Time reclustering for jet quenching

June 16th, 2022

Liliana Apolinário

AF7

In collaboration with A. Cordeiro, P. Rodriguez and K. Zapp

QGP: a fast expanding medium

What is the information that we get?

Integrated result of the whole medium (fast) \bigstar evolution

 However there is a strong timedependence of the medium properties (expansion and cooling of the system)

[talks: Carlota, Souvik, Andrey, João]

Can hard probes be able to probe different structures of the QGP?

Sensitivity to QGP timescales

Reconstructed hadronic W boson jet mass:

+

Reconstructed hadronic W boson jet mass:

@ FCC: Full QGP tomography!

Tops can be used as probes of the QGP time structure

Limited by statistics at current LHC energies

How about jets? +

Jets

[C/A: Dokshitzer, et al (1997), Wobish, et al (1998)] [kT: Catani, et al (1993), Ellis et al (1993)] [Gen-kT (FastJet): Cacciari et al (2012)]

Jets

[C/A: Dokshitzer, et al (1997), Wobish, et al (1998)] [kT: Catani, et al (1993), Ellis et al (1993)] [Gen-kT (FastJet): Cacciari et al (2012)]

Jets

[C/A: Dokshitzer, et al (1997), Wobish, et al (1998)] [kT: Catani, et al (1993), Ellis et al (1993)] [Gen-kT (FastJet): Cacciari et al (2012)]

Jets

[C/A: Dokshitzer, et al (1997), Wobish, et al (1998)] [kT: Catani, et al (1993), Ellis et al (1993)] [Gen-kT (FastJet): Cacciari et al (2012)]

Jets

[C/A: Dokshitzer, et al (1997), Wobish, et al (1998)] [kT: Catani, et al (1993), Ellis et al (1993)] [Gen-kT (FastJet): Cacciari et al (2012)]

Jets

[C/A: Dokshitzer, et al (1997), Wobish, et al (1998)] [kT: Catani, et al (1993), Ellis et al (1993)] [Gen-kT (FastJet): Cacciari et al (2012)]

What are jets?

+

- Clustering of final state particles \bigstar
 - User-defined hierarchical structure (sequential recombination algorithms)

[C/A: Dokshitzer, et al (1997), Wobish, et al (1998)] [kT: Catani, et al (1993), Ellis et al (1993)] [Gen-kT (FastJet): Cacciari et al (2012)]

Jets

What are jets?

+

- Clustering of final state particles \bigstar
 - User-defined hierarchical structure (sequential recombination algorithms)

[C/A: Dokshitzer, et al (1997), Wobish, et al (1998)] [kT: Catani, et al (1993), Ellis et al (1993)] [Gen-kT (FastJet): Cacciari et al (2012)]

Jets

What are jets?

+

Clustering of final state particles \bigstar

User-defined hierarchical structure $\mathbf{+}$ (sequential recombination algorithms)

Iterative distance between 2 pseudo-jets Generalized-k_T family:

$$d_{ij} = \min(p_{t,i}^{2p}, p_{t,j}^{2p}) \frac{\Delta R_{ij}^2}{R^2} \quad d_{iB} = p_{t,i}^{2p}$$

p = 0: Cambridge/Aachen p = 1: k_T p = -1: Anti- k_T

[C/A: Dokshitzer, et al (1997), Wobish, et al (1998)] [kT: Catani, et al (1993), Ellis et al (1993)] [Gen-kT (FastJet): Cacciari et al (2012)]

Jets

Ordering in vacuum parton shower? To LL accuracy, all (virtuality, k_T ,...) equivalent

L. Apolinário

Jets and Parton Showers

Expanding Medium

In-medium radiation will depend on local QGP parameters

Medium-modified jets

 $\theta_1 >> \theta_2 >> \theta_3 \dots \quad \mapsto \ t_1 >> t_2 >> t_3 \dots$ (Vacuum) \mapsto (QGP)

