
Machine learning 
approaches to jet quenching
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It’s just the beginning…
4But we should rapidly move beyond proof of concepts and generic 

ML tech – towards physics aware / white box / interpretable AI and 
data-ready … it requires a conceptual change…



ML for jet quenching: What’s the question(s)?
• Tell me if *this* jet is quenched and I take it from there…
• What to measure to expose jet quenching? 
• ó maximize the information on quenching

• Frequentist vs. statistical inference
• Simulation based, variational, Bayesian inference 
• Constrain physical model parameters with data (aka fit)
• Question: how to discover missing features of the model/theory?

• Mitigate background effects?
• Understand uncertainties after ML application – some pitfalls:
• ML performance as good as the data set itself
• ML performance as good as the ML model itself
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ML for jet quenching: important problems
• Model dependence – “how to” model independent learning
• Data (preparation) – data level, biases, inefficiencies
• Black box vs. white box ó explain ability
• Applicability – can’t ignore* the UE in heavy-ion collisions
• Uncertainty quantification, model biases – applying MC tuned model to data?

*) ignoring means pure MC studies of quenching w/o prescription how to do work with data that contain the 
background effects – see https://arxiv.org/abs/2006.01812 for an example

Suggested methodology: 
- Learn about the ML model using Monte Carlo
- Learn about physics model using data (not MC)

A few of using ML
- Infer physics (probability dist. of params)
- Design new observables – optimize exp. sensitivity
- Select/tag-and-study
- Discover features / anomaly detection
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Nota bene…
• HEP driven ML effort much larger - we are learning (sic!) how to benefit…

• https://arxiv.org/abs/2102.02770

• https://github.com/iml-wg/HEPML-LivingReview

Classification
Parameterized classifiers

Jet images, event images, sequences, trees, graphs, sets (point clouds), physics-inspired basis, W/Z tagging, quarks/gluons, top quark 
tagging, strange jets, b-tagging, flavor physics, BSM, PID, neutrino detectors, direct DM detectors, cosmology/astro/c.rays, tracking, 
heavy-ions/NP, hyperparameters, weak/semi supervision, unsupervised, reinforcement learning, quantum ML, feature ranking, 
attention, regularization, optimal transport, software, hardware/firmware, deployment

Regression
Pileup, Calibration, Recasting, Matrix Elements, Parameter Estimation, Parton Distribution Functions (and related), Lattice 
Gauge Theory, Function Approximation, Symbolic Regression

Decorrelation methods
Generative models / density estimation

GANs, Autoencoders, Normalizing flows, Physics-inspired, Mixture Models, Phase space generation, Gaussian processes
Anomaly detection
Simulation-based (`likelihood-free') Inference

Parameter estimation, Unfolding, Domain adaptation, BSM, Differentiable Simulation
Uncertainty Quantification

Interpretability, Estimation, Mitigation, Uncertainty- and inference-aware learning
Experimental Results

Performance studies, Searches and measurements were ML reconstruction is a core component, Final analysis discriminate 
for searches, Measurements using deep learning directly (not through object reconstruction) 
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Some ML applications – related 
to jet quenching problems…
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Jet pT corrections
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Jet pT corrections
• Modest goal but high gain: improve momentum resolution – enable low-pT large-R jet measurements
• Actual application of ML in AA data
• Regression, Random Forest (decision trees), NN
• Predict jet pT based on structure features – analysis of sensitivity done
• Model dependence: mitigation with FF variations + uncertainty quantification

https://arxiv.org/abs/1810.06324 + ALICE
https://arxiv.org/abs/1909.01639

https://indi.to/3mH5h
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Classification: quenched or not quenched?
11

Early comment: we need to rapidly transition from “was the jet quenched or not?” to 
“what do we need to measure to capture / understand jet quenching?” (what 
modified, how, when?, where?)



Classification: quenched or not quenched?
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Quick reminder… receiver operating characteristic curve

diagnostic ability of a binary classifier system as its discrimination threshold is varied
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Discrimination: quark vs. gluon jets…
• Probing heavy ion collisions using quark and gluon jet substructure

• Multi-layer perceptron (MLP) with Jet mass, two radial moments including the girth, the pT,D, and the 
pixel multiplicity 

• Deep convolutional neural network (DCNN) on discretized images of quark jets and gluon jets (η,φ) 

• Telescoping deconstruction framework exploiting subjet kinematics – pT, mass (use MLP)

