Machine learning
approaches to jet quenching



Google engineer put on leave after
saying Al chatbot has become sentient

Blake Lemoine says system has perception of, and ability to
express thoughts and feelings equivalent to a human child Sl Th Us edition -

Guardian

News website of the year

O Revelation has put new scrutiny on the capacity of, and secrecy surrounding, the world of
artificial intelligence (Al). Photograph: Boris Roessler/EPA



MACHINE LEARNING HISTORY

1950

. The term “machine
- learning” was coined.

1960

First neural networks

- applied to real world

problems (MADALINE).

1970
: New algorithms
- (Backpropagation) and

. neural networks (CNN)
. created.
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2000

. Deep learning
- accelerated by GPU
development.

1990

Boosting algorithms
discovered to reduce
. bias.

1980

Machine learning and
. artificial Intelligence
- took separate paths.
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2017

© Machine learning
. models in
Production.

o @

2019

. Well financed
startups leveraged
machine learning.

Now

Scientific frontier.
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But we should rapidly move beyond proof of concepts and generic *

| t,S J u St t h e b egl n n | n g e ML tech — towards physics aware / white box / interpretable Al and

data-ready ... it requires a conceptual change...
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ML for jet quenching: What’s the question(s)?

* Tell me if *this™* jet is quenched and | take it from there...

* What to measure to expose jet quenching?
e < maximize the information on quenching

* Frequentist vs. statistical inference
* Simulation based, variational, Bayesian inference
e Constrain physical model parameters with data (aka fit)
* Question: how to discover missing features of the model/theory?

* Mitigate background effects?

* Understand uncertainties after ML application — some pitfalls:
* ML performance as good as the data set itself
* ML performance as good as the ML model itself



MIL for jet quenching: important problems

* Model dependence — “how to” model independent learning

* Data (preparation) — data level, biases, inefficiencies

* Black box vs. white box <> explain ability

* Applicability — can’t ignore™* the UE in heavy-ion collisions

* Uncertainty quantification, model biases — applying MC tuned model to data?

A few of using ML
- Infer physics (probability dist. of params) Suggested methodology:

Design new observables — optimize exp. sensitivit .
5 g g / - Learn about the ML model using Monte Carlo
Select/tag-and-study

Discover features / anomaly detection - Learn about physics model using data (not MC)

*) ignoring means pure MC studies of quenching w/o prescription how to do work with data that contain the
background effects — see https://arxiv.org/abs/2006.01812 for an example



https://arxiv.org/abs/2006.01812

Nota bene...

HEP driven ML effort much larger - we are learning (sic!) how to benefit...

https://arxiv.org/abs/2102.02770

https://github.com/iml-wg/HEPML-LivingReview

Classification

Parameterized classifiers
Jet images, event images, sequences, trees, graphs, sets (point clouds), physics-inspired basis, W/Z tagging, quarks/gluons, top quark
tagging, strange jets, b-tagging, flavor physics, BSM, PID, neutrino detectors, direct DM detectors, cosmology/astro/c.rays, tracking,
heavy-ions/NP, hyperparameters, weak/semi supervision, unsupervised, reinforcement learning, quantum ML, feature ranking,
attention, regularization, optimal transport, software, hardware/firmware, deployment

Regression
Pileup, Calibration, Recasting, Matrix Elements, Parameter Estimation, Parton Distribution Functions (and related), Lattice
Gauge Theory, Function Approximation, Symbolic Regression
Decorrelation methods
Generative models / density estimation
GANs, Autoencoders, Normalizing flows, Physics-inspired, Mixture Models, Phase space generation, Gaussian processes
Anomaly detection
Simulation-based ('likelihood-free') Inference
Parameter estimation, Unfolding, Domain adaptation, BSM, Differentiable Simulation
Uncertainty Quantification
Interpretability, Estimation, Mitigation, Uncertainty- and inference-aware learning
Experimental Results

Performance studies, Searches and measurements were ML reconstruction is a core component, Final analysis discriminate
for searches, Measurements using deep learning directly (not through object reconstruction)


https://arxiv.org/abs/2102.02770
https://github.com/iml-wg/HEPML-LivingReview

Some ML applications — related
to jet quenching problems...



