Transport of hard probes through glasma

Alina Czajka

National Centre for Nuclear Research, Warsaw

in collaboration with M. E. Carrington and St. Mrówczyński

based on: arXiv:2202.00357 (accepted in PRC)

Jet Quenching in the Quark-Gluon Plasma, Trento, 13-17 June, 2022

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

HARD PROBES (AND JETS) IN QGP - old and broad field - actively investigated

HARD PROBES IN GLASMA - can the effect of the early stage be important?

We propose a model to assess this effect:

- expansion of glasma fields in the proper time
 - ightarrow analytical approach to study the initial state
 - \rightarrow purely classical
- Fokker-Planck equation
 - \rightarrow allows to study the interaction of a probe with the medium

< ロ > < 同 > < 回 > < 回 > < 回 > <

Nuclei before the collision

MV model - a specific realization of CGC:

- * large x partons represented by $J^{\mu}(x^-, \vec{x}_{\perp}) = \delta^{\mu +} \rho(x^-, \vec{x}_{\perp})$
- * small x partons represented by soft gluon fields $\beta^{\mu}(x)$: $F^{\mu\nu} = \frac{i}{g}[D^{\mu}, D^{\nu}]$ with $D^{\mu} = \partial^{\mu} ig\beta^{\mu}$
- st gluons are in the saturation regime controlled by the saturation scale Q_s
- * separation scale between small-x and large-x partons is fixed
- * alternatively: $\mathbf{E}(x)$ and $\mathbf{B}(x)$ fields

Yang-Mills equations: $[D_{\mu}, F^{\mu\nu}] = J^{\nu}$

solutions: $\beta^{-}(x^{-}, \vec{x}_{\perp}) = 0$ $\beta^{i}(x^{-}, \vec{x}_{\perp}) = \theta(x^{-})\frac{i}{g}U(\vec{x}_{\perp})\partial^{i}U^{\dagger}(\vec{x}_{\perp})$ $U(\vec{x}_{\perp}) - \text{Wilson line}$

Glasma

Glasma:

- * highly energetic and anisotropic medium made of mostly gluon fields
- * glasma fields $\alpha(\tau, \vec{x}_{\perp})$ and $\alpha^i_{\perp}(\tau, \vec{x}_{\perp})$ develop in the forward light-cone region:

 $\alpha^+(x) = x^+ \alpha(\tau, \vec{x}_\perp) \qquad \alpha^-(x) = -x^- \alpha(\tau, \vec{x}_\perp) \qquad \alpha^i(x) = \alpha^i_\perp(\tau, \vec{x}_\perp)$

- * evolve in time parametrized by $au=\sqrt{t^2-z^2}=\sqrt{2x^+x^-}$
- * are boost-independent
- * gluon fields obtained as solutions to classical source-less Yang-Mills equations
- * current dependence enters through boundary conditions, which connect different light-cone sectors

 $\alpha_{\perp}^{i}(\tau=0,\vec{x}_{\perp}) = \beta_{1}^{i}(\vec{x}_{\perp}) + \beta_{2}^{i}(\vec{x}_{\perp}) \qquad \alpha(\tau=0,\vec{x}_{\perp}) = -\frac{ig}{2}[\beta_{1}^{i}(\vec{x}_{\perp}),\beta_{2}^{i}(\vec{x}_{\perp})]$

- * general solutions not known
- * here: temporal evolution of glasma fields is obtained in the proper time expansion

An analytical approach to solve Yang-Mills equations proposed in: Fries, Kapusta, Li, arXiv:0604054 Chen, Fries, Kapusta, Li, Phys. Rev. C 92, 064912 (2015)

- glasma is a short-lived phase and decays before the system reaches equilibrium ($\tau < 1~{\rm fm/c})$
- proper time of such a system is small and can be treated as an expansion parameter of glasma fields:

$$\alpha^i_{\perp}(\tau,\vec{x}_{\perp}) = \sum_{n=0}^{\infty} \tau^n \alpha^i_{\perp(n)}(\vec{x}_{\perp}), \qquad \alpha(\tau,\vec{x}_{\perp}) = \sum_{n=0}^{\infty} \tau^n \alpha_{(n)}(\vec{x}_{\perp})$$

and the chromodynamic fields:

$$\mathbf{E} = \mathbf{E}_{(0)} + \tau \mathbf{E}_{(1)} + \tau^2 \mathbf{E}_{(2)} + \dots \qquad \mathbf{B} = \mathbf{B}_{(0)} + \tau \mathbf{B}_{(1)} + \tau^2 \mathbf{B}_{(2)} + \dots$$