• “We find that the quark gluon discrimination performance worsens in heavy ion jets due to significant 
soft event activity affecting the soft jet substructure.“

https://arxiv.org/abs/1803.03589

https://arxiv.org/abs/1310.7584
- HEP related

JEWEL
Background: ON/OFF
pT > 50 GeV/c
POP study

Yang-Ting Chien, Raghav Kunnawalkam Elayavalli14
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Quark vs. gluon jets… https://arxiv.org/abs/1803.03589

https://arxiv.org/abs/1310.7584
- HEP related

JEWEL
Background: ON/OFF
pT > 50 GeV/c
POP study

“The CNN architecture has not been 
tuned exhaustively, therefore its ROC 
curves serve to give a general sense 
of performance. “

“Through multiple methods and observables, we 
consistently find the dominant feature of the Jewel jet 
quenching model to be the increase of soft particle 
multiplicity due to medium recoils throughout the jet 
region. This is closely related to the loss of information in 
subleading subjets, which is a characteristic feature of 
Jewel.”

Yang-Ting Chien, Raghav Kunnawalkam Elayavalli15
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Warning: “We observe that the increase of the pixel multiplicity 
is a key feature in identifying quenched jets, with the DCNN 
performs slightly better than the MLP.” 

No free lunch: We clearly see the performance drops in PbPb
collisions, along with a significant reduction in the performance 
improvement from T1 to T1+T2 in PbPb collisions. 

“The CNN architecture has not been 
tuned exhaustively, therefore its ROC 
curves serve to give a general sense 
of performance. “

“Through multiple methods and observables, we 
consistently find the dominant feature of the Jewel jet 
quenching model to be the increase of soft particle 
multiplicity due to medium recoils throughout the jet 
region. This is closely related to the loss of information in 
subleading subjets, which is a characteristic feature of 
Jewel.”

Yang-Ting Chien, Raghav Kunnawalkam Elayavalli16
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Deep Learning for the Classification of Quenched Jets
• Images: Convolutional Neural Network (CNN) for the jet (η,φ) 

images. In addition, we further considered the case that the image 
channels were normalised or left unnormalised

• Lund: Recurrent Neural Network (RNN) for the sequence of the C/A 
re-clustered sequence of the primary Lund plane coordinates

• Global: Dense Neural Network (DNN) for the tabular data of the 
global jet transverse momentum and the number of constituents, 
(pT,jet,nconst)

JEWEL
Background: OFF
High-pT
POP study

https://arxiv.org/abs/2106.08869

Comments:
- Do not throw away data – secondary Lund plane? – adds complexity?
- Studies w/o background – unrealistic performance?
- Low-pT jets more interesting than high-pT jets?

L. Apolinário, N. F. Castro, M. Crispim Romão, J. G. 
Milhano, R. Pedro, F. C. R. Peres
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Quenched jet tagging
JEWEL
Background: OFF
High-pT
POP study

Interesting appendix! A Correlation between Deep Neural Networks 

=> What does it mean!? => INTERPRETABILITY!

https://arxiv.org/abs/2106.08869
L. Apolinário, N. F. Castro, M. Crispim Romão, J. G. 
Milhano, R. Pedro, F. C. R. Peres
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Deep learning jet modifications in heavy-ion collisions
• convolutional neural network (CNN) to diagnose 

modifications from jet images where the training and 
validation is performed using the hybrid strong/weak 
coupling model

• the angular distribution of soft particles in the jet cone 
and their relative contribution to the total jet energy 
contain significant discriminating power, which can be 
exploited to tailor observables that provide a good 
estimate of the energy loss ratio => study a set of jet 
observables 

• Mass, jet shape r(r), fragmentation distribution D
• Groomed (SD) zg, Rg, nSD, Mg

• potential of deep learning techniques in the analysis of 
the geometrical aspects of jet quenching such as the in-
medium traversed length or the position of the hard 
scattering in the transverse plane, opening up new 
possibilities for tomographic studies 

https://arxiv.org/abs/2012.07797

The amount of energy and momentum lost by the energetic parton, as described by

Eq. (2.1), exactly corresponds to the amount of energy and momentum flowing into the

QGP hydrodynamic modes [70]. This will generate a wake that is correlated with the direc-

tion of the jet [78], whose contribution to the experimentally observable jet properties has

to be taken into account. The hybrid model provides an estimate of the wake contribution

to the final hadron spectrum by performing an expansion of the Cooper-Frye formula at

the perturbed freeze-out hypersurface, which yields [79]
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where pT , mT , � and y are the transverse momentum, transverse mass, azimuthal angle and

rapidity of the emitted thermal particles and where �PT and �MT = �E/ cosh yj are the

transverse momentum and transverse mass transferred from the jet, with azimuthal angle

and rapidity �j and yj , respectively. The distribution in Eq. (2.5) has been obtained by

considering that the background behaves as a Bjorken flow, which only has a longitudinal

expansion. Generalizing it to the case in which there is transverse expansion can modify

such distribution, depending on the orientation of the jet with respect to the background

radial flow components [80–82]. The consequences of these observations will be explored

in the near future.