Jet pT corrections



https://arxiv.org/abs/1810.06324 + ALICE 10

.J et pT correct | Oons https://arxiv.org/abs/1909.01639

Modest goal but high gain: improve momentum resolution — enable low-pT large-R jet measurements

Actual application of ML in AA data

* Regression, Random Forest (decision trees), NN

Predict jet pT based on structure features — analysis of sensitivity done

Model dependence: mitigation with FF variations + uncertainty quantification https://indi.to/3mH5h
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https://arxiv.org/abs/1810.06324
https://arxiv.org/abs/1909.01639
https://indi.to/3mH5h

Classification: guenched or not quenched?

Early comment: we need to rapidly transition from “was the jet quenched or not?” to
“what do we need to measure to capture / understand jet quenching?” (what
modified, how, when?, where?)
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Classification: guenched or not quenched?
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https://en.wikipedia.org/wiki/Binary_classifier

Yang-Ting Chien, Raghav Kunnawalkam Elayavalli

Discrimination: quark vs. gluon jets...  nups//amiore/abs/isos.0ssss

JEWEL
* Probing heavy ion collisions using quark and gluon jet substructure Background: ON/OFF
* Multi-layer perceptron (MLP) with Jet mass, two radial moments including the girth, the prp, and the  pT > 50 GeV/c
pixel multiplicity POP study

* Deep convolutional neural network (DCNN) on discretized images of quark jets and gluon jets (n,$)

https://arxiv.org/abs/1310.7584
- HEP related

» Telescoping deconstruction framework exploiting subjet kinematics — pT, mass (use MLP)

* “We find that the quark gluon discrimination performance worsens in heavy ion jets due to significant
soft event activity affecting the soft jet substructure.”
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https://arxiv.org/abs/1803.03589
https://arxiv.org/abs/1310.7584

Yang-Ting Chien, Raghav Kunnawalkam Elayavali

QU d rk VS. g‘ uon jEtS .. https://arxiv.org/abs/1803.03589

JEWEL
* Probing heavy ion collisions using quark and gluon jet substructure Background: ON/OFF
* Multi-layer perceptron (MLP) with Jet mass, two radial moments including the girth, the prp, and the  pT > 50 GeV/c
pixel multiplicity POP study

* Deep convolutional neural network (DCNN) on discretized images of quark jets and gluon jets (n,$)

 Telescoping deconstruction framework exploiting subjet kinematics — pT, mass (use MLP) hﬁg;://?r:“gorg/ab5/1310-7584
- relate

* “We find that the quark gluon discrimination performance worsens in heavy ion jets due to significant
soft event activity affecting the soft jet substructure.”
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https://arxiv.org/abs/1803.03589
https://arxiv.org/abs/1310.7584

Yang-Ting Chien, Raghav Kunnawalkam Elayavalli

QU d rk VS. g‘ uon jetS . https://arxiv.org/abs/1803.03589

JEWEL
* Probing heavy ion collisions using quark and gluon jet substructure Background: ON/OFF
* Multi-layer perceptron (MLP) with Jet mass, two radial moments including the girth, the prp, and the pixgdT > 50 GeV/c
multiplicity POP study

* Deep convolutional neural network (DCNN) on discretized images of quark jets and gluon jets (n,$)

https://arxiv.org/abs/1310.7584
- HEP related

» Telescoping deconstruction framework exploiting subjet kinematics — pT, mass (use MLP)

* “We find that the quark gluon discrimination performance worsens in heavy ion jets due to significant
soft event activity affecting the soft jet substructure.”
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https://arxiv.org/abs/1803.03589
https://arxiv.org/abs/1310.7584
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Deep Learning for the Classification of Quenched Jets

* Images: Convolutional Neural Network (CNN) for the jet (n,$)
images. In addition, we further considered the case that the image
channels were normalised or left unnormalised

* Lund: Recurrent Neural Network (RNN) for the sequence of the C/A
re-clustered sequence of the primary Lund plane coordinates

