Jet-medium interaction during the early glasma stage of heavy-ion collisions

Siggi Hauksson
IPhT, CEA-Saclay

Jet quenching in the quark-gluon plasma, ECT* June 17th 2022

In collaboration with E. lancu.

Early stages of heavy-ion collisions

- Most studies of jets in heavy-ion collisions look at QGP/hydro phase.
- Far-from-equilibrium initial phase could also be important.
- Glasma: Highly occupied, soft gluons.
[See e.g. Berges, Heller, Mazeliauskas, Venugopalan (2020)]
Talks by Alina Czajka, Meijian Li.
- How important is glasma for jets?
- Can we learn about glasma from jet observables?
[Shen (2014)]

[Foka, Janik (2017)]

Jet broadening in glasma

- Jet partons traverse heavily occupied gluon fields.
- Deflected by chromomagnetic and chromoelectric forces.
- As much broadening as during hydro stage!
- $\left.\Delta p_{\perp}^{2}\right|_{\text {glasma }} /\left.\Delta p_{\perp}^{2}\right|_{\text {hydro }} \approx 0.9$
[Carrington, Czajka, Mrowczynski (2022)]

[Carrington, Czajka, Mrowczynski (2022)]

[lpp, Muller, Schuh (2020)]

Jet broadening in glasma

- Broadening can be anisotropic:
- $\widehat{q}_{z} \neq \widehat{q}_{y}$ with $\widehat{q}_{y}=\frac{d\left\langle p_{y}^{2}\right\rangle}{d t}$
- In glasma broadening is heavily anisotropic,
[Carrington, Czajka, Mrowczynski (2022)]

$$
\widehat{q}_{z} \approx 2 \widehat{q}_{y}
$$

[Ipp, Muller,Schuh (2020)]

This talk

- How do jets evolve in glasma?
- How important is the glasma stage?
- How does anisotropy in broadening affect jet evolution?
- Leads to polarization in gluon helicity.
- The degree of polarization is constant for all energy scales in jet.

Importance of glasma phase for jets

- Need to quantify importance of glasma phase for jets:
- Assume a jet with path-length 5 fm .
- Switching time $\tau_{0}=0.6 \mathrm{fm}$ between glasma and hydro.
- \widehat{q} in hydro taken from JETSCAPE, including Bjorken expansion.
[JETSCAPE, Phys.Rev.C (2021)]
- \widehat{q} in glasma from Vienna group.
[lpp, Muller, Schuh (2020)]
- Total momentum broadening: $\left\langle p_{\perp}^{2}\right\rangle=\int d \tau \widehat{q}: \sim 60 \%$ from glasma.
- Contribution to jet structure: [Rate of emission is $d \mathcal{P} / d t \sim \sqrt{\hat{q}}]$ $\int d \tau \sqrt{\widehat{q}}: \sim 30 \%$ from glasma.
[For vacuum-like emission see e.g. Majumder (2018); Wang, Guo (2001)]
- Does the glasma impart a specific signature to jets?
- Anisotropy in momentum broadening.

Single gluon emission in an anisotropic medium

- Evaluate rate using BDMPS-Z formalism.
[E.g. Baier, Dokshitzer, Peigné, Schiff, Mueller (1996); Zakharov (1997)]
- In path integral $\widehat{q} \mathbf{r}^{2} \longrightarrow \widehat{q}_{y} r_{y}^{2}+\widehat{q}_{z} r_{z}^{2}$,

$$
\widehat{q}=\widehat{q}_{x}+\widehat{q}_{y}
$$

- Total unpolarized rate is $\left(z=E_{b} / E_{a}\right)$

E_{a} TMOMminimimimim

$$
\begin{gathered}
\frac{d \mathcal{P}}{d z d t}=\frac{\alpha_{s}}{2 \pi} P_{g \rightarrow g}(z) \frac{\sqrt{1-z(1-z)}}{\sqrt{z(1-z) E_{a}}}\left(4 \widehat{q}_{x} \widehat{q}_{y}\right)^{1 / 4} \frac{1}{2}\left[f\left(\sqrt{\frac{\widehat{q}_{x}}{\widehat{q}_{y}}}\right)+f\left(\sqrt{\frac{\widehat{q}_{y}}{\widehat{q}_{x}}}\right)\right] \\
f(\sqrt{a})=\int_{0}^{\infty}\left[\frac{1}{a^{1 / 4} y^{2}}-\frac{1}{\sinh ^{1 / 2} \sqrt{a} x \sinh ^{3 / 2} x}\right]
\end{gathered}
$$