The partons that do not completely hydrodynamize are hadronized using the Lund

string model included in PYTHIA 8.244. The contributions from the hadrons of the wake,

together with the fragmented hadrons, ensure event-by-event energy-momentum conserva-

tion.3

2.2 Jet energy loss ratio �jh and traversed path-length L

The main goal of this work is to determine, on a jet-by-jet basis, the amount of energy

loss, quantified through the variable
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h

i

, (2.6)

Nevertheless, there are studies that point to the importance of this phase in a variety of observables, specially

for low pT particles (see, e.g., [74–77]), which are precisely the kind of hadrons that form the fastest and

the ones more a↵ected by further rescattering. The inclusion of these e↵ects, whose implementation within

the current state-of-the-art quenching models is still ongoing work, is left for the future.
3The distribution in Eq. (2.5) can become negative, most notably in the direction opposite to the jet in

the transverse plane. This reflects the absence of soft particles in such region of phase space compared to

an unperturbed QGP background as a result to the boost experienced by the fluid cell due to the injection

of momentum from the jet. In the present work we will ignore such negative contributions, since they

would show up as negative energy pixels in the jet images used in Section 3.1 (one would need to devise a

procedure to cancel out such negative contributions using particles from a real background which are close

in momentum and configuration space, such as in [79], which we leave for future work). It has been shown

that their contribution to jet observables with relatively small jet radius, such as the one used in the present

work, R = 0.4, is almost negligible [83], which guarantees that none of our conclusions will be a↵ected by

the omission of such contribution. A study of jets with a larger radius will be done in future publications.

– 6 –

Study:

medium / vacuum

su↵ered by jets due to the propagation through a hot and dense QCD medium. Here, the

subscript “jh” refers to the energy of the jet measured at hadronic level. These jets are

reconstructed with FastJet 3.3.1[84] using the anti-kT algorithm [85] with reconstruction

parameter R = 0.4. In this definition, Eh

f
is the pT of a given jet in the presence of a

medium, and E
h

i
is the pT of the same jet had there been no medium. This relies on

a carefully devised matching procedure that is explained below. The variable �jh was

carefully chosen for several reasons. On the one hand, it is well suited to gauge the energy

shift on the level of observable particles, since E
h

f
is, in principle, directly measured in

experiment. This helps mitigating the event generator bias mentioned earlier. On the

other hand, we have also found that �jh is quite well approximated by the neural network

compared to other possible quantities, as will be discussed extensively below. All needed

information, including E
h

i
, is readily available in the hybrid model, where each unmodified

event is stored together with its medium-modified version.

Other jet quenching models, in which the vacuum evolution is factorized from the

interactions with the medium, should also allow such a jet-by-jet correspondence. In this

case, Eh

i
should be thought of as a measure of the pT of an equivalent jet in vacuum, e.g.,

a jet with a similar pT in the cone before the stage where medium interactions are applied

to the jet.

In this work, we also consider the amount of QGP traversed by a specific jet. While

it is not a quantity directly extracted by the neural network from the provided images,

it is readily available from the numerical model used to generate the data. This quantity

provides meaningful information that should be strongly correlated to the modifications

and energy loss experienced by a jet. Given that the quantity in Eq. (2.4) refers to the

length traversed by a single parton i, we construct the length traversed by a parton jet,

L, from the pT weighted sum of the individual lengths of the jet constituents on partonic

level Li, as

L =

P
i2jet

pT,iLi

P
i2jet

pT,i
. (2.7)

This biases the extracted jet in-medium length to the one of the leading particle.

2.3 Matching procedure

Given a quenched jet of energy

p
jet
T
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⌘ E
h

f
, (2.8)

(at the hadronic level), in order to find its vacuum partner we perform the following

procedure:

1. Extract the vacuum jets by clustering the list of vacuum hadrons, i.e., the hadrons

one would obtain if there was no medium modifications.

2. Extract the medium jets by clustering the list of medium hadrons, which include the

hadrons fragmented from the quenched parton shower as well as the hadrons from

the wake.

