Dynamically groomed jet radius in heavy-ion collisions

- <u>Adam Takacs</u> * (University of Bergen),
- Paul Caucal (Brookheaven National Laboratory)
- Alba Soto-Ontoso (Universite Paris-Saclay)

Based on: <u>arXiv:2103.06566</u> vacuum baseline <u>arXiv:2111.14768</u> resolving the medium phase space

*adam.takacs@uib.no

Supported by the Trond Mohn Foundation BFS2018REK01

Jet Quenching in the Quark-Gluon Plasma (Trento 13-17 June 2022)

The Lund plane: phase space of emissions [Dreyer,Salam,Soyez]

- 1. Find a jet
- 2. Recluster with C/A (widest angle first)
- 3. Follow the hardest branch $(z_i > 1/2)$

Soft Drop grooming [Larkovski, Marzani, Soyez, Thaler]:

- 4. Stop if $z_i > z_{cut} \vartheta_i^{\beta}$ (with the widest angle)
 - Free parameters z_{cut} and β .

- 4. Find the hardest $\max(z_i \vartheta_i^a)$
 - No cuts, autogenerated jet-by-jet
 - Clear physical meaning: hardest $k_t (a = 1)$, or biggest $m^2 (a = 2)$

The Lund plane: phase space of emissions [Dreyer,Salam,Soyez]

- 1. Find a jet
- 2. Recluster with C/A (widest angle first)
- 3. Follow the hardest branch $(z_i > 1/2)$

Soft Drop grooming [Larkovski, Marzani, Soyez, Thaler]:

- 4. Stop if $z_i > z_{cut} \vartheta_i^{\beta}$ (with the widest angle)
 - Free parameters z_{cut} and β .

- 4. Find the hardest $\max_{i}(z_i\vartheta_i^a)$
 - No cuts, autogenerated jet-by-jet
 - Clear physical meaning: hardest $k_t (a = 1)$, or biggest $m^2 (a = 2)$

The Lund plane: phase space of emissions [Dreyer,Salam,Soyez]

- 1. Find a jet
- 2. Recluster with C/A (widest angle first)
- 3. Follow the hardest branch $(z_i > 1/2)$

Soft Drop grooming [Larkovski, Marzani, Soyez, Thaler]:

- 4. Stop if $z_i > z_{cut} \vartheta_i^{\beta}$ (with the widest angle)
 - Free parameters z_{cut} and β .

- 4. Find the hardest $\max_{i}(z_i\vartheta_i^a)$
 - No cuts, autogenerated jet-by-jet
 - Clear physical meaning: hardest $k_t (a = 1)$, or biggest $m^2 (a = 2)$

The Lund plane: phase space of emissions [Dreyer, Salam, Sover]

- 1. Find a jet
- 2. Recluster with C/A (widest angle first)
- 3. Follow the hardest branch $(z_i > 1/2)$

Soft Drop grooming [Larkovski, Marzani, Soyez, Thaler]:

- 4. Stop if $z_i > z_{cut} \vartheta_i^{\beta}$ (with the widest angle)
 - Free parameters z_{cut} and β .

- 4. Find the hardest $\max_{i}(z_i\vartheta_i^a)$
 - No cuts, autogenerated jet-by-jet
 - Clear physical meaning: hardest $k_t (a = 1)$, or biggest $m^2 (a = 2)$

The Lund plane: phase space of emissions [Dreyer, Salam, Soyez]

- 1. Find a jet
- 2. Recluster with C/A (widest angle first)
- 3. Follow the hardest branch $(z_i > 1/2)$

Soft Drop grooming [Larkovski, Marzani, Soyez, Thaler]:

- 4. Stop if $z_i > z_{cut} \vartheta_i^{\beta}$ (with the widest angle)
 - Free parameters z_{cut} and β .

Dynamically grooming [Mehtar-Tani, Soto-Ontoso, Tywoniuk]:

4. Find the hardest $\max_{i}(z_i\vartheta_i^a)$

- No cuts, autogenerated jet-by-jet
- Clear physical meaning: hardest $k_t (a = 1)$, or biggest $m^2 (a = 2)$

The Lund plane: phase space of emissions [Dreyer,Salam,Soyez]

- 1. Find a jet
- 2. Recluster with C/A (widest angle first)
- 3. Follow the hardest branch $(z_i > 1/2)$

Soft Drop grooming [Larkovski, Marzani, Soyez, Thaler]:

- 4. Stop if $z_i > z_{cut} \vartheta_i^{\beta}$ (with the widest angle)
 - Free parameters z_{cut} and β .

