutron star properties

- Constraint from observations: 2σ bands from joint analysis of 2.14 M_☉ + GW170817 + NICER from Raaijmakers et al., APJ Lett. (2020)
- Additional high-density constraint for EOS of SNM based on QCD using functional Renormalization Group from Leonhardt et al., PRL (2020)

Equation of state for astrophysical applications

Equation of state (EOS) is key microphysics inputs in

- \rightarrow Core-collapse supernovae (CCSN)
- \rightarrow Neutron star merger (NSM) simulations

Overall Goal:

EOS for simulations consistent with nuclear physics and observations

- 1. New EOS functional and EOS for astro applications Yasin, SH, Arcones, Schwenk, PRL (2020), SH, Wellenhofer, Schwenk, PRC (2021)
- 2. Constraints on EOS using heavy-ion collisions

SH, Pang et al., Nature (2022)

Heavy-ion collision constraints

Danielewicz et al., Science (2002); Le Fèvre et al., Nucl. Phys. A (2016); Russotto et al., PRC (2016)

- FOPI and ASY-EOS experiments: ¹⁹⁷Au +¹⁹⁷Au collisions at GSI \rightarrow Constraint for $\sim 1-2n_0$
- Symmetric nuclear matter from FOPI:
 - incompressibility $K = 220 \pm 25$ MeV
- Symmetry energy from ASY-EOS:

$$S(n) = E_{\text{kin},0} \left(\frac{n}{n_0}\right)^{2/3} + E_{\text{pot},0} \left(\frac{n}{n_0}\right)^{\gamma_{\text{asy}}}$$

- γ_{asy} fitted to experimental data for $E_{svm} = 31 \text{ MeV}$ and 34 MeV
- Danielewicz et al.:
 - Constraint at higher densities consistent with FOPI
 - Used here in density range where ASY-EOS is sensitive

UNIVERSITÄT DARMSTADI

Bayesian multi-messenger framework

Dietrich et al., Science (2020)

- EOS prior based on chiral EFT for $n \le 1.5 n_{sat}$ with speed of sound extension to higher densities by Tews *et al.*, PRC (2018)
- Observations: mass measurements, GW data, NICER data
- HIC shifts R_{1.4} towards larger radii, similar to NICER

Constraints on the EOS

SH, Pang et al., Nature (2022)

June 22, 2022 | ECT* workshop | Sabrina Huth | 11

Constraints on neutron star mass and radius

SH, Pang et al., Nature (2022)

TECHNISCHE UNIVERSITÄT DARMSTADT

June 22, 2022 | ECT* workshop | Sabrina Huth | 12

** SFB 1245

- Effective mass *m** mainly determines PNS contraction!
 - \rightarrow New m^* parametrization based on *ab initio* calculations
- New EOS functional interpolates flexibly and stable between low and high densities
- Systematic and interdisciplinary study that combines nuclear theory, nuclear experiment, and observations
- Remarkable consistency between HIC experiments and constraints from nuclear theory and astrophysics

 \rightarrow Future HIC constraints with smaller uncertainties at intermediate densities can pin down uncertainties of the EOS and neutron star radii

** SFB 1245

- Effective mass *m** mainly determines PNS contraction!
 - \rightarrow New m^* parametrization based on *ab initio* calculations
- New EOS functional interpolates flexibly and stable between low and high densities
- Systematic and interdisciplinary study that combines nuclear theory, nuclear experiment, and observations
- Remarkable consistency between HIC experiments and constraints from nuclear theory and astrophysics

 \rightarrow Future HIC constraints with smaller uncertainties at intermediate densities can pin down uncertainties of the EOS and neutron star radii

Thanks to:

K. Agarwal, A. Arcones, M. Bulla, M.W. Coughlin, T. Dietrich, A. Le Fèvre, P.T.H. Pang, A. Schwenk, I. Tews, W. Trautmann, C. Wellenhofer, C. Van Den Broeck, H. Yasin