Experimental overview of medium-response-sensitive observables

Rey Cruz-Torres reynier@lbl.gov June 15, 2022

EUROPEAN CENTRE FOR THEORETICAL STUDIES IN NUCLEAR PHYSICS AND RELATED AREAS

Medium response

correlated background, medium response, wake, recoils, Mach-cone, jet-induced medium flow, backreaction

R. Cruz-Torres

2

Medium response

Jets traversing QGP transfer momentum to medium

Hard parton

correlated background, medium response, wake, recoils, Mach-cone, jet-induced medium flow, backreaction

Medium response

Medium partons acquire additional momentum that correlates their direction with the jet

> Hard parton

This creates a wake

correlated background, medium response, wake, recoils, Mach-cone, jet-induced medium flow, backreaction

Medium partons acquire additional momentum that correlates their direction with the jet

> Hard parton

This creates a wake

correlated background, medium response, wake, recoils, Mach-cone, jet-induced medium flow, backreaction

Hard

Background-subtraction techniques do not (should not) remove the momentum component acquired through the medium-jet interaction

QGP

correlated background, medium response, wake, recoils, Mach-cone, jet-induced medium flow, backreaction

Finding jets (or knowing their direction) can be used to study medium response

Hard parton

correlated background, medium response, wake, recoils, Mach-cone, jet-induced medium flow, backreaction

Finding jets (or knowing their direction) can be used to study medium response

> Hard parton

Large-radius jets capture more of this effect

correlated background, medium response, wake, recoils, Mach-cone, jet-induced medium flow, backreaction

Why study medium response?

 Z_{-}

*Z*_

Z_

- Full characterization of QGP
- Better understanding of observables in medium
- QGP bulk properties of the (velocity of sound, viscosities)
- thermalization: how fast is the jet energy is propagated and thermalized with the rest of the QGP? See talk by S Schlichting

Shear viscosity

Velocity of sound

PRC 79 (2009) 054909

Handful of theoretical models

See more details and references here.

Hydro response	Deposited E as perturbation	Boltzmann equation bas

10

Handful of theoretical models

See talk by:

What is the right model for medium response?

A Majum from (non)perturbative are the interactions?

X-N Wang

How much do recoils thermalize?

D Pablos Alfonso Hybrid

G-Y Qin

Hybrid

See more details and references here.

Substructure modification

Substructure modification

Jet energy "loss" (redistribution)

Substructure modification

Jet energy "loss" (redistribution)

Hadrons recoiling from high- p_{T} trigger

Overview

Hadrons recoiling from high-p_T trigger

Describes how energy inside (and outside) jets is distributed in the radial direction

Fig adapted from PRC 95 (2017) 4, 044909, JHEP 03 (2017) 135, & NPA 982 (2019) 643

Jet shapes

CMS, PLB 730 (2014) 243

V

Angle between jet axes

- Standard axis:

coordinates in (y, φ) of jet clustered with anti- k_T algorithm and combined with E-Scheme

collinear radiation soft radiation

Substructure observable: $\Delta R_{axis} = \sqrt{(y_2 - y_1)^2 + (\varphi_2 - \varphi_1)^2}$ between two axes

Angle between jet axes

- Standard axis:

coordinates in (y, φ) of jet clustered with anti- k_T algorithm and combined with E-Scheme

- Groomed axis:

standard axis of groomed (with Soft Drop) jet

Substructure observable: $\Delta R_{axis} = \sqrt{(y_2 - y_1)^2 + (\varphi_2 - \varphi_1)^2}$ between two axes

Angle between jet axes

- Standard axis:

coordinates in (y, φ) of jet clustered with anti- k_T algorithm and combined with E-Scheme

- Groomed axis:

standard axis of groomed (with Soft Drop) jet

- Winner-Takes-All (WTA) axis:

- recluster jet with CA algorithm
- 2 \rightarrow 1 prong combination by taking direction of harder prong and $p_{\rm T,\,tot} = p_{\rm T,\,1} + p_{\rm T,\,2}$
- Resulting axis insensitive to soft radiation at leading power

Substructure observable:
$$\Delta R_{axis} = \chi$$

 $\sqrt{(y_2 - y_1)^2 + (\varphi_2 - \varphi_1)^2}$ between two axes

Medium response at large angles from jet

Very small differences between recoils on/off

Grooming systematically removes soft wide-angle radiation

Medium response at large angles from jet

WTA

0.15

Medium response at large angles from jet

Angle between Standard and WTA axes

-Modification larger at lower $p_{T}^{ch jet}$ R. Cruz-Torres

 Insensitivity to grooming -Insensitivity to medium response for R=0.2

Pb—Pb results (no pp baseline)