* Global: Dense Neural Network (DNN) for the tabular data of the
global jet transverse momentum and the number of constituents,

(pT,jet,nconst)
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https://arxiv.org/abs/2106.08869

L. Apolinario, N. F. Castro, M. Crispim Romao, J. G.

Milhano, R. Pedro, F. C. R. Peres
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https://arxiv.org/abs/2106.08869
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Deep Learning for the Classification of Quenched Jets

https://arxiv.org/abs/2106.08869 JEWEL
* Images: Convolutional Neural Network (CNN) for the jet (n,d) L. Apolinério, N. F. Castro, M. Crispim Romao, J. 6. Background: OFF

. . L. . . ; High-pT
images. In addi- tion, we further considered the case that the image Milhano, R. Pedro, F. C. R. Peres en-p
. . POP study
channels were normalised or left unnormalised
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- Do not throw away data — secondary Lund plane? — adds complexity?
- Studies w/o background — unrealistic performance?
- Low-pT jets more interesting than high-pT jets?
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Quenched jet tagging
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L. Apolinario, N. F. Castro, M. Crispim Romao, J. G.
Milhano, R. Pedro, F. C. R. Peres

Interesting appendix! A Correlation between Deep Neural Networks
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Deep learning jet modifications in heavy-ion collisions

https://arxiv.org/abs/2012.07797
Yi-Lun Du, Daniel Pablos, Konrad Tywoniuk

» convolutional neural network (CNN) to diagnose

modifications from jet images where the training and h
validation is performed using the hybrid strong/weak Study: Ef
coupling model Xih = medium / vacuum
o L . J Eh
e the angular distribution of soft particles in the jet cone i

and their relative contribution to the total jet energy
contain significant discriminating power, which can be
exploited to tailor observables that provide a good
estimate of the energy loss ratio => study a set of jet
observables

Defined matching procedure for vacuum-medium

* Mass, jet shape p(r), fragmentation distribution D Z pT,iLz'
* Groomed (SD) zg, Rg, nSD, Mg ﬁ 7 — 1€])et
* potential of deep learning techniques in the analysis of Z DT
the geometrical aspects of jet quenching such as the in- iCjet ’

medium traversed length or the position of the hard
scattering in the transverse plane, opening up new

possibilities for tomographic studies ' — enumerates partons

Jet traversed L := pT weighted sum of
individual partonsin a jet


https://arxiv.org/abs/2012.07797

23

Classification of g/g jets in hot QCD medium with deep learning
https://arxiv.org/abs/2012.07797

Yi-Lun Du, Daniel Pablos, Konrad Tywoniuk
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Average of normalized Average of normalized Average of normalized Average of normalized Average of normalized
gluon jet image, 0.25<y <0.50 gluon jet image, 0.50<y <0.60 gluon jet image, 0.60<y <0.70 gluon jet image, 0.70<y <0.85 gluon jet image, 0.85<xy <1
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Classification of g/g jets in hot QCD medium with deep learning

https://arxiv.org/abs/2112.00681
Yi-Lun Du, Daniel Pablos, Konrad Tywoniuk

ROC curves VS y

for quark/gluon jets classification .
1.0 1 . . Input (size) Accuracy
c 081 Jet shape (8) 72.2%
e,
9 s JFF (10) 73.0%
o4
o} 0.4 ] — AUC =0.857, Vacuum Jet features (7) 73.6%
= —— AUC = 0.845, Medium
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Buatk jet Efficiency Jet image (33%33) 75.9%

Figure 4: ROC curves of quark efficiency versus Table 1: Classification performance with
gluon rejection for jets in pp collisions and jets in  different inputs. Jet featl.lre.s .include: jet pr,
PbPb collisions for inclusive and sliced in y samples. ~ Zg» 'sD» Rg, M, Mg, Multiplicity.

“It has been found that the greater the energy loss is, the more
difficult it is to classify the jets.”


https://arxiv.org/abs/2112.00681
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Classification of g/g jets in hot QCD medium with deep learning
https://arxiv.org/abs/2012.07797
Eh Yi-Lun Du, Daniel Pablos, Konrad Tywoniuk
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|dentification of quenched jets...