Generalised kt family of (reclustering) jet algorithms:

$$d_{ij} = \min(p_{t,i}^{2p}, p_{t,j}^{2p}) \frac{\Delta R_{ij}^2}{R^2} \quad d_{iB} = p_{t,i}^{2p}$$

0 (C/A) \vdots p = 0.5 (τ) \vdots 1 (k_T)

+

Generalised kt family of (reclustering) jet algorithms:

$$d_{ij} = \min(p_{t,i}^{2p}, p_{t,j}^{2p}) \frac{\Delta R_{ij}^2}{R^2} \quad d_{iB} = p_{t,i}^{2p}$$

Generalised kt family of (reclustering) jet algorithms:

$$d_{ij} = \min(p_{t,i}^{2p}, p_{t,j}^{2p}) \frac{\Delta R_{ij}^2}{R^2} \quad d_{iB} = p_{t,i}^{2p}$$

[PYTHIA 8: Sjostrand et al (2006)]

Vacuum: PYTHIA 8 (k_T ordered)

Generalised kt family of (reclustering) jet algorithms:

$$d_{ij} = \min(p_{t,i}^{2p}, p_{t,j}^{2p}) \frac{\Delta R_{ij}^2}{R^2} \quad d_{iB} = p_{t,i}^{2p}$$

[PYTHIA 8: Sjostrand et al (2006)] [JEWEL: Zapp (2014)]

Vacuum: PYTHIA 8 (k_T ordered) Vacuum: JEWEL (~PYTHIA 6, Q² ordered)

Generalised kt family of (reclustering) jet algorithms:

$$d_{ij} = \min(p_{t,i}^{2p}, p_{t,j}^{2p}) \frac{\Delta R_{ij}^2}{R^2} \quad d_{iB} = p_{t,i}^{2p}$$

[PYTHIA 8: Sjostrand et al (2006)] [JEWEL: Zapp (2014)]

Vacuum: PYTHIA 8 (k_T ordered) Vacuum: JEWEL (~PYTHIA 6, Q² ordered) Medium: JEWEL (Q² ordered + τ veto)

Proxy for τ form

$$au_{form}^{Uncluster}$$

Proxy for τ form

Proxy for τ form

$$\tau_{form}^{Uncluster}$$

Proxy for τ form

$$au_{form}^{Uncluster}$$

Proxy for τ form

$$au_{form}^{Uncluster}$$

Correlation MC-truth vs Unclustering:

C/A

L. Apolinário

+

Correlation (no grooming)

ECT* Jet Quenching In The Quark-Gluon Plasma

τ

+

Testing several types of grooming:

C/A + TimeDrop (a=2)

L. Apolinário

[Larkoski, Marzani, Soyez, Thaler (14)] [Mehtar-Tani, Soto-Ontoso, Tywoniuk (20)]

Grooming

Cleaning soft fragments improves correlation

τ + Soft-drop (z_{cut}=0.1)

Correlation

+

Using the difference between the two formation times: $\Delta \tau = \tau_{form}^{Parton \ Shower} - \tau_{form}^{Unclustering}$

Correlation

L. Apolinário

Correlation

L. Apolinário

Correlation

L. Apolinário

Vacuum vs Medium

$\Delta \tau$ distribution (vacuum quartiles):

 $\Delta \tau$ distribution (in-medium quartiles):

1st emission (with SD) has always median (Q2) centred at 0 (change in IQR)

Vacuum vs Medium

$\Delta \tau$ distribution (vacuum quartiles):

 $\Delta \tau$ distribution (in-medium quartiles):

Shift in the median (Q2) of 2nd emission

Algorithms Comparison

1st emission/unclustering step (IQR)

2nd emission/unclustering step (Q2)

Absolute differences w.r.t to minimum value

Available timescales

Focus on first emission:

What are the τ_{form} available? \bigstar

Is it modified by the medium?

