Expanding the Kinematics of Jet Measurements

Christopher McGinn 15 June 2022 ECT* Trento

University Colorado Boulder

Two Prongs of Extending Kinematics

Regions Requiring More Luminosity

Christopher McGinn

Two Prongs of Extending Kinematics

Regions Requiring More Luminosity

- Pushing to low- p_{T}
- Pushing to large-R
- Pushing to rare processes

Two Prongs of Extending Kinematics

Extending Jet Kinematics

• Pushing to low-p_T

- Pushing to large-R
- Pushing to rare processes

Regions Requiring More Luminosity

- Extending to highest- p_{T}
- Extending to forward η
- Extending differential measurements
- Pushing to rare processes

Towards QCD Bethe-Bloch

→ Goal: Bethe-Bloch for QCD Matter

Christopher McGinn

Towards QCD Bethe-Bloch

Via PDG

 Pushing our kinematic reach may reveal fundamental changes to the jet-medium interactions

Measurement Defined Limits (I)

- Top: ATLAS 5.02 TeV *R*_{AA}, 2015 data
- Each centrality has a different cutoff
 - Reflects the centrality dependent background
- Central events above 100 GeV

Measurement Defined Limits (I)

University of Colorado Boulder

- Top: ATLAS 5.02 TeV $R_{\rm AA}$, 2015 data
- Each centrality has a different cutoff
 - Reflects the centrality dependent background
- Central events above 100 GeV

- Bottom: Identifying a region of limited fake jets
 - Defined by convergence of track-*p*_T-in-jets cut
 - Giving some room between convergence and measurement

Measurement Defined Limits (II)

• Top: ATLAS $x_{J\gamma}$ measurement w/ 2015 data

- Jet $p_{\rm T}$ extends down to 30 GeV
- Photon-tag changes the fake limitation!

Measurement Defined Limits (II)

• Top: ATLAS $x_{J\gamma}$ measurement w/ 2015 data

- + Jet $p_{\rm T}$ extends down to 30 GeV
- Photon-tag changes the fake limitation!

Bottom: ATLAS γ-tagged jet R_{AA} w/2018 data

- Conversely, high- $p_{\rm T}$ extent of the γ -tagged measurement is luminosity limited
- Stat. error visible in all γ -tagged $R_{\rm AA}$ bins
- No visible errors in inclusive jet R_{AA} despite ~1/3 luminosity

Selected Current Strategies for Studying Jets in Large Backgrouds

Christopher McGinn

CMS Large-R Analysis (I)

'Standard' jet reconstruction employing jet-by-jet subtraction

- Particle-flow constituents
- Constituent-subtraction method

Christopher McGinn

CMS Large-R Analysis (I)

 'Standard' jet reconstruction employing jet-by-jet subtraction

- Particle-flow constituents
- Constituent-subtraction method

- As the R increases, the resolution increases
- To get at the physics of large-R, make a tradeoff
 - Here, restrict to high- p_{T}

CMS Large-R Analysis (II)

- Observe a radial dependece of the $R_{\rm AA}$ consistent with 1
- The high-p_T restriction represents a significant limitation
 - * After 2022 Pb+Pb running, \sim 8x integrated luminosity
 - Simultaneously, goal to refine the large-R reco. to push to lower-p_T

Comparison with ATLAS

- + Region of overlapping R=0.4 0-10% points CMS: \sim 0.7; ATLAS \sim 0.6
- \sim 15% difference or \sim 2-3 σ
- Demands a resolution
 - Both experiments working with 2018 data

A Modest Reframing

- If experiment was still working with Run 1 systematics, no tension
 - And our lives would be.... dull

A Modest Reframing

• And our lives would be.... dull

- Experiments are challenging each other on tight constraints!
 - Reflects years of attacking jet systematic errors

A Modest Reframing

And our lives would be.... dull

- Experiments are challenging each other on tight constraints!
 - Reflects years of attacking jet systematic errors

• With the resolution of this discrepency, the QGP will have nowhere to hide

ATLAS Large-R Analysis

• ATLAS employs a specialized boot-strap reco.

