Precise Radio-Derived *(Neutron Star)* Mass Measurements from the NANOGrav 15-Year Data Set

Thankful Cromartie Einstein Postdoctoral Fellow | Cornell University

ECT* Workshop | June 21, 2022

A National Science Foundation Physics Frontiers Center

Outline

- Motivation
- Quick introduction to pulsar timing & NANOGrav
- Comparing 15-year binary parameters
- "Advanced" analysis
- Future plans and prospects

Disclaimer: this is all completely preliminary!

Motivation

Watts et al. 2016

Motivation

Thankful Cromartie | ECT* Workshop | June 21, 2022

Millisecond pulsars

- Rapidly rotating (>700 Hz), highly magnetized neutron stars
- Beam radiation & spin, causing a "lighthouse" effect
- ~10 km, 1.4 M_{\odot}
- Recycling process spins up MSPs; most in binary systems
- ~400 MSPs known

Lorimer & Kramer 2004 (top), Bill Saxton (NRAO/AUI/NSF, bottom)

Shapiro delay

- Pulsar timing \rightarrow 5 Keplerian parameters
- Shapiro delay occurs at superior conjunction in edge-on binary systems
- "Range" and "shape" PK parameters are directly measurable:

$$r = T_{\odot}m_2$$

$$s = x \left(\frac{P_{\rm b}}{2\pi}\right)^{-2/3} \ T_{\odot}^{-1/3} \ M^{2/3} \ m_2^{-1}$$

$$f(m_p, m_c) = \frac{4\pi^2}{G} \frac{(a \sin i)^3}{P_b^2} = \frac{(m_c \sin i)^3}{(m_p + m_c)^2}$$

Shapiro delay

NANOGrav Physics Frontiers Center NHFP

00 (filter)

Generic Model of Shapiro Delay at Various i

Shapiro delay

Cromartie et al. 2020 (left), Demorest et al. 2010 (right)

NANOGrav

- Characterize the nanohertz gravitational wave (GW) universe through high-precision radio timing of millisecond pulsars
 - Supermassive black hole binaries: stochastic background, continuous wave (CW) signals, bursts with memory
 - Last parsec problem, merger rates, SMBHB populations
 - Exotic sources and gravity beyond GR
- Interesting secondary science = free! (NS masses, ISM studies, profile variation, etc.)

NANOGrav 12.5-year data set (WB timing)

- Narrowband and wideband data releases (Alam et al. 2021a+b) for 47 MSPs over ~13 years
- Wideband = data volume reduction by >30x!

NANOGrav 12.5-year data set

- Narrowband and wideband data releases (Alam et al. 2021a+b) for 47 MSPs over ~13 years
- Wideband = data volume reduction by >30x!

NHFP

NANOGrav 12.5-year GW search results

Arzoumanian et al. 2018 (top), 2020 (bottom)

- GWB analysis (Arzoumanian+21) finds:
 - Strong evidence for $\gamma = 13/3$ common red process
 - No strong evidence for HD correlations; evidence against monopolar and dipolar correlations
- Findings from other PTAs and the IPTA in agreement

Courtesy David Nice

NANOGrav 15-year data set

- 15-year data set adds 21 MSPs and ~3 years; GWB analysis is underway
- PINT-based timing in new pipeline
 - Transparency and accessibility
- VLA data and J0437-4715
- NB and WB timing, but WB issues under investigation