* Deconstruct the clustering sequence (C/A)

* Study the sequence of splitting’s (feature set: z, 0, k; ...)

* Long short-term memory network => classify jets: quenched or not
* Concern: path to application in data, residual background
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https://arxiv.org/abs/2206.016287

Lihan Liu, Marta Verweij, Julia Velkovska

JEWEL, PYTHIAS
Background: ON
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https://arxiv.org/abs/2206.01628
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https://arxiv.org/abs/2206.02393

Jets and selected geometry

Zhong Yang, Yayun He, Wei Chen, Wei-Yao Ke, Long-Gang Pang, Xin-Nian Wang

* Deep learning assisted jet tomography for the study

* |sit possible to determine the initial jet production positions using the
momenta of final state particles?

* Will the signal of Mach cones and the diffusion wake be amplified if initial jet
production positions are constrained to specific regions with long jet
propagation lengths or fixed propagation direction relative to the radial flow?

 How reliable is the new deep learning assisted method?

0.24

016 CoLBT-hydro, LIDO (train)
| Background: ON

0oz Constit. Subtr.: ON

pT > 100 GeV/c
voo  Supervised ML

(x=3.0,y=-3.0) POP study
- —0.08
- —0.16
_10 0 10 10 0 10 -10 0 10 0


https://arxiv.org/abs/1711.08588
https://arxiv.org/abs/2206.02393
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Jets and selected geometry

Zhong Yang, Yayun He, Wei Chen, Wei-Yao Ke, Long-Gang Pang, Xin-Nian Wang

* Deep learning assisted jet tomography for the study of

* |sit possible to determine the initial jet production positions using the

momenta of final state particles?
* Will the signal of Mach cones and the diffusion wake be amplified if initial jet
E

production positions are constrained to specific regions with long jet
propagation lengths or fixed propagation direction relative to the radial flow?

 How reliable is the new deep learning assisted method?
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Jets and selected geometry

Zhong Yang, Yayun He, Wei Chen, Wei-Yao Ke, Long-Gang Pang, Xin-Nian Wang

* Deep learning assisted jet tomography for the study

* Isit possible to deter| — \yith |arge fluctuations [N Positions using the
momenta of final state paruciesr
* Will the signal of Mach cones and the diffusion wake be amplified if initial jet

production positions are constrained to specific regions with long jet
propagation lengths or fixed propagation direction relative to the radial flow?

 How reliable is the new deep learning assisted method?

X X
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Jets and selected geometry

Zhong Yang, Yayun He, Wei Chen, Wei-Yao Ke, Long-Gang Pang, Xin-Nian Wang

* Deep learning assisted jet tomography for the study

* lIsitpossible to deter _ \yith |arge fluctuations [N POsitions using the
momenta of final state paruciesr
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Jets and se

Zhong Yang, Yayun He, Wei Chen, Wei-Yao Ke, Long-Gang Pang, Xin-Nian Wang

* Deep learning assisted jet tomography for the study

https://arxiv.org/abs/2206.02393
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Information in quenched jets

e Binary classification to design observables
* Quantify information: IRC safe — hard vs. soft
* Define new, optimized discriminating observable
* Study information loss in AA

* Sensitivity to quenching in soft emissions and IRC-unsafe
physics inside the jet

* training labels exactly known(!) => use
experimental data without reliance on
modeling

JEWEL vs. PYTHIA8 100 < pr,jet < 125 GeV

1.0

0.8

https://arxiv.org/abs/2111.14589
Yue Shi Lai, James Mulligan, MP, Felix Ringer

N-subjetiness - minimal basis of the M-body
phase space of emissions inside the jet

1 :
TJ(V_ﬂ) = — Z Ppr; Min {Rfi,Rgi, ... ,Rﬁ,@-}
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Information in quenched jets

e Binary classification to design observables
* Quantify information: IRC safe — hard vs. soft
* Define new, optimized discriminating observable
* Study information loss in AA

* Sensitivity to quenching in soft emissions and IRC-unsafe
physics inside the jet