- Towers are first clustered into R=0.2 jets
- This collection is then clustered into R=1.0 jets

ATLAS Large-R Analysis

• ATLAS employs a specialized boot-strap reco.

- Towers are first clustered into R=0.2 jets
- This collection is then clustered into R=1.0 jets
- Bootstrap reco. differs significantly from standard jets
 - Compare the JER to CMS large-R
 - Under control to much lower-p_T
 - Comes at an interpretive cost

ATLAS Large-R Analysis

ATLAS employs a specialized boot-strap reco.

- Towers are first clustered into R=0.2 jets
- This collection is then clustered into R=1.0 jets
- Bootstrap reco. differs significantly from standard jets
 - Compare the JER to CMS large-R
 - Under control to much lower-*p*_T
 - Comes at an interpretive cost

Used to answer a specific physics question

- How does 'pronginess' change quenching?
- Bootstrap reco. is perfect for this question!

ALICE Large-R Analysis (I)

- Another approach: new tools
- Examples:
 - Anti-k_T
 - Flow modulated UE subtraction
 - Constituent subtraction enabling
 substructure
- ALICE employs machine learning to reduce JER
 - Shows a nice improvement over area based subtraction

ALICE Large-R Analysis (II)

Via Bossi, QM22

- Enables extending jet-p_T to far lower than before
- Result shows R=0.6/R=0.2 < 1 at low- p_{T}
- Caveat: New tools can behave in unexpected ways
 - Not specific to machine learning; merely the nature of being new
 - Look forward to more studies/documentation

Jet Ensemble Approach

PRC 96, 024905 (2017)

• Threshold-less jets (i.e. $p_{T} \rightarrow$ 0)

- Adopted in some analyses by STAR, ALICE
- Requires extremely precise mixed-event

• Addressing a real problem:

- p_{T} selection on jets is after quenching
- Some physics is lost!

Jet Ensemble Approach

University of Colorado Boulder

• Threshold-less jets (i.e. $p_{\rm T}
ightarrow$ 0)

- Adopted in some analyses by STAR, ALICE
- Requires extremely precise mixed-event

• Addressing a real problem:

- $p_{\rm T}$ selection on jets is after quenching
- Some physics is lost!

• Some limitations:

- Calorimeter constituents can be difficult to calibrate in this regime
- Interpretation of lowest- p_{T} difficult
- Defer more technical discussion to Peter's talk tomorrow

Z+"Jets" w/o Jets (I)

Left: A Z-tagged measurement by ATLAS of jet fragmentation

- Z $p_{\rm T}$ sets the scale of hard-scattering
- Study balancing jet fragments
 - Defined as remnant after mixed-event subtraction

Z+"Jets" w/o Jets (I)

Left: A Z-tagged measurement by ATLAS of jet fragmentation

- Z $p_{\rm T}$ sets the scale of hard-scattering
- Study balancing jet fragments
 - Defined as remnant after mixed-event subtraction

• No jet requirement

• An experimental necessity to exploit the kinematic reach of the Z-boson

Z+"Jets" w/o Jets (II)

PRL 126 (2021) 072301

- Z-tagged quenching study w/o jets motivated by experiment
- However, removing jet $p_{\rm T}$ threshold also adds information
- Quenched jets excluded by $p_{\rm T}$ cuts are included in a pure fragment analysis
 - Hence modest difference between two measurements on left
- Note CMS has a comparable analysis, PRL 128 (2022) 122301

Prospects of 10nb⁻¹ **and Alternative Systems**

Christopher McGinn

Candidates for Re-analysis 2023

+ 2018+2022 Pb+Pb running, expect ${\sim}8x$ data compared to 2015

- 2.4-2.8x improvement in stat. error
- + Left: 2015 data η differential measurement
- Above: 2015 data Z+jets measurement
- Also: CMS-style Large R R_{AA}

Christopher McGinn

Possible New Measurements

An incomplete list...

- Quenching measurements increasingly differential in substructure
 - ATLAS Large-R style 'prongy' R_{AA}
- Photon-tagged substructure measurements
 - z $_g$, R $_g$
 - Remove survival bias
- Hadronic W analysis
 - Necessary component of proposed top measurements
- Multijet configurations
 - More detail shortly...