Harder fragmentation \Leftrightarrow Longer τ

 \diamond

 \blacklozenge

R = 0.5, p_{T,jet} > 300 GeV

Available timescales

Focus on first emission:

What are the τ_{form} available? \bigstar

Is it modified by the medium?

Harder fragmentation \Leftrightarrow Longer τ

 \Leftrightarrow Survive more to in-medium jets

+

 \blacklozenge

R = 0.5, p_{T,jet} > 300 GeV

Example application: RAA lead jet

Easily select two classes of jets:

L. Apolinário

 \blacklozenge

Example application: RAA lead jet

Easily select two classes of jets:

• "early" jets: $\tau_1 < 1$ fm/c (strongly modified)

L. Apolinário

Example application: RAA^{lead jet}

Easily select two classes of jets:

+ "early" jets: $\tau_1 < 1$ fm/c (strongly modified)

"late" jets: $\tau_1 > 3$ fm/c (weakly modified)

L. Apolinário

Example application: RAA lead jet

Easily select two classes of jets:

+ "early" jets: $\tau_1 < 1$ fm/c (strongly modified)

"late" jets: $\tau_1 > 3$ fm/c (weakly modified)

L. Apolinário

[talks on jet quenching selection: Laura, Raymond, Mateusz]

Previous results

1st unclustering: V

R S S L

and a diversity of the

Time (fm/c)

1st unclustering: V

Can we go further? (2nd unclustering)

Expanding QGP

Time (fm/c)

1st vs 2nd Unclustering Step

Uncertainty on 2nd unclustering step is larger...

+

1st vs 2nd Unclustering Step

Uncertainty on 2nd unclustering step is larger...

But τ_{form} -distribution is also displaced towards larger values

+

 \bigstar

Normalised IQR

Formation time gets logarithmic larger at each unclustering step

Normalising by the average $<\tau_{form}>$: \bullet

L.

Normalised IQR

2nd step (+2SD)

Formation time gets logarithmic larger at each unclustering step

Normalising by the average $<\tau_{form}>$: \blacklozenge

Relative IQR for 2nd unclustering still looks manageable

There are several biases one needs to consider...

Phase space restrictions... \bigstar

+

L. Apolinário

L. Apolinário

2nd unclustering: ?

Need a more calibrated setup:

Expanding QGP

Time (fm/c)

Dijets \Rightarrow Z+jet

From di-jets to Z+jet events

More calibrated results: boson + (quark) jet

Recoiling jet R = 0.5, $p_{T,Z} > 60$ GeV, $p_{Tjet} > 30$ GeV \bigstar

+

$\tau_{\text{form}} = \tau_{\text{form}}(\Delta \mathbf{R}, \mathbf{z})$

an a same a s

4

10 B

25 Ta 25

1111

Kinematic cut?

Selecting on ΔR vs selecting on τ_{form} :

+

$\Delta \mathbf{R} \mathbf{VS} \tau_{form}$

Selecting on ΔR vs selecting on τ_{form} :

Harder fragmentation \Leftrightarrow Longer $\tau \Leftrightarrow$ Smaller ΔR

+

$\Delta \mathbf{R} \mathbf{VS} \tau_{form}$

Selecting on ΔR vs selecting on τ_{form} :

+

$\Delta \mathbf{R} \mathbf{VS} \tau_{form}$

Softer fragmentation \Leftrightarrow Smaller $\tau \Leftrightarrow$ Larger ΔR

+

$\Delta \mathbf{R} \mathbf{VS} \tau_{form}$

$\Delta \mathbf{R} \mathbf{VS} \tau_{form}$

L. Apolinário

$\Delta \mathbf{R} \mathbf{VS} \tau_{form}$

2nd unclustering:

Selection on Tform: allows to

Expanding QGP

evaluate ΔE in a $\Delta \tau$

Z+jet

Summary

New jet scale τ_{form} allows to: +

Select quenched jets without biasing initial p_T (accurate evaluation of \blacklozenge energy loss)

+ 1st and 2nd unclustering steps with identical relative τ_{form} resolution

+ $\Delta E = \Delta E (\tau_{form})$? (On-going...)