- the system of coupled Yang-Mills equations can be solved recursively to any order in $\boldsymbol{\tau}$
- Oth-rder coefficients are identified with boundary conditions
- solutions are written in terms of precollision potentials
- effective dimensionless parameter is $\tilde{\tau} = \tau Q_s$

・ロト ・日ト ・ヨト ・ヨト ・ヨ

Correlators of gauge potentials

- need for colour charge distributions which are not known
- average over colour sources assuming a Gaussian distribution of colour sources within each nucleus

$$\langle \rho_a(x^-, \vec{x}_\perp) \rho_b(y^-, \vec{y}_\perp) \rangle = g^2 \delta_{ab} \lambda(x^-, \vec{x}_\perp) \delta(x^- - y^-) \delta^2(\vec{x}_\perp - \vec{y}_\perp)$$

 $\lambda(x^-,\vec{x}_\perp)$ - volume density of sources normalized as $\int dx^-\lambda(x^-,\vec{x}_\perp)=\mu(\vec{x}_\perp)$

- potentials of different nuclei are uncorrelated: $\langle\beta^i_{1a}\beta^j_{2b}\rangle=0$

Basic building block - 2-point correlator

$$\begin{split} \delta_{ab} B_n^{ij}(\vec{x}_{\perp}, \vec{y}_{\perp}) &\equiv \lim_{\mathbf{w} \to 0} \langle \beta_{n\,a}^i(x^{\mp}, \vec{x}_{\perp}) \beta_{n\,b}^j(y^{\mp}, \vec{y}_{\perp}) \rangle \\ B_n^{ij}(\vec{x}_{\perp}, \vec{y}_{\perp}) &= \frac{2}{g^2 N_c \tilde{\Gamma}_n(\vec{x}_{\perp}, \vec{y}_{\perp})} \left(\exp \! \left[\frac{g^4 N_c}{2} \, \tilde{\Gamma}_n(\vec{x}_{\perp}, \vec{y}_{\perp}) \right] - 1 \right) \partial_x^i \partial_y^j \tilde{\gamma}_n(\vec{x}_{\perp}, \vec{y}_{\perp}) \end{split}$$

 $\tilde{\Gamma}_n$ and $\tilde{\gamma}_n$ - given by Bessel functions and colour sources density

(日)

- Wick's theorem:

- $\bullet \hspace{0.1 in} \langle \beta_1^i \beta_1^j \beta_2^l \beta_2^m \beta_2^k \beta_2^r \rangle = \langle \beta_1^i \beta_1^j \rangle \left(\langle \beta_2^l \beta_2^m \rangle \langle \beta_2^k \beta_2^r \rangle + \langle \beta_2^l \beta_2^k \rangle \langle \beta_2^m \beta_2^r \rangle + \langle \beta_2^l \beta_2^r \rangle \langle \beta_2^k \beta_2^m \rangle \right)$
- correlators of odd number of gauge fields vanish

- charge density per unit transverse area

• $\bar{\mu} = g^{-4}Q_s^2$, where Q_s is the saturation scale (uniform nuclei)

- IR regulator

 $m\sim\Lambda_{\rm QCD}$ - chosen so that because of confinement the effect of valence sources dies off at transverse length scales larger than $1/\Lambda_{\rm QCD}$

- UV regulator

 Q_s - saturation scale

Summary of the method:

$$\rho(x^-, \vec{x}_\perp) \ \rightarrow \ \beta(x^-, \vec{x}_\perp) \ \rightarrow \ \alpha(0, \vec{x}_\perp) \ \rightarrow \ \alpha(\tau, \vec{x}_\perp) \ \rightarrow \ E(\tau, \vec{x}_\perp), \ B(\tau, \vec{x}_\perp)$$