Alternative Systems at the LHC

University of Colorado Boulder

- Top: ATLAS dijet balance in Xe+Xe
 - Part of a successful 8hr pilot run
- Bottom: Inspired proposals for HI top production
- Of particular interest, Kr+Kr
 - Caveat: Expect reduced quenching
 - RHIC Cu+Cu suggests we will still observe quenching
 - Hadronic W reconstruction easier in reduced background

Accessing Higher Order Processes in Background

Christopher McGinn

γ +multijet Observables

As in γ -tagged jet R_{AA} to get at q/g differences

Alternative system to get at q/g differences

- Challenges:
 - Can we construct an observable sensitive to color factor?
 - What is the algorithm for multijet mixing?

Multijet Mixing (I)

Red=Uncorrelated/Fake Gold=Signal

Consider a 'simple' multijet observable $\vec{x}_{JJ\gamma} = (p_1 + p_2)_T / p_T^{\gamma}$ Do not know a-priori which jets are signal/uncorrelated so construct all pairs

1. Signal

• b+c

2. Signal with Background

- =+b
- =+c
- b+d
- C+<mark>e</mark>
- 3. Pure Background
 - a+d

Multijet Mixing (II)

Pure Background can be handled identically to inclusive jet mixing

- Add γ to minimum bias event matched by global parameters, e.g.
 - Centrality
 - Vertex Position
 - Event Plane
- + Correlate γ w/ all pairs of jets in-event
- In example, a+d is cancelled by a'+d'

Multijet Mixing (III)

Complications arise in handling Signal+Background contribution

- Mix γ and single jet to minimum bias event
 - Still matched by global parameters
- + Correlate γ +jet with all jets from mixed event
- Using our example on the left
 - 1. b+a' cancels b+a
 - 2. b+d' cancels b+d
- Mirror result mixing $\gamma {\bf +c}$

Mix

Multijet Mixing (IV)

Previous step leads to overcorrection when accounting for **a**,**d**

- Consequence of not knowing a-priori which jet is signal/uncorrelated
 - All must be treated on equal footing
- Per example on the left, also get contributions
 - 1. <mark>a+a</mark>'
 - 2. a+d
- Mirror result for d

Multijet Mixing (V)

What happened?

- A photon correlated w/ an in-event fake was correlated with a jet from another event
 - The fix is to correct via a double embed
- γ first correlated w/ a',d'
- Then each γ + jet is correlated w/a", d"
- Accounts for all contributions detailed on prev. slide

Multijet Mixing (VI)

To summarize:

- a+d is removed embedding γ in single event
- b+a, b+d is removed embedding γ+b in single event
- + c+a, c+d is removed embedding γ +b in single event
- Double embed corrects for $\gamma {\rm +jet}$ in single event where the paired jet is fake

b+c (the physics) remains

Multijet Mixing Toy Demo

- Randomly generate γ uniform in $p_{\rm T}$ 80-100 GeV
- By construction, make balancing jet-pair equal p_T
 - Signal x
 _{JJy} will always be exactly 1
- Split balancing p_T between two jets
- Randomly populate with fake jets, dominant at low-p_T
- Treating all jets as equivalent, validate multijet mixing
 - To be considered a pilot test

Toy Multijet Closure

- Able to model the background exactly
 - Multijet mixing proof-of-concept
- Background is spread across x-axis
 - In $x_{J\gamma}$ background is preferentially low $x_{J\gamma}$
- Caveat! Toy jets are not extended objects
 - Non-zero jet area complicates method

Conclusion

- Current kinematic limits are defined by:
 - Detector (mostly fixed)
 - Reconstruction (we control)
 - Observable (we control)
- Alt. jet definitions/reco. can answer specific physics questions
- New tools have the potential to extend our reach
 - As simple as switching to WTA-axis, to more complex machine-learning reconstruction techniques
- Increasing integrated luminosity ightarrow new observables
 - Multijet configurations are just one example
 - Excited to see many new results soon!

Thank You!