- 4. Find the hardest $\max_{i}(z_i\vartheta_i^a)$
 - No cuts, autogenerated jet-by-jet
 - Clear physical meaning: hardest k_t (a = 1), or biggest m^2 (a = 2)

Proton-Proton Baseline arXiv:2103.06566

Analytic properties

The Sudakov regulates the integral (there is no z_{cut})!

Analytic properties

Probability of (z, ϑ) is the hardest $(\kappa^{(a)} = z \vartheta^a)$:

$$\frac{d^2 \mathcal{P}_i(z,\vartheta|a)}{d\vartheta dz} = P_i(z,\vartheta)\Delta_i(\kappa^{(a)})$$

Measuring ϑ_g :

$$\frac{1}{\sigma} \frac{d\sigma}{d\vartheta_g} \bigg|_a = \int_0^1 dz \, \mathcal{P}_i(z, \vartheta_g | a)$$

The Sudakov regulates the integral (there is no z_{cut})!

Results

Targeted accuracy is $LO+N^2DL$:

- Splitting function at 2-loop
- Running coupling at 2-loop
- Non-global contributions (large- N_c , small-R)
 - There is no clustering log
 - Boundary logs present
- No multiple emission contribution
- Matching to NLO MadGraph5
- Non-perturbative corrections

Results

Targeted accuracy is $LO+N^2DL$:

- Splitting function at 2-loop
- Running coupling at 2-loop
- Non-global contributions (large- N_c , small-R)
 - There is no clustering log
 - Boundary logs present
- No multiple emission contribution
- Matching to NLO MadGraph5
- Non-perturbative corrections

Results - Comparison to ALICE preliminary

Emission Phase Space in Heavy-Ion Collisions <u>arXiv:2111.14768</u>

Medium-Induced Emissions

Vacuum emission:

$$P_i^{vac}(z,\vartheta) = 2\alpha_s(k_t)C_i\frac{1}{\vartheta}\frac{1}{z}$$

Medium-induced emission and broadening: [BDMPS-Z]

$$P_{i}^{med}(z,\vartheta) = \bar{\alpha}_{med} \sqrt{\frac{2\omega_{c}}{z^{3}p_{t}}} \mathcal{B}(z,\vartheta)$$

 \mathbf{VS}

Should one sum them up? What about resolution?

Medium-Induced Emissions

Vacuum emission:

$$P_i^{vac}(z,\vartheta) = 2\alpha_s(k_t)C_i\frac{1}{\vartheta}\frac{1}{z}$$

Medium-induced emission and broadening: [BDMPS-Z]

$$P_{i}^{med}(z,\vartheta) = \bar{\alpha}_{med} \sqrt{\frac{2\omega_{c}}{z^{3}p_{t}}} \mathcal{B}(z,\vartheta)$$

 \mathbf{VS}

Should one sum them up? What about resolution?

In-medium emission phase space

In-medium Lund plane regions: [Caucal, Iancu, Soyez, Mehtar-Tani, Tywoniuk]

- $t_f > L$: Out of the medium vacuum emissions
- $t_f < t_{med}$: Inside and resolved vacuum+medium emissions energy loss

Vacuum-like emissions:

 $\frac{d^{2}\mathcal{P}_{i}^{vle}(z,\vartheta|a)}{d\vartheta dz} = P_{i}(z,\vartheta)\theta_{\notin veto}\Delta_{i}^{vle}(\kappa^{(a)})$

Medium induced emissions:

 $\frac{d^{2}\mathcal{P}_{i}^{mie}(z,\vartheta|a)}{d\vartheta dz} = P_{i}(z,\vartheta)\Delta_{i}^{mie}(\kappa^{(a)})$

In-medium emission phase space

In-medium Lund plane regions: [Caucal, Iancu, Soyez, Mehtar-Tani, Tywoniuk]

- $t_f > L$: Out of the medium vacuum emissions
- $t_f < t_{med}$: Inside and resolved vacuum+medium emissions energy loss