・ロト ・日ト ・ヨト ・ヨト ・ヨ

Energy loss of a probe: Fokker-Planck equation

Evolution equation on the distribution function of heavy quarks: Mrówczyński, Eur. Phys. J, A54 no 3, 43 (2018)

$$\left(D - \nabla_p^{\alpha} X^{\alpha\beta}(\mathbf{v}) \nabla_p^{\beta} - \nabla_p^{\alpha} Y^{\alpha}(\mathbf{v})\right) n(t, \mathbf{x}, \mathbf{p}) = 0$$

 $n(t,\mathbf{x},\mathbf{p})$ - distribution of hard probes $D\equiv rac{\partial}{\partial t}+\mathbf{v}\cdot
abla$

Collision terms:

$$X^{\alpha\beta}(\mathbf{v}) = \frac{1}{2N_c} \int_0^t dt' \langle F_a^{\alpha}(t, \mathbf{x}) F_a^{\beta}(t', \mathbf{x} - \mathbf{v}(t - t')) \rangle$$
$$Y^{\alpha}(\mathbf{v}) = X^{\alpha\beta} \frac{v^{\beta}}{T}$$

T - temperature of a plasma that has the same energy density as in equilibrium $\mathbf{F}(t,\mathbf{r})=g(\mathbf{E}(t,\mathbf{r})+\mathbf{v}\times\mathbf{B}(t,\mathbf{r}))$ - color Lorentz force g - constant coupling $\mathbf{E}(t,\mathbf{r}),\mathbf{B}(t,\mathbf{r})$ - chromoelectric and chromomagnetic fields $\mathbf{v}=\frac{\mathbf{p}}{E_{\mathbf{p}}}$ - velocity of the probe:

 $\mathbf{v} \simeq 1$ - light quarks and gluons $\mathbf{v} \le 1$ - heavy quarks

(日)

Energy losses

Physical meaning of the collision terms:

$$\frac{\langle \Delta p^{\alpha} \rangle}{\Delta t} = -Y^{\alpha}(\mathbf{v}) \qquad \qquad \frac{\langle \Delta p^{\alpha} \Delta p^{\beta} \rangle}{\Delta t} = X^{\alpha\beta}(\mathbf{v}) + X^{\beta\alpha}(\mathbf{v})$$

Energy losses are defined by:

$$\frac{dE}{dx} = \frac{v^{\alpha}}{v} \frac{\langle \Delta p^{\alpha} \rangle}{\Delta t} \qquad \qquad \hat{q} = \frac{1}{v} \Big(\delta^{\alpha\beta} - \frac{v^{\alpha}v^{\beta}}{v^2} \Big) \frac{\langle \Delta p^{\alpha} \Delta p^{\beta} \rangle}{\Delta t}$$

Collisional energy loss and transverse momentum broadening

$$-\frac{dE}{dx} = \frac{v}{T} \frac{v^{\alpha} v^{\beta}}{v^2} X^{\alpha\beta}(\mathbf{v})$$
$$\hat{q} = \frac{2}{v} \left(\delta^{\alpha\beta} - \frac{v^{\alpha} v^{\beta}}{v^2}\right) X^{\alpha\beta}(\mathbf{v})$$

Schematic picture

Hard probe traversing glasma at $\tau = 0$ $(\lambda_{\parallel}, \lambda_{\perp}$ - correlation lengths)

ightarrow momentum-space rapidity $y = \frac{1}{2} \ln \frac{1+v_{\parallel}}{1-v_{\parallel}}$

* experiments focus on the region $y \in (-1,1) \rightarrow v_{\parallel} \in (-0.76,0.76)$

 \rightarrow transport coefficients built up during the time that the probe spends within the domain of correlated field

* this time determined by λ_{\perp} and ${\bf v}$

* role of the velocity: $v_{\perp}=1 \rightarrow dE/dx$ is minimal and \hat{q} is maximal

- \rightarrow transport coefficients saturate when the probe leaves the region of correlated fields
- \rightarrow at higher order in $\tau \rightarrow$ calculations needed

Consistency and reliability of the approach are fixed by convergence of the proper time expansion and saturation of the results.