* training labels exactly known(!) => use
experimental data without reliance on
modeling

JEWEL vs. PYTHIA8
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https://arxiv.org/abs/2111.145889
Yue Shi Lai, James Mulligan, MP, Felix Ringer

N-subjetiness - minimal basis of the M-body
phase space of emissions inside the jet
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| nfe rrl n g m e d | u m p rO p e rt | eS ? https://arxiv.org/abs/2012.06582

Yue Shi Lai
* “Automated Discovery of Jet . :
Substructure Analyses” 10°} aﬁ%
* Use architecture a la cNN to enable ol i %e%
feature extraction I - 0 *ﬁi
L TT : % %\\ |
1 1 10 L F 5
* Perform symbolic regression to iw O # - rorsceue T
constrain algebraic form of *the* | ’T Tiosscevk| 1Ll - 7-ossaevk LI
.. . : —= T;=0.76 GeV/k - | = T,=0.76GeV/k
observable sensitive to features in o ¢ |
> : > -
data... 8" 8"
« example: sensitivity to initial T T
temperature parameter in JEWEL g 001 2
2 Cisr Z
(a) (b)

The distribution of the symbolic regression approximated
neuron (a) cissand (b) cissifor various T:in Jewel for 100 < pr.<
300 GeV/c, with the ratio relative to T.= 0.36 GeV


https://arxiv.org/abs/2012.06582
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https://arxiv.org/abs/2012.0658 20

M a Ch I n e |ea rn I ng p hySICS Yue Shi Lai, Duff Neill, MP, Felix Ringer

* Not jet quenching example but illustrative for a broader context => white box Al

* Modus operandi: Design explainable physics-aware Al/ML

 Ultimate goal: Infer the underlying physics directly from data (e.g. RHIC, LHC,..., future EIC) Piik(2)

* At this point: Proof of concept using a parton shower
A GAN reconstructs the parton shower (encoding kinematics of splittings) U

ith splitting process (n — n+1 partons)

b)

Pk

—_—

(plv"apn+1)

Pn+1

—_—

(plv",pn)

Parton shower: multiple
partons and their splittings Single parton splitting encoded


https://arxiv.org/abs/2012.06582

https://arxiv.org/abs/2012.06582*

M a Ch I n e |ea rn I ng p hySICS Yue Shi Lai, Duff Neill, MP, Felix Ringer

* Not jet quenching example but illustrative for a broader context => white box Al

* Modus operandi: Design explainable physics-aware Al/ML p.
* Ultimate goal: Infer the underlying physics directly from data (e.g. RHIC, LHC,..., future EIC) i~k (2)
* At this point: Proof of concept using a parton shower i

A GAN reconstructs the parton shower (encoding kinematics of splittings)

Input: generated (PS) distribution of final state

... but internally the NN learns the
(FS) partons - GAN reconstructs the FS

precisely ...

physical distribution for a single splitting
- the DGLAP splitting function

5%
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M a Ch I n e |ea rn I ng p hySICS Yue Shi Lai, Duff Neill, MP, Felix Ringer

* Not jet quenching example but illustrative for a broader context => white box Al

* Modus operandi: Design explainable physics-aware Al/ML p.
* Ultimate goal: Infer the underlying physics directly from data (e.g. RHIC, LHC,..., future EIC) i~k (2)
* At this point: Proof of concept using a parton shower

A GAN reconstructs the parton shower (encoding kinematics of splittings)

Input: generated (PS) distribution of final state

... but internally the NN learns the
(FS) partons - GAN reconstructs the FS

precisely ...

% 102}

— sl Next steps: expand beyond 1->2; built-in hadronization
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Summary

* Physics model dependent statements:
* With some precision quark vs. gluon jet discrimination in simulation
* Jet quenching information in soft components of the jet
* It is difficult to select on geometry with control (fluctuations) but qualitatively selection on
points of scattering, path length possible (in models)
* Physics model independent statements — data ready:
* Thereis no free lunch
* Model dependence is a problem that needs to be eliminated/controlled
* Quantification of uncertainties is a problem that needs addressing
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Future (wanted) developments — aka Outlook

* Move away from image based deep learning to sequence based data
* Avoid information loss, enable large latent space, no padding
* deep sets, graphNNs

A tip: benchmark on known / public data sets (the same data sets)

* Physics aware models <~ white box (as opposed to black box) models
* Interpretability! => experiment theory feedback?

