Forward quark jet-nucleus scattering in a light-front Hamiltonian approach

Meijian Li

Instituto Galego de Física de Altas Enerxías, Universidade de Santiago de Compostela, Spain

In collaboration with: Tuomas Lappi, Carlos Salgado, and Xingbo Zhao

@ Jet Quenching In The Quark-Gluon Plasma Workshop, ECT*, Trento, Italy, June 13-17, 2022

Motivation: Quark scattering off a color field

The general picture of a high energy quark scattering off a color field for two different processes:

• High-energy quark nucleus scattering

An infinitely energetic quark passes through the color glass condensate state of small x gluons insides a highenergy nucleus, and the field is treated as an infinitely thin shockwave, using the eikonal approximation. *Interests: sub-eikonal effects*

• Jet quenching in colored medium

The probe has infinitely large energy, the field is spatially extended, and the quark loses energy by gluon emission.

Interests: interplay between coherence time of emission and the timescales of the scattering centers of the medium

- \succ Using a nonperturbative approach, we could
 - Relax the infinite-energy approximation
 - Explicitly solve the time evolution and therefore study the scattering and gluon emission/absoprtion at the same time

Outline

□ Methodology

- A light-front Hamiltonian approach for solving time-dependent problems
- Application to quark-nucleus scattering in the $|q\rangle + |qg\rangle$ Fock space
- Results
 - 1. Evolution of the quark system
 - a) Gluon emission and absorption
 - b) Interaction with a background color field
 - 2. Momentum broadening

Given Summary and outlooks

Based on: M. Li, T. Lappi, and X. Zhao, Phys. Rev. D 104, 056014 (2021), and ongoing works.

Methodology: Time-dependent Basis Light-Front Quantization (tBLFQ)¹

- Light-front quantization
 - The quantum field is quantized on the equal lightfront time surface $x^+ (\equiv x^0 + x^3) = 0$

- Hamiltonian formalism
 - The state obeys the time-evolution equation $\frac{1}{2}P^{-}(x^{+})|\psi(x^{+})\rangle = i\frac{\partial}{\partial x^{+}}|\psi(x^{+})\rangle$

Basis representation

• Optimal basis has the same symmetries of the system, and it is the key to numerical efficiency

1. J. P. Vary, H. Honkanen, Jun Li, P. Maris, S. J. Brodsky, A. Harindranath, G. F. de Teramond, P. Sternberg, E. G. Ng, C. Yang., Phys. Rev. C81, 035205 (2010); X. Zhao, A. Ilderton, P. Maris, and J. P. Vary, Phys. Rev. D88, 065014 (2013).

Methodology for quark nucleus scattering in the $|q\rangle + |qg\rangle$ space: A. The light-front Hamiltonian $P^{-}(x^{+})$

We consider scattering of a highenergy quark moving in the positive z direction, on a high-energy nucleus moving in the negative z direction.

> The light-front Hamiltonian is derived from the QCD Lagrangian with a background color field A_{μ} ,

$$\mathcal{L} = -\frac{1}{4} F^{\mu\nu}{}_{a} F^{a}_{\mu\nu} + \overline{\Psi} (i\gamma^{\mu} D_{\mu} - m) \Psi$$

where $D_{\mu} = \partial_{\mu} + ig(A_{\mu} + A_{\mu})$. In the $|q\rangle + |qg\rangle$ space, it includes the kinetic energy, the interaction with the background field, and gluon emission/absorption:

 $P^{-}(x^{+}) = P^{-}_{KE} + V(x^{+})$ The interaction matrix $V(x^{+}) = V_{qg} + V_{\mathcal{A}}(x^{+})$

Methodology: A.1 The background color field \mathcal{A}_{μ}

> The background field from the nucleus, $\mathcal{A}(x^+, \vec{x}_\perp)$, is a classical gluon field described by the color glass condensate¹

Color charges are stochastic variables with correlations

$$<\rho_a(x^+,\vec{x}_\perp)\rho_b(y^+,\vec{y}_\perp)>=g^2\tilde{\mu}^2\delta_{ab}\delta^2(\vec{x}_\perp-\vec{y}_\perp)\delta(x^+-y^+)$$

The color field is solved from

$$(m_g^2 - \nabla_{\perp}^2)\mathcal{A}_a^-(x^+, \vec{x}_{\perp}) = \rho_a (x^+, \vec{x}_{\perp})$$

where m_g is a chosen infrared (IR) regulator.

The color sources of different layers are independent of each other, simulating the quarks from different nucleons of the heavy ion

- The duration of the interaction: $x^+ = [0, L_\eta]$
- \circ Number of layers: N_{η}
- The duration of each layer: $\tau = L_{\eta}/N_{\eta}$

¹L. D. McLerran and R. Venugopalan, Phys. Rev. D49, 2233 (1994); L. D. McLerran and R. Venugopalan, Phys. Rev. D49, 3352 (1994); L. D. McLerran and R. Venugopalan, Phys. Rev. D50, 2225 (1994).