– 7 –

i – enumerates partons
Jet traversed L := pT weighted sum of
individual partons in a jet

Defined matching procedure for vacuum-medium

Yi-Lun Du, Daniel Pablos, Konrad Tywoniuk
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Classification of q/g jets in hot QCD medium with deep learning 
https://arxiv.org/abs/2012.07797

Yi-Lun Du, Daniel Pablos, Konrad Tywoniuk
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Classification of q/g jets in hot QCD medium with deep learning 

“It has been found that the greater the energy loss is, the more 
difficult it is to classify the jets.”

https://arxiv.org/abs/2112.00681
Yi-Lun Du, Daniel Pablos, Konrad Tywoniuk
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Classification of q/g jets in hot QCD medium with deep learning 
https://arxiv.org/abs/2012.07797

Yi-Lun Du, Daniel Pablos, Konrad Tywoniuk
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Nevertheless, there are studies that point to the importance of this phase in a variety of observables, specially

for low pT particles (see, e.g., [74–77]), which are precisely the kind of hadrons that form the fastest and

the ones more a↵ected by further rescattering. The inclusion of these e↵ects, whose implementation within

the current state-of-the-art quenching models is still ongoing work, is left for the future.
3The distribution in Eq. (2.5) can become negative, most notably in the direction opposite to the jet in

the transverse plane. This reflects the absence of soft particles in such region of phase space compared to

an unperturbed QGP background as a result to the boost experienced by the fluid cell due to the injection

of momentum from the jet. In the present work we will ignore such negative contributions, since they

would show up as negative energy pixels in the jet images used in Section 3.1 (one would need to devise a

procedure to cancel out such negative contributions using particles from a real background which are close

in momentum and configuration space, such as in [79], which we leave for future work). It has been shown

that their contribution to jet observables with relatively small jet radius, such as the one used in the present

work, R = 0.4, is almost negligible [83], which guarantees that none of our conclusions will be a↵ected by
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Identification of quenched jets… 
• Deconstruct the clustering sequence (C/A)
• Study the sequence of splitting’s (feature set: z, q, kT …)
• Long short-term memory network => classify jets: quenched or not
• Concern: path to application in data, residual background

https://arxiv.org/abs/2206.01628

JEWEL, PYTHIA8
Background: ON
Constit. Subtr.: ON
pT > 200 GeV/c
Supervised ML
POP study

Lihan Liu, Marta Verweij, Julia Velkovska
27
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Jets and selected geometry
• Deep learning assisted jet tomography for the study of Mach cones     in QGP

• Is it possible to determine the initial jet production positions using the 
momenta of final state particles? 

• Will the signal of Mach cones and the diffusion wake be amplified if initial jet 
production positions are constrained to specific regions with long jet 
propagation lengths or fixed propagation direction relative to the radial flow? 

• How reliable is the new deep learning assisted method? 
https://arxiv.org/abs/1711.08588

CoLBT-hydro, LIDO (train)
Background: ON
Constit. Subtr.: ON
pT > 100 GeV/c
Supervised ML
POP study

Zhong Yang, Yayun He, Wei Chen, Wei-Yao Ke, Long-Gang Pang, Xin-Nian Wang

https://arxiv.org/abs/2206.02393 29
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Jets and selected geometry
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=> somewhat yes, but quantitative details important; scrutiny 
in the experiment?

=> with large fluctuations

Note the 
asymmetric 
distributions

Zhong Yang, Yayun He, Wei Chen, Wei-Yao Ke, Long-Gang Pang, Xin-Nian Wang
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Jets and selected geometry
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=> somewhat yes, but quantitative details important; scrutiny 
in the experiment?
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observation level only – quantitative level?

Zhong Yang, Yayun He, Wei Chen, Wei-Yao Ke, Long-Gang Pang, Xin-Nian Wang
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Information in quenched jets
• Binary classification to design observables

• Quantify information: IRC safe – hard vs. soft
• Define new, optimized discriminating observable
• Study information loss in AA

• Sensitivity to quenching in soft emissions and IRC-unsafe 
physics inside the jet

• training labels exactly known(!)  => use 
experimental data without reliance on 
modeling

https://arxiv.org/abs/2111.14589

N-subjetiness - minimal basis of the M-body 
phase space of emissions inside the jet

Jets in AA background

Yue Shi Lai, James Mulligan, MP, Felix Ringer
35
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Information in quenched jets
• Binary classification to design observables

• Quantify information: IRC safe – hard vs. soft
• Define new, optimized discriminating observable
• Study information loss in AA

• Sensitivity to quenching in soft emissions and IRC-unsafe 
physics inside the jet

• training labels exactly known(!)  => use 
experimental data without reliance on 
modeling

https://arxiv.org/abs/2111.14589

N-subjetiness - minimal basis of the M-body 
phase space of emissions inside the jet

Jets in AA background

Select! Observables – most 
sensitive but still measurable?