* (Un)supervised learning on data? Or semi-supervised = data+MC
* Jet classification directly in AA data — connection to j.q. modelling? => inference of physics

» Uncertainty inference / quantification
> bayesfast

https://www.bayesfast.org

* ‘New’ directions:
* More GAN based approaches?
e Decorrelation methods (!) — look for smallest set of maximally discriminating observables



Intriguing opportunity: semi-supervised, unsupervised? *
<=>not all (none) labels given

\

SUPERVISED LEARNING vs SEMI-SUPERVISED LEARNING vs
UNSUPERVISED LEARNING o

Training data

Supervised learning All data is labeled

) ) labeled
Semi-supervised
learning

All data is unlabeled

Unsupervised
learning

O altexsoft



But we should rapidly move beyond proof of concepts and generic 47

| t,S J u St t h e b egl n n | n g e ML tech — towards physics aware / white box / interpretable Al and

data-ready ... it requires a conceptual change...
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Optimal ML “output”

* What features of jets change medium-vacuum?

* Observables
* Constituents (‘medium recoil’ not distinguishable from jet particles by def.)

* Connection the theory?

* Assistive: select quenched jets and study those with a traditiona
(observables)
 What means quenched jets in model-agnostic scenario?

Ill

microscope”
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Discrimination: quark vs. gluon jets...  tussssnivoressbs/sos.ossss

JEWEL

* Probing heavy ion collisions using quark and gluon jet substructure Background: ON/OFF
* Jet mass, two radial moments including the girth, the prp, and the pixel multiplicity => multi-layer pT > 50 GeV/c
perceptron (MLP); POP study

* Deep convolutional neural network (DCNN) on discretized images of quark jets and gluon jets (n,$)

https://arxiv.org/abs/1310.7584
- HEP related

» Telescoping deconstruction framework exploiting subjet kinematics — pT, mass (use MLP)
* “We find that the quark gluon discrimination performance worsens in heavy ion jets due to significant
soft event activity affecting the soft jet substructure.”

JEWEL+PYTHIA pp 2.76 Tev “Through multiple methods and observables, we

1.0 JEWEL+PYTHIA PbPb 0-20% w/ recoils 2.76 TeV
T

1.0

Particle Jet - . - .
o JEWEL+PYTHIA w/ Recoils 2.76 TeV —— Physics Variables (auc = 0.18)  phsice bfamd“ft() . consistently find the dominant feature of the
’ . " | ] || Physics Variables (no Pixel-Mult) (auc = 0.19) ysics Varlables (auc T ) J |iet hi del to be the i f
Telescoping Deconstruction: T1+T2+73  fA | 7770 mwwmmmmmm mm o ammm s o A s ] e _ = ewel je uencning modadel to be e InCrease O
p. g A — DCNN - Jet Image (auc = 0.17) Physics Variables (no Pixel-Mult) (auc = 0.25)
------ pp - Particle Jet (auc = 0.17) 08— _ —— DCNN - Jet Image (auc = 0.25) soft particle multiplicity due to medium recoils
------ pp - Grid Jet (auc = 0.17) TD: T1 (auc = 0.19) 081 __ 1p.T1 (auc = 0.25)
0.g| — PbPb - Particle Jet (no BKG-SUB) (auc = 0.24) ID: T1+T2 {auc = 0.17) TD: T1+T2 (auc = 0.24) throughout the jet region. This is closely related
. —— PbPb - Grid Jet (no BKG-SUB) (auc = 0.24) TD: T1+T2+T3 (auc = 0.17) TD: T1+T2+T3 (auc = 0.24) . . . . .
—— PbPb - Grid Jet (BKG-SUB)(auc = 0.25) o + Jet Events, anti-k; R=0.4 Je : : to the loss of information in subleading subjets,
g ¢ - ’ T go.6 y:rjet Bvents, antiis R20.4 Jets which is a characteristic feature of Jewel.”
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£ g .
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0.2
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Discrimination: quark vs. gluon jets...