Energy-loss with quenching weights: [BDMS] $1 d\sigma$

$$\frac{1}{\sigma} \frac{d\sigma}{d\vartheta_g}$$

$$= \frac{1}{N} \int d\varepsilon \sum_i \frac{d\sigma_i}{d(p_t + \varepsilon)}$$

$$\times \int dz \,\mathcal{P}_i^{med}(z, \vartheta_g) \mathcal{E}_{i, p_t, R}(\varepsilon | z, \vartheta_g)$$

Our analytic Toy Model

Huge jump around $\vartheta_c!$

Our analytic Toy Model

Is ϑ_c measurable?

Which a is the best?

Which phase space is the best?

[Paul's talk about JetMed, Weiyao's talk about LIDO, Abhijit's talk about MATTER, also Hybrid, Jewel, ...]

Is ϑ_c really measurable?

• HI Event generator study:

 $JetMed \ [{\rm Caucal, \ Iancu, \ Soyez}]$

 $Jewel \ [{\rm Zapp}, {\rm Krauss}, {\rm Wiedemann}]$

- $Hybrid \ [{\rm Casalderrey-Solana, Milhano, Pablos, Rajagopal}]$
- Different energy-loss models
- Fluctuations: geometry, path length
- Embedded hydro/kinetic theory
- Medium response
- Hadronization
- Statistical tool: Kolmogorov-Smirnov Distance

JetMed simulation

Kolmogorov-Smirnov Distance

see also for Jewel and Hybrid...

JetMed simulation

Kolmogorov-Smirnov Distance

see also for Jewel and Hybrid...

Sensitivity to medium response

Medium response

Summary

- Understanding the emission phase-space in medium
- vacuum baseline:
 - Dynamical tagging at LO+N²DL
 - Good agreement with ALICE data
- Heavy-Ion collisions:
 - analytical understanding of enhancement around ϑ_c
 - MCs to test ϑ_c and the phase space: JetMed, Jewel, Hybrid
 - Statistical analysis for measuring ϑ_c
 - Studied: energy-loss, fluctuations, medium response, hadronization
 - Best parameter: 0.5 < a < 1 and $R \sim 0.2$ to resolve the difference btw MCs

Thank you for the attention!

Jets in QCD

IRC limit of a $1 \rightarrow 2$ splitting:

$$dP_i = 2\alpha_s(k_t)C_i \frac{d\vartheta}{\vartheta} \frac{dz}{z}$$

collinear divergence, soft divergence

Emission phase space (Lund plane): [Dreyer, Salam, Soyez]

$$\frac{dP_i}{\frac{d\vartheta}{\vartheta}\frac{dz}{z}} = \frac{dP_i}{d\ln\vartheta d\ln z} = 2\alpha_s(k_t)C_i$$

In-medium Lund plane

In-medium Lund plane regions:

- $t_f > L$: Out of the medium vacuum emissions
- $t_f < t_{med}$: Inside and resolved vacuum+medium emissions energy loss

Vacuum-like emissions:

 $\frac{d^{2}\mathcal{P}_{i}^{vle}(z,\vartheta|a)}{d\vartheta dz} = P_{i}(z,\vartheta)\theta_{\notin veto}\Delta_{i}^{vle}(\kappa^{(a)})$

Medium induced emissions:

 $\frac{d^{2}\mathcal{P}_{i}^{mie}(z,\vartheta|a)}{d\vartheta dz} = P_{i}(z,\vartheta)\Delta_{i}^{mie}(\kappa^{(a)})$

Analytic properties

In-medium Lund plane regions:

- $t_f > L$: Out of the medium vacuum emissions
- $t_f < t_{med}$: Inside and resolved vacuum+medium emissions energy loss
- $t_{med} < t_f < L$: veto region no vacuum emissions

Energy-loss [BDMS]:

$$\frac{1}{\sigma} \frac{d\sigma}{d\vartheta_g} = \frac{1}{N} \int d\varepsilon \sum_i \frac{d\sigma_i}{d(p_t + \varepsilon)} \times \int dz \,\mathcal{P}_i^{med}(z, \vartheta_g) \mathcal{E}_{i, p_t, R}(\varepsilon | z, \vartheta_g)$$

