Interpreting the multi-messenger picture drawn by merging neutron stars

Tim Dietrich

University of Potsdam Max Planck Institute for Gravitational Physics

22th of June 2022

Neutron stars as multi-messenger laboratories for dense matter

NUCLEAR PHYSICS AND RELATED AREAS

Where do we get our information from?

Pang et al., APJ 922 (2021) 1, 14

Pang et al., APJ 922 (2021) 1, 14

THE ORETICAL STUDIES IN NUCLEAR PHYSICS AND RELATED AREAS -ONDAZION

Neutron stars as multi-messenger laboratories for dense matter

EAN CENTRE

Neutron stars as multi-messenger laboratories for dense matter

(B) Maximum Mass Constraints: PSR J0348+4032/PSR J1614-2230 and GW170817/AT2017gfo remnant classification

$$\begin{array}{c|c} 3 \\ & & \\ & \searrow \\ & & \searrow \\ & & & & \\ & & & & \\ & & & \\ & & & &$$

Lower bound on the maximum mass through measurement of heavy pulsars (Shapiro Delay)

PSR J0740+6620

H. T. Cromartie, et al., Nature Astron. 4, 72 (2019). updatd in: Fonseca, E., et al. 2021, arXiv:2104.00880

PSR J0348+4032

J. Antoniadis, et al., Science 340, 6131 (2013).

PSR J1614-2230

Z. Arzoumanian, et al., Astrophys. J. Suppl. 235, 37 (2018)

see talks by T. Cromatie

Inspiral waveforms

Effective-one-body Formalism

- + agree well with most NR data
- slow to compute

see talk by S. Bernuzzi

Phenomenological Models

- + combination of PN/EOB/NR
- + accurate until merger
- just a fit

Inspiral waveforms

N.Kunert et al., PRD105 (2022) 6, L061301

Phenomenological Models

- + combination of PN/EOB/NR
- + accurate until merger
- just a fit

Application: GW170817 – Tidal Effects

Photometric lightcurves

-16

Electromagnetic Signals: Kilonova

Photometric lightcurves

Electromagnetic Signals: Kilonova

- 1.) compute lightcurves for a set (grid) of ejecta properties
- 2.) interpolate within this grid through Gaussian Process Regression or a Neural Network
- 3.) link ejecta properties through numerical-relativity predictions to the binary properties

Coughlin, TD, et al., MNRAS/sty2174

q

Gravitational Waves

PRL 119, 161101 (2017)

Primary mass m_1 $1.36-1.60 M_{\odot}$ Secondary mass m_2 1.17–1.36 M_{\odot}

APJL 892 (2020)

Primary mass m_1 $1.60-1.87 M_{\odot}$ Secondary mass m_2 1.46–1.69 M_{\odot}

GW190425

Huth et al., Nature 606 (2022) 276-280

Russotto et al., J.Phys.Conf.Ser. 420 (2013)

First steps towards a nuclear-physics and multi-messenger astrophysics framework

github.com/nuclear-multimessenger-astronomy

igcolowoble Product $arphi$ Team Enterprise Explore $arphi$ Marketplace Pricing $arphi$	Search	Sign in Sign up
Nuclear Multimessenger Astronomy ⋈ nuclear_multimessenger_astronom		
🕜 Overview 🛱 Repositories 2 🗄 Projects 😚 Packages 🔗 People		
Pinned		
 ☐ nmma Public A pythonic library for probing nuclear physics and cosmology with multimessenger analysis ● Python ☆ 5 ♀ 13 		People This organization has no public members. You must be a member to see who's a part of this organization.
📮 Repositories		Top languages
Q Find a repository Type -	Language - Sort -	Python
nmma Public A pythonic library for probing nuclear physics and cosmology with multimessenger analysis ● Python ☆ 5 邳 MIT 양 13 ③ 8 양 3 Updated 12 days ago	M	
nuclear-multimessenger-astronomy Public Config files for my GitHub profile. Public		

First steps towards a nuclear-physics and multi-messenger astrophysics framework

- incorporation of nuclear-physics information
- <u>simultaneous</u> analysis of GW, kilonova, and GRB afterglow

- HPC facilities needed

First steps towards a nuclear-physics and multi-messenger astrophysics framework

Outlook

	GW		Kilonova + GW O4		GRB Afterglow + GW O4			GRB Prompt + GW O4		
	HLV O3	HLVK O4	J	Z.	g	Radio	Optical	X-rays	Swift/BAT	<i>Fermi/</i> GBM
Count. Search										
Limit	12	12	21	22	22	0.1	22	10^{-13}	3.5	4
Rate	$1.8^{+2.7}_{-1.3}$	$7.7^{+11.9}_{-5.7}$	$2.4^{+3.6}_{-1.8}$	$5.1^{+7.8}_{-3.8}$	$5.7^{+8.7}_{-4.2}$	$0.29^{+0.44}_{-0.22}$	$0.06\substack{+0.09 \\ -0.04}$	$0.32^{+0.51}_{-0.23}$	$0.03\substack{+0.04 \\ -0.02}$	$0.17\substack{+0.26\\-0.13}$
(% of O4 GW)	(23%)	(100%)	(36%)	(67%)	(74%)	(4%)	(0.8%)	(4%)	(0.4%)	(2%)
Cand. Monitoring										
Limit	/	/	28	28	28	0.01	28	10^{-15}	1	1
Rate	/	/	$6.0^{+9.2}_{-4.4}$	$6.0^{+9.2}_{-4.4}$	$6.0^{+9.2}_{-4.4}$	$0.78^{+1.21}_{-0.58}$	$0.47\substack{+0.74 \\ -0.35}$	$0.57\substack{+0.89 \\ -0.42}$	$0.05\substack{+0.07 \\ -0.04}$	$0.31\substack{+0.48 \\ -0.23}$
(% of O4 GW)	/	/	(78%)	(78%)	(78%)	(10%)	(6%)	(7%)	(0.6%)	(4%)
GW subthreshold										
Limit	6	6	21	22	22	0.1	22	10^{-13}	3.5	4
Rate	$13^{+20}_{-9.6}$	54_{-40}^{+84}	$3.4^{+5.3}_{-2.5}$	$14^{+20}_{-10.4}$	21^{+34}_{-15}	$0.95^{+1.45}_{-0.70}$	$0.24_{-0.18}^{+0.38}$	$1.23^{+1.89}_{-0.91}$	$0.12\substack{+0.19\\-0.09}$	$0.75_{-0.55}^{+1.16}$
									<u> </u>	37: 0004 00000

Colombo et al., arXiv:2204.07592

Next observing run starts in a few months

Development of the next generation of gravitational-wave telescopes

ULTRASAT

Ultraviolet Transient Astronomy Satellite

Exploring the Dynamic UV Sky