Methodology: B. Basis representation

We choose the momentum states of the quark as **the basis states**: $P_{\text{KE}}^-|\beta\rangle = P_{\beta}^-|\beta\rangle$

The quark state is expanded in the basis space: $|\psi; x^+\rangle = \sum_{\beta} c_{\beta}(x^+) |\beta\rangle$ $|q\rangle: |\beta_q\rangle; |qg\rangle: |\beta_{aq}\rangle = |\beta_q\rangle \otimes |\beta_q\rangle$

Each single particle state carries five quantum numbers: $\beta_l = \{k_l^x, k_l^y, k_l^+, \lambda_l, c_l\}, (l = q, g)$ the transverse momenta, the longitudinal momentum, helicity, and color

Basis size:
$$N_{tot} = (2N_{\perp})^2 \times 2 \times 3 + K \times (2N_{\perp})^4 \times 4 \times 24$$

• The transverse coordinate space is discretized on a lattice $[-L_{\perp}, L_{\perp}]$ with periodic boundary conditions

•
$$r_l^{\perp} = [-N_{\perp}, ..., N_{\perp} - 1] L_{\perp}/N_{\perp}$$

•
$$p_l^{\perp} = \frac{2\pi}{2L_{\perp}} k_l^{\perp}, k_l^{\perp} = -N_{\perp}, ..., N_{\perp} - 1$$

Methodology: C. Time evolution

Solve the time-evolution equation in the interaction picture

$$\frac{1}{2}V_{I}(x^{+})|\psi;x^{+}\rangle_{I} = i\frac{\partial}{\partial x^{+}}|\psi;x^{+}\rangle_{I}$$

 P_{KE}^{-} as a phase factor: $|\psi; x^{+}\rangle_{I} = e^{\frac{i}{2}P_{KE}^{-}x^{+}}|\psi; x^{+}\rangle, V_{I}(x^{+}) = e^{\frac{i}{2}P_{KE}^{-}x^{+}}V(x^{+})e^{-\frac{i}{2}P_{KE}^{-}x^{+}}$

Time evolution as a product of many small timesteps

$$|\psi; x^+\rangle_{I} = \mathcal{T}_{+} \exp\{-\frac{i}{2}\int_{0}^{x^+} dz^+ V_{I}(z^+)\} |\psi; 0\rangle_{I}$$

$$= \lim_{n \to \infty} \prod_{k=1}^{n} \mathcal{T}_{+} \exp\{-\frac{i}{2}\int_{x_{k-1}^+}^{x_k^+} dz^+ V_{I}(z^+)\} |\psi; 0\rangle_{I}$$

•

Each timestep contains two successive operations, and we choose suitable numerical method for the two different interactions:

$$\mathcal{T}_{+} \exp\{-\frac{i}{2}\int_{x_{k-1}^{+}}^{x_{k}^{+}} dz^{+}V_{I}(z^{+})\} = \mathcal{T}_{+} \exp\{-\frac{i}{2}\int_{x_{k-1}^{+}}^{x_{k}^{+}} dz^{+}V_{\mathcal{A},I}(z^{+})\} \times \mathcal{T}_{+} \exp\{-\frac{i}{2}\int_{x_{k-1}^{+}}^{x_{k}^{+}} dz^{+}V_{qg,I}(z^{+})\}$$

matrix exponential in coordinate space + 4th-order Runge-Kutta method, Fast Fourier Transform, $\sim O(N_{tot} \log N_{tot}) \sim \sim O(N_{tot})$

The total computational complexity of each timestep is $O(N_{tot} \log N_{tot})$.

Outline

□ Methodology

- A light-front Hamiltonian approach for solving time-dependent problems
- Application to quark-nucleus scattering in the $|q\rangle + |qg\rangle$ Fock space

Results

- 1. Evolution of the quark system
 - a) Gluon emission and absorption
 - b) Interaction with a background color field
- 2. Momentum broadening

□ Summary and outlooks

Based on: <u>M. Li</u>, X. Zhao, P. Maris, G. Chen, Y. Li, K. Tuchin, and J. P. Vary, Phys. Rev. D 101, 076016 (2020); <u>M. Li</u>, T. Lappi, and X. Zhao, Phys. Rev. D 104, 056014 (2021), and ongoing works.

a) Gluon emission and absorption

The interaction contains the gluon emission/absorption term: $V_{I}(x^{+}) = e^{\frac{i}{2}P_{KE}^{-}x^{+}}V_{qg}e^{-\frac{i}{2}P_{KE}^{-}x^{+}}$