- Total rate only slightly decreased by anisotropy.
- Plot $(d \mathcal{P})_{\text {aniso }} /(d \mathcal{P})_{\text {iso }}$ at fixed \widehat{q} with $\xi=\frac{\widehat{q}_{z}-\widehat{q}_{y}}{\widehat{q}_{z}+\bar{q}_{y}}$

Polarized emission in anisotropic medium

- Daughter parton has net polarization:
- Opening angle θ preferably in z
 direction.
- Daughter partons are preferably polarized in plane of θ.
- Want to calculate e.g. $\frac{d \mathcal{P}_{y \rightarrow y}}{d z d t}$
- Ingredients:

- Know polarized splitting functions given branching plane.
- Integrate over all orientations of branching plane, weigted by medium physics.

Polarized emission in anisotropic medium

- Is BDMPS-Z justified in this context?
- Formation time $\sqrt{\frac{\omega}{\widetilde{q}}} \gg 1 / Q_{s}$ gives $\omega \gg g^{2} Q_{s}$ for $\widehat{q} \sim g^{2} Q_{s}^{3}$.
- Ignore any net drift, i.e. assume $\left\langle\mathbf{p}_{\perp}\right\rangle=0$.
- Rate given by

$$
\frac{d P_{i \rightarrow j k}}{d z d t} \sim \operatorname{Re} \int_{0}^{\infty} d \Delta t \int_{\mathbf{P}_{\mathbf{1}}, \mathbf{P}_{\mathbf{2}}} \Gamma^{i j k}\left(\mathbf{P}_{\mathbf{1}}, z\right) \Gamma^{i j k}\left(\mathbf{P}_{\mathbf{2}}, z\right) \tilde{S}^{(3)}\left(\Delta t, \mathbf{P}_{1}, \mathbf{P}_{2}\right)
$$

where

$$
\begin{aligned}
& \widetilde{S}^{(3)}\left(\Delta t, \mathbf{P}_{1}, \mathbf{P}_{2}\right)=\frac{2 \pi(1+i)}{k_{x} k_{y} \sqrt{\sinh \Omega_{x} \Delta t} \sqrt{\sinh \Omega_{y} \Delta t}} \\
& \times \exp \left[-\frac{(1+i)}{4 k_{x}^{2} \tanh \frac{\Omega_{x} \Delta t}{2}}\left(P_{1 x}-P_{2 x}\right)^{2}-\frac{(1+i)}{4 k_{x}^{2} \operatorname{coth} \frac{\Omega_{x} \Delta t}{2}}\left(P_{1 x}+P_{2 x}\right)^{2}\right] \\
& \times \exp [(x \leftrightarrow y)]
\end{aligned}
$$

- E.g. $\Gamma^{y \rightarrow y y}\left(\mathbf{P}_{1}, z\right) \sim \widehat{P}_{1 y} \frac{1-z(1-z)}{z(1-z)}$

Single gluon emission in an anisotropic medium

- Ensemble of gluons: Probability p of polarization in beam direction.
- Daughter parton has $\left(z=E_{b} / E_{a}\right)$

$$
p^{\prime}-\frac{1}{2}=f(z)\left(p-\frac{1}{2}\right)+g(z) G\left(\widehat{q}_{z} / \widehat{q}_{y}\right)
$$

$$
f(z)=\frac{z^{2}}{(1-z)^{2}+z^{2}+z^{2}(1-z)^{2}}, \quad g(z)=\frac{(1-z)^{2}}{(1-z)^{2}+z^{2}(1-z)^{2}+z^{2}}
$$

- Isotropic medium:

Polarization reduced at each splitting.

- Anisotropic:

Unpolarized mother radiates polarized daughter!

- Two competing effects.

