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* |Introduction and motivation
— Jet quenching and medium response

* Medium response in AMPT
— Redistribution of the lost energy from quenched jets

— Enhancement of the baryon-to-meson ratios around
guenched jets

* Summary



Jet quenching
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e Jet quenchingincludes: (1) jet energy loss, (2) jet deflection and broadening, (3)
modification of jet structure/substructure, (4) jet-induced medium excitation
(medium response)



Where does the lost energy go?
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How does the medium respond to the lost energy?

How does the lost energy redistribute and manifest in final state
observables?

Where to search for the signal of medium response?

How can we use medium response to probe the medium properties?



Earlier works on medium response
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Medium response to jet shower
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Complications
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Treatments on medium response

 Jet + recoil
— LBT (He, Luo, Cao, Zhu, Wang, et al, 1503.03313; 1803.06785)
— JEWEL (Elayavalli, Zapp, Milhano, Wiedemann, 1707.01539; 1707.04142)
— MARTINI (Park, Jeon, Gale, 1807.06550)
— JETSCAPE

* Jet + hydrodynamics
— Coupled Jet-Fluid Model (Tachibana, Chang, Qin: 1701.07951; 1906.09562 )

— ColLBT-Hydro (Chen, Yang, Luo, He, Cao, Ke, Pang, Wang, et al, 1704.03648; 2005.09678;
2101.05422; 2203.03683)

— JETSCAPE (2002.12250)
— Hybrid Model (Casalderrey-Solana, Gulhan, Milhano, Pablos, Rajagopal, 1609.05842)

 Full Boltzmann

— AMPT (Gao, Luo, Ma, Mao, Qin, Wang, Zhang, 1612.02548; 2107.11751; 2109.14314)
— BAMPS (Bouras, Betz, Xu, Greiner, 1201.5005; 1401.3019)



Jet evolution & medium response
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Signal of jet-induced flow
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The contribution from the hydro part is quite flat and finally dominates over the
shower part in the region from r = 0.4-0.5.
Signal of jet-induced medium excitation in full jet shape at large r.

Chang, GYQ, PRC 2016; Tachibana, Chang, GYQ, PRC 2017; Chang, Tachibana, GYQ, PLB 2020 ,



Effect of jet-induced flow on jet shape
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The inclusion of medium response can
naturally explains the enhancement

of jet shape at larger radius.
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Signal of diffusion wake
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A Mult-Phase Transport (AMPT) Model

Structure of the default AMPT model Structure of AMPT model with string melfing
A+B A+B

HLIING energy in nucleon HLJING energy in nucleon

excited strings and minijet partons : excited strings and minijet partons spectators

ZPC (Zhang's Parton Cascade)
till parton freezeout

recombine with parent strings

Lund string fragmentation

ART (A Relativistic Transport model for hadrons)

fragment into partons

ZPC (Zhang's Parton Cascade)
till parton freezeout
Quark Coalescence

ART (A Relativistic Transport model for hadrons)

«  AMPT contains 4 main stages: initial condition, parton cascade, hadronization
and hadron cascade.

* AMPT has been able to describe many bulk and jet observables: flow, dijet and
gamma-jet asymmetries, jet shape, jet fragmentation function, etc.
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Dijet asymmetry
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Jet quenching can explain the nuclear modification of dijet asymmetry in AA collisions.
Stronger interaction (more central collisions and larger cross section) leads to larger
nuclear modification effect.
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Jet shape and fragmentation function in AMPT
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The nuclear modification of jet shape is mainly caused by partonic interaction in the
parton cascade stage.
Both partonic interaction and hadronization contribute significantly to the nuclear
modification of jet fragmentation function.

Ma, Phys.Rev.C 88 (2013) 2, 021902; Phys.Rev.C 89 (2014) 2, 024902
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Where does the lost energy go?