Summary

New jet scale τ_{form} allows to: +

Select quenched jets without biasing initial p_T (accurate evaluation of \blacklozenge energy loss)

+ 1st and 2nd unclustering steps with identical relative τ_{form} resolution

+ $\Delta E = \Delta E (\tau_{form})$? (On-going...)

- τ -algorithm:
 - + with SD: 1st unclustering C/A identical to τ
 - Without SD: better overall performance in evaluating τ_{form} +

Summary

New jet scale τ_{form} allows to: +

Select quenched jets without biasing initial p_T (accurate evaluation of \blacklozenge energy loss)

+ 1st and 2nd unclustering steps with identical relative τ_{form} resolution

+ $\Delta E = \Delta E (\tau_{form})$? (On-going...)

 τ -algorithm:

- + with SD: 1st unclustering C/A identical to τ
- Without SD: better overall performance in evaluating τ_{form} +

Thank you!

L. Apolinário

REPÚBLICA PORTUGUESA

L. Apolinário

Acknowledgments

Backup slides

.

What happens when a high momentum particle travels through the QGP?

+

+

- parton shower

What happens when a high momentum particle travels through the QGP?

Medium-induced energy loss

 \blacklozenge

- parton shower

What happens when a high momentum particle travels through the QGP?

 \blacklozenge

- parton shower

What happens when a high momentum particle travels through the QGP?

L. Apolinário

 \blacklozenge

- parton shower

L. Apolinário

 \blacklozenge

Expanding Medium

L. Apolinário

+

L. Apolinário

+

L. Apolinário

+

Several unknowns!

Sensitivity to early times?

A description of high-p_T anisotropic flow needs both hard and soft sectors: +

Framework to change quenching during early stages \bigstar (based on quenching weights)

Sensitivity to early times?

A description of high- p_T anisotropic flow needs both hard and soft sectors: +

Framework to change quenching during early stages \bigstar (based on quenching weights)

Sensitivity to early times?

A description of high- p_T anisotropic flow needs both hard and soft sectors:

Framework to change quenching during early stages \bigstar (based on quenching weights)

Potential to constrain the dynamics of the initial stages of the evolution

+

Sensitivity to later times?

Reconstructed hadronic W boson jet mass:

+

[Citron et al (19)]

@ LHC: limited sensitivity (identify long vs short lived scenarios)

Sensitivity to different timescales:

L. Apolinário

Sensitivity to different timescales: Early dynamics V -

Sensitivity to different timescales: Early dynamics V - Late dynamics V

Sensitivity to different timescales: Early dynamics $\sqrt{}$ - Late dynamics V - Anything else ... ?

Sensitivity to different timescales: Early dynamics V Late dynamics \checkmark - Anything else ... ?

Jets are multi-scale objects!

Sensitivity to different timescales: Early dynamics $\sqrt{}$ Late dynamics \checkmark - Anything else ... ?

High momentum particles (typically from vacuum-like parton shower)

Jets are multi-scale objects!

"Semi-hard" & Soft medium-induced radiation

Soft jet-induced medium response

C/A + Soft drop

+

[Larkoski, Marzani, Soyez, Thaler (2014)] [Larkoski, Marzani, Thaler (2015)]

 $z_g = \frac{\min(p_{T,1}, p_{T,2})}{p_{T,1} + p_{T,2}} \quad \text{when} \quad \frac{\min(p_{T,1}, p_{T,2})}{p_{T,1} + p_{T,2}} > z_{cut} \left(\frac{R_{12}}{R_0}\right)^{\beta}$

C/A + Soft drop = Jet splitting function +

[Larkoski, Marzani, Soyez, Thaler (2014)] [Larkoski, Marzani, Thaler (2015)]