Single gluon emission in an anisotropic medium

- Two intuitive limits:

$$
\begin{aligned}
& \text { - } z \rightarrow 0: \\
& \\
& p^{\prime}-\frac{1}{2}=z^{2}\left(p-\frac{1}{2}\right)+G\left(\widehat{q}_{z} / \widehat{q}_{y}\right) \\
& \text { - } z \rightarrow 1: \\
& \\
& p^{\prime}-\frac{1}{2}=\left(p-\frac{1}{2}\right)+(1-z)^{2} G\left(\widehat{q}_{z} / \widehat{q}_{y}\right)
\end{aligned}
$$

- Size of polarization given by $G\left(\widehat{q}_{z} / \widehat{q}_{y}\right)$.

$$
G\left(\widehat{q}_{z} / \widehat{q}_{y}\right)=\frac{f\left(\sqrt{\widehat{q}_{y} / \widehat{q}_{z}}\right)-f\left(\sqrt{\widehat{q}_{z} / \widehat{q}_{y}}\right.}{f\left(\sqrt{\widehat{q}_{y} / \widehat{q}_{z}}\right)+f\left(\sqrt{\widehat{q}_{z} / \widehat{q}_{y}}\right)} ; \quad \xi=\frac{\widehat{q}_{z}-\widehat{q}_{y}}{\widehat{q}_{z}-\widehat{q}_{y}}
$$

- For glasma $G \sim 0.08-0.15$
- Expected branching is democratic $\left(z \sim \frac{1}{2}\right)$.

- Not clear which wins out in the end.
- Need evolution of jet as a whole

Evolution of polarization

- Consider total evolution of jet in glasma brick with constant $G\left(\widehat{q}_{z} / \widehat{q}_{y}\right)$.
- $\tau=\frac{\alpha_{s} N_{c}}{\pi} \sqrt{\frac{\widehat{q}}{E}} t$

$$
\begin{aligned}
\frac{d D_{\text {tot }}(x, \tau)}{d \tau} & =\int_{x}^{1} d z \mathcal{K}_{0}(z) \sqrt{\frac{z}{x}} D_{\text {tot }}\left(\frac{x}{z}, \tau\right)-\int_{0}^{1} d z \mathcal{K}_{0}(z) \frac{z}{\sqrt{x}} D_{\text {tot }}(x, \tau) \\
\frac{d \widetilde{D}(x, \tau)}{d \tau} & =\int_{x}^{1} d z \mathcal{M}_{0}(z) \sqrt{\frac{z}{x}} \widetilde{D}\left(\frac{x}{z}, \tau\right)-\int_{0}^{1} d z \mathcal{K}_{0}(z) \frac{z}{\sqrt{x}} \widetilde{D}(x, \tau) \\
& +\int_{x}^{1} d z \mathcal{L}_{0}(z) \sqrt{\frac{z}{x}} D_{\text {tot }}\left(\frac{x}{z}, \tau\right) .
\end{aligned}
$$

$$
\mathcal{K}_{0}(z) \approx \frac{1}{z^{3 / 2}(1-z)^{3 / 2}}, \quad \quad \mathcal{M}_{0}(z) \approx z^{2} \mathcal{K}_{0}(z), \quad \quad \mathcal{L}_{0}(z) \approx G\left(\widehat{q}_{z} / \widehat{q}_{y}\right)(1-z)^{2} \mathcal{K}_{0}(z)
$$

- $D_{\text {tot }}=x \frac{d\left(N_{z}+N_{y}\right)}{d x}$ is energy spectrum, $\widetilde{D}=x \frac{d\left(N_{z}-N_{y}\right)}{d x}$ is polarization.
[Equation for $D_{\text {tot }}$: Blaizot, lancu, Mehtar-Tani (2013); Blaizot, Mehtar-Tani (2015); Fister, lancu (2014); lancu, Wu (2015); Escobedo, lancu (2016). See also Mehtar-Tani, Schlichting (2018)] See also talk by Souvik Adhya

Evolution of polarization

- For $D_{\text {tot }}(x, \tau=0)=\delta(1-x)$

$$
\begin{aligned}
& D_{\text {tot }}(x, \tau)= \\
& \frac{\tau}{\sqrt{x}(1-x)^{3 / 2}} e^{-\pi \tau^{2} /(1-x)} \sim \frac{\tau e^{-\pi \tau^{2}}}{\sqrt{x}} \\
& \text { [Blaizot, lancu, Mehtar-Tani (2013); }
\end{aligned}
$$

Blaizot, Mehtar-Tani (2015)]

- Can solve exactly for helicity spectrum at $x \ll 1$:
- Use method of Green's functions [Fister, lancu (2014)].
$\widetilde{D}=\frac{1}{3} G\left(\widehat{q}_{z} / \widehat{q}_{y}\right) \frac{\tau e^{-\pi \tau^{2}}}{\sqrt{x}}$
- Constant fraction of particles with helicity polarization at all x !

$$
\widetilde{D} / D_{\mathrm{tot}}=\frac{1}{3} G\left(\widehat{q}_{z} / \widehat{q}_{y}\right) \sim 0.05
$$

- Follows from demanding that both polarizations described by wave turbulence.