Project the particle p; onto the dijet axis:
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Sum over all particles in the event, the p; balance is recovered.
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The p; balance in dijet events
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i

Large negative contribution (in the leading jet direction) from hard hadrons (p; > 8
GeV) is balanced by the positive contributions from hadrons with p; = 0.5-8 GeV.
For pp collisions, the p; imbalance in asymmetric dijet events is mostly compensated
by p; =2-8GeV hadrons.
For AA collisions, the p; imbalance in asymmetric dijet events is mostly compensated
by soft (p; < 2.0 GeV) hadrons. 17



In-cone and out-of-cone contributions
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The in-cone contribution to the projected transverse momentum is dominated by
hard hadrons (p; > 8.0 GeV).

The out-of-cone contribution is dominated by soft hadrons (p; < 2.0 GeV/c).

A significant amount of the lost energy from quenched jets is carried by soft hadrons
at large angles away from jet axis.

Gao, Luo, Ma, GYQ, Zhang, PRC 2018 "



How does the medium response affect the chemical
compositions of particles around quenched jets?

e Jet-induced medium response and flow can affect both the momentum
and angular distributions of particles around quenched jets.

* Due to the interaction with medium, the lost/deposited energy will be
(partially) thermalized.

* The particles (and chemical compositions) produced from thermalized
energy should be different from those from vaccum-like energies.

* As aresult of the coalescence of jet-excited partons, jet-medium
interaction can lead to the enhancement of baryon-to-meson ratio at
intermediate p; around the quenched jets.

* Since the lost energy can flow to large angles, we expect the enhancement
should depend on the distance with respect to jet axis.



B/M enhancement & v, NCQ scaling of bulk matter
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Coalescence of thermal partons from QGP can naturally explain the NSQ scaling of
v, and the enhancement of baryon-to-meson ratio at intermediate p;.
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Jet-particle correlations
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Jet-induced particle yvield around jets

The distribution of jet-correlated charged-particles with Ar < 1 anti-kr R = 0.4, jets, pr > 120GeV, |nict| < 1.6
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Jet quenching leads to the enhancement of soft particles and the suppression of hard
particles around the jets. Such effect is more pronounced for more central collisions.

Luo, Mao, GYQ, Wang, Zhang, 2107.11751
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B/M enhancement around jets: p; dependence
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We find a strong enhancement of B/M ratios for associated particles at intermediate
p; around the quenched jets, due to the coalescence of jet-excited medium partons.

Luo, Mao, GYQ, Wang, Zhang, 2109.14314
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B/M enhancement around jets: radial dependence
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For intermediate p; (2-6GeV) regime, the enhancement of jet-induced B/M ratios is
stronger for larger distance because the lost energy from quenched jets can diffuse to

large angle.
Luo, Mao, GYQ, Wang, Zhang, 2109.14314
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B/M enhancement around jets: radial dependence

| — 0-10% _ | — 0-10%

———- 10 — 30% ---- 10 — 30%
0.8F ——. 30— 50% . - —— 30— 50% |
[ 50 — 100% |77 TTTTTToo ] IR 50 — 100%

S
oo

o
o
I
1

0.6 i

o
o
T
|

p/m(PbPb) - p/m(pp)
i
!
!
!
|
AJK(PbPb) - A/K(pp)

o
N
T
T
1
1

<

I
—

|
o
N

T

-

I

I

I

[

1

— et

----------------------

For intermediate p; (2-6GeV) regime, the enhancement of jet-induced B/M ratios is
stronger for larger distance because the lost energy from quenched jets can diffuse to

large angle.
Luo, Mao, GYQ, Wang, Zhang, 2109.14314
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Summary

Medium response is an important aspect of jet quenching.

AMPT model provides a versatile tool to study the bulk evolution as well as jet-
medium interaction.

The energy deposited by the quenched jet is carried by soft particles at large
angles.

The enhancement of the baryon-to-meson ratio at intermediate p; around the
guenced jets

— A unique signature of medium response.
— Does not depend on the model details of jet quenching and parton coalescence.

Need to include more ingredients such as inelastic scattering processes (or use
more sophisticated model) for more precise description/prediction.

Use medium response to probe EOS and transport properties of QGP.