15-year dat • AO 327 M • AO 430 M • AO 1400 M • AO 2100 M • GBT 800 J • GBT 1400 M • VLA 1400 M	a set (tentative)	2022 + 253 0509 + 085 0509 + 085 0509 + 085 0610 - 310 0610 - 210 0605 + 375 1843 - 111 1811 - 240 1802 - 212 1751 - 285 1750 - 285 1850 - 285 1850 - 285 1850 - 285 1750 - 2850 - 2850 - 2850 - 2850 - 2850 - 2850 - 2850 - 2850 - 2850 - 2850 -
 VLA 3000 1 VLA 6000 1 12.5-year d 11-year dat 	MHz MHz ata set	12124 - 533 1705 - 190 1745 + 101 1312 + 005 10709 + 045 10557 + 155 10437 - 471 12322 + 205 1946 + 341 12234 + 061
9-year data	set	11125 + 781 10740 + 662 10636 + 512 12239 + 264 1911 + 134 1453 + 190 12334 + 094 1832 - 083 1931 - 190
		J201/ 1060 J1747 - 403 J0340 + 413 J2302 + 444 J2214 + 300 J1923 + 251 J2043 + 171 B1953 + 29 J1741 + 135 J0645 + 515 J0645 + 515
5-year data		$\begin{array}{c} 11738+033\\ 11738+033\\ 11024-071\\ 2010-132\\ 11910+125\\ 11614-223\\ 11944+090\\ 11600-305\\ 10613-020\\ 10613-020\\ \end{array}$
		J1640 + 222 J0030 + 045 J1713 + 074 B1855 + 09 J2317 + 143 J1918 - 064 J1909 - 374
5 5 5 8 800000 00 5 8 5 5 8 80 3 5 8 		J1043 - 122 J2145 - 075 B1937 + 21 J1012 + 530 J1455 - 333 J1744 - 113

Comparing the 12.5-year and 15-year data sets

Comparing the 12.5-year and 15-year data sets

Comparing the 12.5-year and 15-year data sets

Advanced techniques

- Bayesian radio timing:
 - Uncertainty: parameters and correlations; model non-linear dependence
 - Priors: use physical information
 - Model comparison: compare models with different parameters (Vigeland & Vallisneri 2014)
- Implemented in PINT as MCMCFitter
- For now, χ^2 gridding (Fonseca et al. 2016) in TEMPO(2) / PINT helps; implementing in pipeline
- WB data set makes Bayesian timing feasible

Selected gridding results

- Incomplete and preliminary!
- All 15yr pulsar masses (so far; vast majority done) consistent with 12.5-year results
- Some interesting new results: J1630+3734: low Cl (2-sigma) > 2.1 M $_{\odot}$:

New for 15-year: J1312+0051, J1012-4235, and more

Significant improvements, like J2017+0603: 1.7718 + 1.8218 - 0.8208 $\rm M_{\odot}$

Thankful Cromartie | ECT* Workshop | June 21, 2022

NHFF

(Non-NANOGrav) J1231-1411

- 22 additional hours (incl. 2x6 hr conjunction) w/GBT to obtain Shapiro delay measurement; combined with Nançay and archival GBT
- Tauris & Savonije 1999 (TS99) prior on M2
- Flat-in-cos(i) prior on sin(i)
- Radio Shapiro delay is significant; not *Fermi*
- 1-sig results:
 - \circ M_c = 0.216 (-0.042, + 0.053) M_o
 - \circ sin(i) = 0.990 (-0.009, +0.005) ~82 deg

•
$$M_p = 1.707 (-0.475, +0.661) M_{\odot}$$

On the horizon

- NANOGrav 15-year data set (WB+NB), GWB search, noise budget, astrophysics will be released together in early 2023
- Fully binary analysis
- Combining supplemental observations with 15-year
- WB bayesian constraints
- PINT-based gridding for all binaries
- "SD masses over time" assessment
- GBT UWB receiver, DSA-2000
- Continuing to collaborate with NICER folks!

Summary

- The NANOGrav 15-year data set adds 21 MSPs and 3 years of data
- Comparisons between 12.5-year data set and 15-year data set for pulsar masses shows consistency; anomalous orbital parameter changes are explained
- Some new SD constraints, including intriguing mass for J1630
- Final results will be published with 15-year analysis in early 2023
- Ongoing efforts to integrate advanced techniques (and simple ones!) into the soon-to-be-public pipeline