No pp baseline -> higher precision

Sensitivity to medium response for large R and no grooming

Overview

R. Cruz-Torres

Jet energy "loss" (redistribution)

Hadrons recoiling from high- p_T trigger

- Data: R_{AA} little dependence on R

- Larger $R \rightarrow$ larger medium response effect

R. Cruz-Torres

anti- k_{T} , $|\eta_{iet}| < 2$ CMS 0-10% **PYQUEN** PYQUEN w/ wide angle Rad JEWEL JEWEL w/o recoil

Jet RAA ratios vs R CMS JHEP 05 (2021) 284 PbPb 404 µb⁻¹, pp 27.4 pb⁻¹ $500 < p_{\tau}^{jet} < 1000 \text{ GeV}$ 0.6 0.2 0.4 0.8

- Data: R_{AA} little dependence on R

- Larger $R \rightarrow$ larger medium response effect

R. Cruz-Torres

- anti-k_T, $|\eta_{iet}| < 2$ - CMS 0-10%
- Hybrid w/ wake \star
 - Hybrid w/o wake
- Hybrid w/ pos wake \star MARTINI
- LBT w/ showers only \bigstar
 - LBT w/ med. response

★ Some models describe the $R_{\Delta\Delta}^R / R_{\Delta\Delta}^{R=0.2}$ but...

Jet RAA

Coupled jet-fluid model

PRC 95 (2017) 4, 044909

- without medium response (-): weak jet cone-size dependence
- with medium response (-):
 - jet partially recovers lost energy \rightarrow increase of RAA
 - increase of the jet cone-size dependence of R_{AA}

Jet Raa

ML-based background estimator Measuring down to lower p_{T} and larger R Hybrid Model w/ Wake JEWEL w/o Recoils JEWEL w/ Recoils LIDO

Overview

Substructure modification

R. Cruz-Torres

Jet energy "loss" (redistribution)

Hadrons recoiling from high-p_T trigger

Christopher McGinn's QM22 presentation

- Hybrid model with wake qualitatively describes rising trend at low $p_{\rm T}^{\rm ch}$
- Hybrid model without the wake does not describe the low- $p_{\rm T}^{\rm ch}$ excess in data

Christopher McGinn's QM22 presentation

Kaya Tatar's QM22 presentation

R. Cruz-Torres

Qualitative agreement between models with medium response and measured distribution

Kaya Tatar's QM22 presentation

medium-response effects down to low p_{T}

Semi-inclusive yield of jets recoiling from high- p_{T} hadron

What should we do with this? (my take as an experimentalist)

- Identification of new medium-response-sensitive observables

- Systematic study of medium-response models

- Bayesian inference to constrain parameterized medium response model

- Detailed description of jet-induced QGP medium response:
 - necessary for full characterization of QGP
 - can be sensitive to bulk properties of and thermalization mechanism in the QGP

41

- Detailed description of jet-induced QGP medium response:
 - necessary for full characterization of QGP
 - can be sensitive to bulk properties of and thermalization mechanism in the QGP

Substructure modification

Jet energy "loss" (redistribution)

- Reviewed experimental observables with sensitivity to medium response implemented in models

Hadrons recoiling from high- p_{T} trigger

- Detailed description of jet-induced QGP medium response:
 - necessary for full characterization of QGP
 - can be sensitive to bulk properties of and thermalization mechanism in the QGP

- In many cases models only agree qualitatively with measured data
 - models disagree among themselves
 - constrain models from experimental data where there's no significant medium response (e.g. smaller R, groomed) and then test medium response elsewhere

- Reviewed experimental observables with sensitivity to medium response implemented in models

- Detailed description of jet-induced QGP medium response:
 - necessary for full characterization of QGP
 - can be sensitive to bulk properties of and thermalization mechanism in the QGP

- In many cases models only agree qualitatively with measured data
 - models disagree among themselves
 - constrain models from experimental data where there's no significant medium response (e.g. smaller R, groomed) and then test medium response elsewhere

Caution: other effects can have similar signature to medium response (e.g. wide-angle radiation)

- Reviewed experimental observables with sensitivity to medium response implemented in models

R. Cruz-Torres

Thank you

