ECT* EUROPEAN CENTRE FOR THEORETICAL STUDIES IN NUCLEAR PHYSICS AND RELATED AREAS

Experimental results on intra-jet softening and large-angle energy flow

Martin Rybar

ECT* Jet quenching workshop

15th June 2022

Parton shower in QGP

- How is the fragmentation process modified?
- Where is the energy transported?
 - How much energy is transported out-of the jet cone?
- What are the effective scales of the interactions determining the energy loss?
 - What is the role of jet momentum, flavour and mass?
 - Can we see medium response to the fast partons?
- How does the hadronization process work?

Full jet made of particles/tracks/towers/clusters

Fragmentation functions, track-jet correlations and jet shapes.

Full jet made of particles/tracks/towers/clusters

Fragmentation functions, track-jet correlations and jet shapes **Can be extended to large angles**

Full jet made of particles/tracks/towers/clusters

Fragmentation functions, track-jet correlations and jet shapes Can be extended to large angles

Jets made of particles/tracks/towers/clusters with different *R*. t Comparison of RAA for different jet sizes

Full jet made of particles/tracks/towers/clusters

Fragmentation functions, track-jet correlations and jet shapes Can be extended to large angles

Jets made of particles/tracks/towers/clusters with different *R*. Comparison of RAA for different jet sizes jet and some global event property

Missing transverse momentum calculculated in jet events.

Challenges in these measurements

- Push towards larger phase space: lower energy and various/larger radius.
- Large UE contribution from soft particles.
- For calorimetric measurement:
 - Jet energy calibration and uncertainties for every new jet "collection".... different radius, subjects, and constituents.
 - Jet response depends on jet fragmentation/flavour.

Challenges in these measurements

- Push towards larger phase space: lower energy and various/larger radius.
- Large UE contribution from soft particles.
- For calorimetric measurement:
 - Jet energy calibration and uncertainties for every new jet "collection".... different radius, subjects, and constituents.
 - Jet response depends on jet fragmentation/flavour.
- Role of ISR@FSR
 - Resembles medium response

Impact of ISR on jet shape <u>by</u> <u>Korina</u>

Where does the energy flows?

• Study of correlation of missing p_{T} evaluated with tracks in various p_{T} bins with jets.

Where does the energy flows?

• Study of correlation of missing p_{T} evaluated with tracks in various p_{T} bins with jets.

Where does the energy flows?

• Study of correlation of missing p_{T} evaluated with tracks in various p_{T} bins with jets.

Comparison of inclusive jets for different jet radii → recovery + medium response vs flavour fraction + more resolved structure.

What we know from past measurements...

• The increase in RAA with jet *R* expected from theory: JHEP 0811:093,2008 and PLB 713 (2012) 224-232

Radial scan

13

Suggests increasing suppression for larger *R*.

Radial scan

Radial scan

Many competing effect when changing the jet size.

No significant *R* dependence at high $p_{\rm T}$ seen by CMS.

Different phase space & relatively large uncertainties.

Models going in both directions.

ALI-PREL-511674

Z- tagged yields

 γ -tagged yields

What is the new information compared to the inclusive measurement?

Z- tagged yields

 γ -tagged yields

What is the new information compared to the inclusive measurement?

- Quark dominated jet sample.
- Access to low p_T (jet) region.
- Suppressing selection bias.
- Extra enhancement & suppression wrt inclusive

Z- and γ -tagged yields

Comparing Z- and V-tagged measurements.

- Testing role of parton virtuality.
- Access to low $p_{\rm T}$ (jet) region.
- V-tagged measurements differs in kinematic region → large quenched jets not included.

Radial profile - inclusive jets

Radial profile - inclusive jets

• Core largely unmodified; but jets are broader in more central Pb+Pb.

- Energy re-distributed toward and behind the jet edge in low p_T particles.
- More differential studies...

Radial profile - b-jets

- Similar pattern as for inclusive jets but quantitatively larger
- Do we see effect of flavour or mass (dead cone)?
 - Model comparison is needed.

23

Radial profile - leading/sub-leading

● Higher modifications of leading jet in balanced events ⇔ path-length dependence.

Radial profile - leading/sub-leading

- Higher modifications of leading jet in unbalanced events
 - Drop expected from 3-jet event contribution in reference.

Radial profile - leading/sub-leading

- Higher modifications of leading jet in unbalanced events
 - Drop expected from 3-jet event contribution in reference.

Modification of Radial Profile

- Jets are broader in more central collisions at low p_{T} .
- Significant suppression of yields of particles $p_{T} > 4$ GeV outside the jet core.

Modification of Radial Profile

- Smallest modification seen in the jet core.
- The enhancement increases with decreasing p_{T} .

Radial profile

Angular scan using EW boson tagged "jets"

- EW bosons tag the parton kinematics and flavour.
- Way to understand medium response.

Angular scan using EW boson tagged "jets"

- EW bosons tag the parton kinematics and flavour.
- Way to understand medium response.

31

Phys. Rev. Lett. 128 (2022) 122301

• QGP signatures like (high) p_T flow seen in small systems.

- Inclusive full jet measurements put limits on quenching → dominated by systematics uncertainties.
- Using jet substructure:

32

- Per-jet quantities remove scaling uncertainties.
- Need for robust centrality definition.

• Charged hadron yields within a jet:

• Overall small excess but can be described without quenching.

• Charged hadron within a jet: transverse structure

Summary

• "Average" jet energy distributions, i.e. jet shape and fragmentation function fully established

- Constrainting features implemented in theoretical models.
- $\circ~$ Experimental methods based on simulations for calibration & training $\rightarrow~$ need for advances of MC modelling.
- More & new data will allow precise EW boson-tagged measurements
- Study energy flow wrt number of radiators.
- Need to resolve tension in some measurements.
- Isolate effect of medium response.
 - Can we do some "chemistry" measurement of the soft component?
- Quenching in small system?

Z-hadron

ALICE radial profile

Radial profile - photon-tagged

Ratios of fragmentation functions in *p*+Pb and *pp*:

• No modification of parton shower is observed in p+Pb system. 40

Jet angularities

- ALICE systematic "scan" for $\alpha \in (1,3)$ $\circ \quad \alpha = 1 \Leftrightarrow \text{width (girth)}$ $\circ \quad \alpha = 2 \sim (m/p_T)^2$
- Ungroomed

Mild to no modifications in Pb+Pb wrt *pp*.