=> Symbolic regression

Yue Shi Lai, James Mulligan, MP, Felix Ringer
36
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Inferring medium properties?
• “Automated Discovery of Jet 

Substructure Analyses”
• Use architecture a la cNN to enable 

feature extraction
• Perform symbolic regression to

constrain algebraic form of *the* 
observable sensitive to features in 
data…
• example: sensitivity to initial

temperature parameter in JEWEL

https://arxiv.org/abs/2012.06582

The distribution of the symbolic regression approximated 
neuron (a) c1,SR and (b) c16,SR for various Ti in Jewel for 100 < pT,J < 
300 GeV/c, with the ratio relative to Ti = 0.36 GeV 

Yue Shi Lai
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Machine learning physics
• Not jet quenching example but illustrative for a broader context => white box AI

• Modus operandi: Design explainable physics-aware AI/ML
• Ultimate goal: Infer the underlying physics directly from data (e.g. RHIC, LHC,…, future EIC)
• At this point: Proof of concept using a parton shower

A GAN reconstructs the parton shower (encoding kinematics of splittings)

Yue Shi Lai, Duff Neill, MP, Felix Ringer
https://arxiv.org/abs/2012.0658240

https://arxiv.org/abs/2012.06582
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Machine learning physics
• Not jet quenching example but illustrative for a broader context => white box AI

• Modus operandi: Design explainable physics-aware AI/ML
• Ultimate goal: Infer the underlying physics directly from data (e.g. RHIC, LHC,…, future EIC)
• At this point: Proof of concept using a parton shower

A GAN reconstructs the parton shower (encoding kinematics of splittings)

Yue Shi Lai, Duff Neill, MP, Felix Ringer
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Next steps: expand beyond 1->2; built-in hadronization
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Summary
• Physics model dependent statements:
• With some precision quark vs. gluon jet discrimination in simulation
• Jet quenching information in soft components of the jet
• It is difficult to select on geometry with control (fluctuations) but qualitatively selection on 

points of scattering, path length possible (in models)

• Physics model independent statements – data ready:
• There is no free lunch
• Model dependence is a problem that needs to be eliminated/controlled
• Quantification of uncertainties is a problem that needs addressing
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Future (wanted) developments – aka Outlook
• Move away from image based deep learning to sequence based data
• Avoid information loss, enable large latent space, no padding
• deep sets, graphNNs

• A tip: benchmark on known / public data sets (the same data sets)
• Physics aware models ó white box (as opposed to black box) models
• Interpretability! => experiment theory feedback?

• (Un)supervised learning on data? Or semi-supervised = data+MC
• Jet classification directly in AA data – connection to j.q. modelling? => inference of physics

• Uncertainty inference / quantification
• ‘New’ directions:
• More GAN based approaches?
• Decorrelation methods (!) – look for smallest set of maximally discriminating observables

https://www.bayesfast.org
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Intriguing opportunity: semi-supervised, unsupervised? 
<=> not all (none) labels given
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It’s just the beginning…
47But we should rapidly move beyond proof of concepts and generic 

ML tech – towards physics aware / white box / interpretable AI and 
data-ready … it requires a conceptual change…



Thanks!
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Optimal ML “output”
• What features of jets change medium-vacuum?
• Observables
• Constituents (‘medium recoil’ not distinguishable from jet particles by def.)

• Connection the theory?
• Assistive: select quenched jets and study those with a traditional “microscope” 

(observables)
• What means quenched jets in model-agnostic scenario?
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Discrimination: quark vs. gluon jets…
• Probing heavy ion collisions using quark and gluon jet substructure

• Jet mass, two radial moments including the girth, the pT,D, and the pixel multiplicity => multi-layer 
perceptron (MLP); 

• Deep convolutional neural network (DCNN) on discretized images of quark jets and gluon jets (η,φ) 

• Telescoping deconstruction framework exploiting subjet kinematics – pT, mass (use MLP)

• “We find that the quark gluon discrimination performance worsens in heavy ion jets due to significant 
soft event activity affecting the soft jet substructure.“

https://arxiv.org/abs/1803.03589

https://arxiv.org/abs/1310.7584
- HEP related

JEWEL
Background: ON/OFF
pT > 50 GeV/c
POP study

“The CNN architecture has not been 
tuned exhaustively, therefore its 
ROC curves serve to give a general 
sense of performance. “

“Through multiple methods and observables, we 
consistently find the dominant feature of the 
Jewel jet quenching model to be the increase of 
soft particle multiplicity due to medium recoils 
throughout the jet region. This is closely related 
to the loss of information in subleading subjets, 
which is a characteristic feature of Jewel.”
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DCNN example
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