 $\frac{\min(p_{T,1}, p_{T,2})}{p_{T,1} + p_{T,2}}$ $z_g =$

L. Apolinário

Grooming

Testing several types of grooming:

TimeDrop (a=2)

L. Apolinário

+

[Larkoski, Marzani, Soyez, Thaler (14)] [Mehtar-Tani, Soto-Ontoso, Tywoniuk (20)]

Soft-drop (z_{cut}=0.1)

Grooming

Testing several types of grooming:

TimeDrop (a=2)

L. Apolinário

+

[Larkoski, Marzani, Soyez, Thaler (14)] [Mehtar-Tani, Soto-Ontoso, Tywoniuk (20)]

Cleaning soft fragments improves correlation

Soft-drop (z_{cut}=0.1)

Testing ground

Z+Jet events

Leptonic decay of Z boson \bigstar

Choose "cleanest" channel as a first setting

Recoiling jet

+ R = 0.5

◆ p_T > 300 GeV

+ |η| < 1

 $\tau_{form} \approx \frac{1}{2Ez(1-z)(1-\cos\theta_{12})}$

L. Apolinário

All done at hadron level

$\Delta \mathbf{R} \mathbf{VS} \tau_{form}$

Vacuum vs Medium

 $\Delta \tau$ distribution (τ algorithm):

In-medium scatterings deteriorate resolution...

Medium recoil

Shift in transverse momentum due to elastic scatterings (Shift in reconstructed τ_{form})

Example application: RAA^{lead jet}

Easily select two classes of jets:

+ "early" jets: $\tau_1 < 1$ fm/c (strongly modified)

"late" jets: $\tau_1 > 3$ fm/c (weakly modified)

L. Apolinário

Even with soft-drop, emissions/unclustering steps might not be ordered in τ_{form} +

Even with soft-drop, emissions/unclustering steps might not be ordered in τ_{form} +

Even with soft-drop, emissions/unclustering steps might not be ordered in τ_{form} +

From leading branch, select the one with the shortest τ_{form} +

Even with soft-drop, emissions/unclustering steps might not be ordered in τ_{form}

From leading branch, select the one with the shortest τ_{form} C/A (p = 0.0)

L. Apolinário

Even τ can yield a fraction unordered emissions...

 τ (p = 0.5)

Time-drop vs Soft-drop

How about other grooming settings?

+

Soft-drop

[Larkoski, Marzani, Soyez, Thaler (2014)] [Larkoski, Marzani, Thaler (2015)]

C/A re-clustered jet

$$z_g = \frac{\min(p_{T,1}, p_{T,2})}{p_{T,1} + p_{T,2}}$$

when
$$\frac{\min(p_{T,1}, p_{T,2})}{p_{T,1} + p_{T,2}} > z_{cut} \left(\frac{R_{12}}{R_0}\right)^{\beta}$$

Time-drop vs Soft-drop

How about other grooming settings?

Time-drop

[Metar-Tani, Soto-Ontoso, Tywoniuk (2020)]

C/A re-clustered jet

$$\kappa^{(a)} = \frac{1}{p_{\mathrm{T}}} \max_{i \in \mathrm{C/A \ seq.}} \left[z_i (1 - z_i) \, p_{\mathrm{T},i} \left(\frac{\theta_i}{R} \right)^a \right]$$

a = 2:
$$t_{\rm f}^{-1} \sim \kappa^{(2)} p_{\rm T}$$
.

+

Soft-drop

[Larkoski, Marzani, Soyez, Thaler (2014)] [Larkoski, Marzani, Thaler (2015)]

C/A re-clustered jet

$$z_g = \frac{\min(p_{T,1}, p_{T,2})}{p_{T,1} + p_{T,2}}$$

when
$$\frac{\min(p_{T,1}, p_{T,2})}{p_{T,1} + p_{T,2}} > z_{cut} \left(\frac{R_{12}}{R_0}\right)^{\beta}$$