Time dependence of \hat{q} and dE/dx

- dE/dx and \hat{q} calculated up to au^5 order
- parameters m = 0.2 GeV, $Q_s = 2$ GeV, $N_c = 3$, g = 1
- in case of dE/dx we need temperature T: $\varepsilon_{\text{QGP}} = \frac{\pi^2}{60} \left(4(N_c^2 - 1) + 7N_f N_c \right) T^4$ $\varepsilon_{\text{QGP}} = 130.17 \left(15.9773 - 29.6759 \,\tilde{\tau}^2 + 42.6822 \,\tilde{\tau}^4 - 49.2686 \,\tilde{\tau}^6 \right)$

- \hat{q} : saturation observed before the τ expansion breaks down, $\hat{q} \simeq 6 \text{ GeV}^2/\text{fm}$ - maximal value, similar result was found using real-time QCD calculations Ipp, Müller, Schuh, Phys. Lett. B 810, 135810 (2020)
- dE/dx: reaches a maximal value $0.9~{\rm GeV/fm}$, no saturation \rightarrow order of magnitude estimate only

Velocity dependence of \hat{q}

Purely transverse motion of hard probes through the glasma ($v_{\parallel} = 0$)

- the results at orders τ^4 and τ^5 agree quite well up to about $\tau\sim 0.07-0.08~{\rm fm}$
- the probe spends less time in the region of correlated fields \rightarrow reduction of the coefficient for ultra-relativistic quarks

< 同 > < 三 > < 三 >

Velocity dependence of \hat{q}

Dependence on the longitudinal component of the velocity v_{\parallel}

- for larger values of v_{\parallel} saturation is less evident
- fixed v_{\perp} : the effect of the velocity dependence of the Lorentz force \rightarrow the role of electric contribution decreases when v_{\parallel} increases
- fixed v: the effect of changing the amount of time that the probe spends in the region of correlation

 \rightarrow probes with larger v_{\perp} escape from the region of correlated fields fast, before the fields become large

 \rightarrow probes with smaller v_{\perp} remain longer in the region and eventually interact with very large glasma fields

< ロ > < 同 > < 三 > < 三 >

Space-time rapidity dependence of \hat{q}

dependence on spatial rapidity $\eta \rightarrow$ dependence on the initial position of the probe in the glasma

• \hat{q} at orders au^4 and au^5 agree well up to $au\simeq 0.07$ fm

q̂ is weakly dependent on *η* fo small values of *η* (CGC is expected to work best in the region of mid-spatial-rapidity region)

< 同 > < 国 > < 国 >

Dependence on Q_s

 $\rightarrow \hat{q}$ sensitive to the choice of Q_s

 \rightarrow decreasing Q_s decreases the maximal value of \hat{q} but extends the validity region of $\tau \rightarrow Q_s$ is smaller at smaller collision energies $\rightarrow \hat{q}$ is smaller at smaller collision

energies (RHIC vs LHC collision energies)

 \rightarrow reduction in \hat{q} at $\tau=0.6$ fm for high- p_T hadron at the RHIC energies compared to LHC energies observed by the JET Collaboration K. M. Burke et al (JET Collaboration), Phys. Rev. C 90, 014909 (2014)

イロト イボト イヨト イヨト

Glasma impact on jet quenching

Total accumulated transverse momentum: $\Delta p_T^2 = \int_0^L dt \, \hat{q}(t)$

$$\frac{\Delta p_T^2 \Big|^{\rm non-eq}}{\Delta p_T^2 \Big|^{\rm eq}} = 0.93$$

Non-equilibrium phase gives comparable contribution to the radiative energy loss as the equilibrium phase.

A. Czajka (NCBJ, Warsaw) Transport of hard probes through glasma

- * Transport of hard probes through glasma studied in the proper time expansion
- * Impact of the glasma on hard probes quantified
- * Convergence of the proper time expansion tested
- Both \hat{q} and dE/dx are found to be relatively large
- Our approach is most reliable for probes moving transversally to the collision axis

Significant impact of glasma on hard probes

・ 同 ト ・ ヨ ト ・ ヨ ト