* Probing heavy ion collisions using quark and gluon jet substructure

perceptron (MLP);

soft event activity affecting the soft jet substructure.”
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Figure 19: ROC curves for the DNNs trained on cumulant telescoping deconstruction observables
up to T1 through T4 orders and the jet image method using CNNs for quark/gluon discrimina-
tion (left panel), boosted W (middle panel) and top (right panel) tagging. The TN performance
approximately saturates at T2 (quark/gluon), T1 (W tagging), and T2 (top tagging) orders.

Telescoping deconstruction framework exploiting subjet kinematics — pT, mass (use MLP)
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https://arxiv.org/abs/1803.03589

JEWEL
Background: ON/OFF

Jet mass, two radial moments including the girth, the prp, and the pixel multiplicity => multi-layer pT > 50 GeV/c

POP study

Deep convolutional neural network on discretized images of quark jets and gluon jets (n,o)

https://arxiv.org/abs/1310.7584
- HEP related

“We find that the quark gluon discrimination performance worsens in heavy ion jets due to significant

“Through multiple methods and observables, we
consistently find the dominant feature of the
Jewel jet quenching model to be the increase of
soft particle multiplicity due to medium recoils

throughout the jet region. This is closely related
to the loss of information in subleading subjets,
which is a characteristic feature of Jewel.”

“The CNN architecture has not been
tuned exhaustively, therefore its
ROC curves serve to give a general
sense of performance. “


https://arxiv.org/abs/1803.03589
https://arxiv.org/abs/1310.7584

DCNN example

Conv_1
Convolution
(5 x 5) kernel
valid padding

fc_3
Fully-Connected
Neural Network
Conv_2 RelLU activation
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Fully-Connected

Convolution
e ,_* -~

Max-Pooling (5x5)kernel  max-pooling
(2x2) valid padding (2x2)

INPUT
(28 x28 x 1)

———————————

nl channels
(24 x 24 xn1)

n2 channels
(8 x8 xn2) (4 x4 xn2)

nl channels n2 channels !

(12 x12 x n1)

I
f / Y
/ N /
XY
3 /D ! )
¢\ | <. TINA .
-l -9 \ /

Neural Network

/_M

(with

/) dropouty

: ) \@ 9

'/"i ~ OUTPUT

n3 units

52



Discrimination: quark vs. gluon jets...

* Probing heavy ion collisions using quark and gluon jet substructure

* Jet mass, two radial moments including the girth, the prp, and the pixel multiplicity => multi-layer

perceptron (MLP);
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https://arxiv.org/abs/1803.03589

JEWEL

Background: ON/OFF
pT > 50 GeV/c

POP study

* Deep convolutional neural network (DCNN) on discretized images of quark jets and gluon jets (n,$)

» Telescoping deconstruction framework exploiting subjet kinematics — pT, mass (use MLP)

https://arxiv.org/abs/1310.7584

- HEP related

* “We find that the quark gluon discrimination performance worsens in heavy ion jets due to significant
soft event activity affecting the soft jet substructure.”

JEWEL+PYTHIA w/ Recoils 2.76 TeV
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JEWEL+PYTHIA 2.76 TeV

Gluon Jets (Grid)
—— Physics Variables (auc = 0.02)
Physics Variables (no Pixel-Mult) (auc = 0.09)
—— DCNN - Jet Image (auc = 0.02)
—— TD: T1 (auc = 0.05)
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“Through multiple methods and observables, we
consistently find the dominant feature of the
Jewel jet quenching model to be the increase of
soft particle multiplicity due to medium recoils
throughout the jet region. This is closely related
to the loss of information in subleading subjets,
which is a characteristic feature of Jewel.”

“The CNN architecture has not been
tuned exhaustively, therefore its ROC
curves serve to give a general sense
of performance. “


https://arxiv.org/abs/1803.03589
https://arxiv.org/abs/1310.7584

