Neutron stars observed With gravitational-wave astronomy

LIGO material is based upon work supported by NSF's LIGO Laboratory which is a major facility fully funded by the National Science Foundation.

Jocelyn Read Nicholas and Lee Begovich Center for Gravitational-Wave Physics and Astronomy California State University Fullerton

ECT* 2022

Neutron Stars Merging, CSUF GWPAC Artist-in-Residence Eddie Anaya

01-03:

- 90 compact binary systems
 [LVK GWTC-3 Catalog, LIGO-P2000318, arXiv:2111.03606]
- 04:
 - One year duration from early 2023,
 - anticipated BNS search volume of 0.016 Gpc³ yr (~4x previous total, range ~190 Mpc)
 - [LVK Observing Scenarios Document, LIGO-P1200087]

LVK GWTC-3 Catalog, LIGO-P2000318

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern

LIGO-Virgo-Kagra GWTC-3 Catalog LIGO-P2000318-v8, arXiv:2111.03606 3

The population of merging compact binaries inferred using gravitational waves through GWTC-3

Lower mass gap above $\simeq 2.1 M_{\odot}$

LIGO-Virgo-Kagra, arXiv:2111.03634 (LIGO-P2000318-v7)

Structure in the BH mass spectrum

Neutron stars observed in GW

LIGO-Virgo-Kagra O3 Population, arXiv:2111.03634 (LIGO-P2000318-v7)

More high-mass observations

Neutron stars observed in GW

Landry and Read Astrophys. J. Lett. 921, L25 (2021)

Direct impact of neutronstar matter on gravitational waves

Source properties and signal parameters • Fourier domain $h(t) \rightarrow \tilde{h}(f)$, project onto detector Sky location, orientation $m_1, \overrightarrow{S}_1, \Lambda_1$ $\tilde{h}(f) \sim \frac{\mathcal{M}}{d_L} Q(\alpha, \delta, \iota, \psi) f^{-7/6} e^{i\Psi(f)}$ Phase is where the (m, \vec{S}, Λ) Amplitude fall-off Luminosity magic happens! in frequency distance domain

Chirp mass

Tides in GW binaries

 M_2, \mathcal{P} m_1, S

See also: talk by Bernuzzi today

 Λ_i characterizes the ratio of mass quadrupole to external tidal field for an isolated star

$$\Lambda_i = \frac{2}{3}k_2 \left(\frac{R_i}{m_i}\right)^5$$

R radius, *m* mass of star k_2 relativistic Love number $k_2 = 0$ for BH $k_2 \simeq 0.05 - 0.15$ for NS

- Stars deform in complicated, close interactions:
 - pure quadrupole

stars are not isolated, deformations are not linear, deformations are not

• We use (and test) Λ_1, Λ_2 as effective descriptors in gravitational-wave models

Samajdar, 27 (2021)

 ∞

 $\mathcal{D}\mathcal{G}$

, T., Hinderer, Relativ Gravit

Dietrich, A. Gen F

Source properties: Inspiral

 $\Psi(f)$ depends on (leading order combinations):

rp mass:
$$\mathcal{M} = \frac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}}$$

Mass ratio: $q = m_2/m_1$

ective spin:
$$\chi_{\text{eff}} = \frac{S_1/m_1 + S_2/m_2}{m_1 + m_2} \cdot L$$

Effective tide: $- 16 (m_1 + 12m_2)m_1^4 \Lambda_1 + (m_2 + 12m_1)m_2^4 \Lambda_2$ $(m_1 + m_2)^5$ 13

Observations so far: GW170817 & GW190425

GW170817 from LIGO/Virgo GWTC-1 data release, P1800370, Phys. Rev. X 9, 031040 (2019)

GW190425 from LIGO/Virgo GWTC-2 data release, P2000223, Phys. Rev. X 11, 021053 (2021)

Reweight to prior flat in Λ following method of LIGO/ Virgo GW190425 ApjL 892 (2020) L3 similar to assumption of common EOS in De et al Phys. Rev. Lett. 121, 091102 (2018)

Multimessenger EOS inference: Talks by Bernuzzi, Miller, Nattila, Dietrich, Capano, Raaijmakers ...

Population affects interpretation

- Assuming GW170817 contains:
 - GW source masses that individually follow double-peak galactic mass observations
 - Spins more aligned
 - NS have a 'common' EOS $(k_2 \text{ scaling like 1/m}, R \text{ within})$ 10% tolerance)

Population affects interpretation

- Assuming GW170817 contains:
 - GW source masses that individually follow double-peak galactic mass observations
 - Spins more aligned
 - NS have a 'common' EOS Ø $(k_2 \text{ scaling like 1/m, } R \text{ within})$ 10% tolerance)

04:

- One year duration from early 2023, anticipated BNS search volume of 0.016 Gpc³ yr (~4x previous total, range ~190 Mpc)
- ~10 NS-NS & NS-BH, ~100s BH-BH [LVK Observing Scenarios Document, <u>LIGO-P1200087</u>]

LIGO/Virgo

Expected impact of 04?

Wysocki et al arXiv:2001.01747 Simultaneous heirarchical GW constraint on EOS and mass distribution Joint analysis required to avoid bias after ~10 events, see also Golomb+Talbot ApJ 2022

Landscape of GW Astronomy

Current generation (now)

Nextgeneration (ca. 2035+)

JWST

EM-survey merger identification? al 2018 ApJL 852 L3

Next-gen observations: "GW370817"

Smith et al Phys. Rev. Lett. 127, 081102 (2021)

21

Next-generation capabilities: Precision measurement

CEHS: Evans et al (incl J. Read), arXiv:2109.09882

CEHS: Evans et al (incl J. Read), arXiv:2109.09882

1.0 -

ω 0.9 -

efficiency 0.8 – 0.6 – 0.5 –

0.4 -

0.3

0.2 -

0.1 -

0.0 -

 10^{5}

 $\overset{w}{0}$ 10^4

etection

q

 10^{3}

 10^{1}

 10^{0} -

letection

q

- Cosmic Explorer goal / year
- ~1000s of neutron star mergers
- identify 80% of all mergers within z=1
- ~100 mergers 10 minutes early
- ~100 NS radii to ≤ 0.1 km
- ~10 SNR > 300

CEHS: Evans et al (incl J. Read), arXiv:2109.09882

NS-NS detection

https://dcc.cosmicexplorer.org/CE-P2100003/public

Post-merger GW?

 Only science target where 20km detector can be better than 40km, with tuning

Thank you!

sky: SDSS III galaxy distribution

https://www.gw-openscience.org

Neutron-star merger: Radice et al. 2018

Join the Cosmic Explorer Consortium! cosmicexplorer.org/consortium.html