• Transition of the state (*Initial state is a single quark state* $|q\rangle$ with $p^+ = 8.5$ GeV, $\vec{p}_{\perp} = \vec{0}_{\perp}$, $\lambda_q = \uparrow$, $c_q = 1$)

a) Gluon emission and absorption

The interaction contains the gluon emission/absorption term: $V_I(x^+) = e^{\frac{1}{2}P_{KE}^- x^+} V_{qg} e^{-\frac{1}{2}P_{KE}^- x^+}$

b) Gluon emission and absorption inside a medium

The full interaction: $V_{I}(x^{+}) = e^{\frac{i}{2}P_{KE}^{-}x^{+}}[V_{qg} + V_{A}(x^{+})]e^{-\frac{i}{2}P_{KE}^{-}x^{+}}$

• Transition of the state (*Initial state is a single quark state* $|q\rangle$ with $p^+ = 8.5$ GeV, $\vec{p}_{\perp} = \vec{0}_{\perp}$, $\lambda_q = \uparrow$, $c_q = 1$)

The probability of the initial $|q\rangle$ state decreases and that of the $|qg\rangle$ sector increases, and different momentum state appear.

b) Gluon emission and absorption inside a medium

The full interaction: $V_{I}(x^{+}) = e^{\frac{i}{2}P_{KE}^{-}x^{+}}[V_{qg} + V_{A}(x^{+})]e^{-\frac{i}{2}P_{KE}^{-}x^{+}}$

• Evolution in the \vec{p}_{\perp} space, $g^2 \tilde{\mu} = 0.018 \text{ GeV}^{3/2}$

Results: Momentum broadening

The quark state transfers to different momentum modes through evolution. Such momentum broadening can be characterized by the quenching parameter:

$$\hat{q} \equiv \frac{d \left< p_{\perp}^2(x^+) \right>}{dx^+}$$

a) Bare quark, in the $|q\rangle$ space

In the $|q\rangle$ space, $\langle p_{\perp}^2(x^+)\rangle = \langle q|p_{\perp}^2(x^+)|q\rangle$, the quenching parameter can be calculated analytically in the eikonal limit:

$$\hat{q} = \frac{c_F g^4 \tilde{\mu}^2}{4\pi} \left[\log \frac{\lambda_{UV}^2 + m_g^2}{m_g^2} - \frac{\lambda_{UV}^2}{\lambda_{UV}^2 + m_g^2} \right], \lambda_{UV} = \pi / a_\perp.$$

numerically verified:

b) With one gluon

In the $|q\rangle + |qg\rangle$ space, consider the initial state as a single quark state,

$$|\psi; x^+ = 0\rangle = |q(\vec{0}_\perp)\rangle$$

The momentum broadening of the single quark component and of the total:

 $\langle p_{\perp}^2(x^+) \rangle_{\text{bare q}} = \langle q | p_{\perp}^2(x^+) | q \rangle$ $\left\langle p_{\perp}^{2}(x^{+})\right\rangle_{total} = \left\langle q|p_{\perp}^{2}(x^{+})|q\right\rangle + \left\langle qg|p_{\perp}^{2}(x^{+})|qg\right\rangle$

 $x^+ = L_n$

⊕

 $x^+=0$

Results: Momentum broadening

c) Dressed quark

In a physical highenergy scattering process, the initial quark state has already developed a gluon cloud before the interaction.

We obtain the dressed quark state by solving the eigenvalue equation in the $|q\rangle + |qg\rangle$ space:

 $\hat{P}_{QCD}^{-}|\psi\rangle_{dressed} = P^{-}|\psi\rangle_{dressed}, \quad \hat{P}_{QCD}^{-} = P_{KE}^{-} + V_{qg}$ Mass renormalization scheme^[1] is implemented to match the ground state mass with that of a physical quark. In the $|q\rangle + |qg\rangle$ space, consider the initial state as a dressed quark state,

$$|\psi; x^+ = 0\rangle = |\psi\rangle_{dressed}$$

The momentum broadening of the single quark component and of the total:

$$\begin{split} \left\langle p_{\perp}^{2}(x^{+})\right\rangle_{\text{bare }q} &= \left\langle q | p_{\perp}^{2}(x^{+}) | q \right\rangle \\ \left\langle p_{\perp}^{2}(x^{+})\right\rangle_{total} &= \left\langle q | p_{\perp}^{2}(x^{+}) | q \right\rangle + \left\langle q g | p_{\perp}^{2}(x^{+}) | q g \right\rangle \end{split}$$

Summary and outlooks

- We demonstrated a nonperturbative method to investigate time-evolution problems with light-front Hamiltonian formalism
 - We studied the quark-nucleus scattering in the $|q\rangle + |qg\rangle$ space, and analyzed the individual and combined effects from
 - the light-front energy
 - o gluon emission/absorption
 - o interaction with a background field
 - A main advantage of this method: one can smoothly vary the magnitudes of the above three effects separately
- Ongoing study:
 - Investigate the interplay between gluon emission medium interaction, in the momentum broadening
 - Investigate high-energy scattering with sub-eikonal effects
 - The initial quark state is an eigenstate of the QCD Hamiltonian in the $|q\rangle + |qg\rangle$ space

Thank you!