What happens in hydro phase?

- Hydrodynamic phase more isotropic.
- Hydro:

$$
\begin{aligned}
& \widehat{q} \sim g^{4} T^{3} \int d^{2} p_{\perp} p_{\perp}^{2}\left(\frac{1}{p_{\perp}^{2}}\right)^{2} \sim g^{4} \Lambda^{3} \log E / m_{D} \\
& {[\text { Hauksson, Jeon, Gale (2021)] }}
\end{aligned}
$$

- Glasma: Saturation scale is the cutoff. $\widehat{q} \sim g^{2} Q_{s}^{3}+g^{4} Q_{s}^{3} \log E / Q_{s}$
- Hydro phase reduces polarization:
- If switch to isotropic at time τ_{c}, start to see decay at $\tau-\tau_{c} \sim \sqrt{x}$.
- Eventually,

$$
\widetilde{D} \sim G\left(\widehat{q}_{z} / \widehat{q}_{y}\right) x^{3 / 2} \frac{e^{-\pi\left(\tau-\tau_{c}\right)^{2}}}{\left(\tau-\tau_{c}\right)^{2}}
$$

Measurements?

- Our estimates suggest that after glasma stage, constant $\sim 5 \%$ polarization of gluons.
- Bigger than $\sim 2 \%$ polarization of Λ hyperons at RHIC.

- Hydro phase reduces polarization. [Voloshin (2017)]
- What happens at hadronization? [See e.g. Kerbizi, Artru, Belghobsi, Martin (2019); Kerbizi, Lönnblad (2020)]
- Measurements of polarization difficult.
- Other ways: Photon emitted by quarks in jets?

Conclusions

- Early glasma stage important for jets in heavy-ion collisions ($\sim 30 \%$ of structure?)
- Anisotropy in momentum broadening leads to $\sim 5 \%$ gluon polarization.
- Calculated rate of polarized gluon emission and solved evol. eqs.

- Polarization constant at all energy scales.
- Need to study fate of polarization in experiments further.

Formalism for jet splitting

- Isotropic case has been analyzed widely:
[E.g. Baier, Dokshitzer, Peigné, Schiff, Mueller (1996); Zakharov (1997)
Arnold, Moore, Yaffe (2002); Hauksson, Jeon, Gale (2018)]
- Rate of branching is

$$
\frac{d \Gamma_{z \rightarrow z}}{d z} \sim \alpha_{s} \operatorname{Re} \int d^{2} h \mathbf{h} \cdot \mathbf{F}(\mathbf{h})\left[\cos ^{4} \phi \mathcal{F}_{\text {in } \rightarrow \text { in,in }}(z)+\sin ^{4} \phi \mathcal{F}_{\text {out } \rightarrow \text { out, in }}(z)+\cdots\right]
$$

- Here

$$
\mathbf{h}=i h^{2} \mathbf{F}(\mathbf{h})-\left(\widehat{q}_{z} \partial_{h_{z}}^{2}+\widehat{q}_{y} \partial_{h_{y}}^{2}\right) \mathbf{F}(\mathbf{h})
$$

- Solve by expanding in $\frac{\widehat{q}_{z}-\widehat{q}_{y}}{\widehat{q}_{z}+\widehat{q}_{y}}$. Gives details of radiation pattern.
- Join with polarized splitting functions $\mathcal{F}(z), z=E_{b} / E_{a}$.

Jets in an isotropic plasma

- Broadening brings parton off shell so it can radiate.
[See e.g. review: Qin, Wang (2015)]
- Wavepackets overlap for a long time (LPM).
[Landau, Pomeranchuk (1953); Migdal (1955)]
- Schematic estimate:

- $\theta \sim \frac{p_{\perp}}{E} \sim \frac{\Delta x_{\perp}}{\tau}$
- Uncertainty principle: $p_{\perp} \Delta x_{\perp} \sim 1$

$$
\text { so } \tau \sim \frac{E}{p_{\perp}^{2}} \sim \frac{E}{\widehat{q} \tau}
$$

- Get rate $\Gamma \sim \alpha_{s} P(z) / \tau \sim \alpha_{s} P(z) \frac{\sqrt{\widehat{q}}}{\sqrt{E}}$

- $P_{\text {hard }}(z)=\frac{1+z^{4}+(1-z)^{4}}{z(1-z)}$ is splitting function; $z=E_{b} / E_{a}$.

