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Hard probes in heavy-ion collisions

HARD PROBES (AND JETS) IN QGP - old and broad field - actively investigated

HARD PROBES IN GLASMA - can the effect of the early stage be important?

We propose a model to assess this effect:

• expansion of glasma fields in the proper time
→ analytical approach to study the initial state
→ purely classical

• Fokker-Planck equation
→ allows to study the interaction of a probe with the medium
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Nuclei before the collision

before the collision after the collision

MV model - a specific realization of CGC:

∗ large x partons represented by Jµ(x−, ~x⊥) = δµ+ρ(x−, ~x⊥)

∗ small x partons represented by soft gluon fields βµ(x): Fµν = i
g

[Dµ, Dν ] with

Dµ = ∂µ − igβµ

∗ gluons are in the saturation regime controlled by the saturation scale Qs

∗ separation scale between small-x and large-x partons is fixed

∗ alternatively: E(x) and B(x) fields

Yang-Mills equations: [Dµ, Fµν ] = Jν

solutions: β−(x−, ~x⊥) = 0 βi(x−, ~x⊥) = θ(x−) i
g
U(~x⊥)∂iU†(~x⊥)

U(~x⊥)−Wilson line
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Glasma

before the collision after the collision

Glasma:

∗ highly energetic and anisotropic medium made of mostly gluon fields

∗ glasma fields α(τ, ~x⊥) and αi⊥(τ, ~x⊥) develop in the forward light-cone region:

α+(x) = x+α(τ, ~x⊥) α−(x) = −x−α(τ, ~x⊥) αi(x) = αi⊥(τ, ~x⊥)

∗ evolve in time parametrized by τ =
√
t2 − z2 =

√
2x+x−

∗ are boost-independent

∗ gluon fields obtained as solutions to classical source-less Yang-Mills equations

∗ current dependence enters through boundary conditions, which connect different
light-cone sectors

αi⊥(τ = 0, ~x⊥) = βi1(~x⊥) +βi2(~x⊥) α(τ = 0, ~x⊥) = − ig
2

[βi1(~x⊥), βi2(~x⊥)]

∗ general solutions not known

∗ here: temporal evolution of glasma fields is obtained in the proper time
expansion
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Expansion in the proper time

An analytical approach to solve Yang-Mills equations proposed in:
Fries, Kapusta, Li, arXiv:0604054
Chen, Fries, Kapusta, Li, Phys. Rev. C 92, 064912 (2015)

• glasma is a short-lived phase and decays before the system reaches equilibrium
(τ < 1 fm/c)

• proper time of such a system is small and can be treated as an expansion
parameter of glasma fields:

αi⊥(τ, ~x⊥) =
∞∑
n=0

τnαi⊥(n)(~x⊥), α(τ, ~x⊥) =
∞∑
n=0

τnα(n)(~x⊥)

and the chromodynamic fields:

E = E(0) + τE(1) + τ2E(2) + . . . B = B(0) + τB(1) + τ2B(2) + . . .

• the system of coupled Yang-Mills equations can be solved recursively to any
order in τ

• 0th-rder coefficients are identified with boundary conditions

• solutions are written in terms of precollision potentials

• effective dimensionless parameter is τ̃ = τQs
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Correlators of gauge potentials

• need for colour charge distributions which are not known

• average over colour sources assuming a Gaussian distribution of colour sources
within each nucleus

〈ρa(x−, ~x⊥)ρb(y
−, ~y⊥)〉 = g2δabλ(x−, ~x⊥)δ(x− − y−)δ2(~x⊥ − ~y⊥)

λ(x−, ~x⊥) - volume density of sources normalized as
∫
dx−λ(x−, ~x⊥) = µ(~x⊥)

• potentials of different nuclei are uncorrelated: 〈βi1aβ
j
2b〉 = 0

Basic building block - 2-point correlator

δabB
ij
n (~x⊥, ~y⊥) ≡ lim

w→0
〈βin a(x∓, ~x⊥)βjn b(y

∓, ~y⊥)〉

Bijn (~x⊥, ~y⊥) =
2

g2NcΓ̃n(~x⊥, ~y⊥)

(
exp

[
g4Nc

2
Γ̃n(~x⊥, ~y⊥)

]
− 1

)
∂ix∂

j
y γ̃n(~x⊥, ~y⊥)

Γ̃n and γ̃n - given by Bessel functions and colour sources density
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Correlators of gauge potentials

- Wick’s theorem:

• 〈βi1β
j
1 β

l
2β
m
2 β

k
2β

r
2〉 = 〈βi1β

j
1〉
(
〈βl2βm2 〉〈βk2βr2〉+〈βl2βk2 〉〈βm2 βr2〉+〈βl2βr2〉〈βk2βm2 〉

)
• correlators of odd number of gauge fields vanish

- charge density per unit transverse area

• µ̄ = g−4Q2
s, where Qs is the saturation scale (uniform nuclei)

- IR regulator
m ∼ ΛQCD - chosen so that because of confinement the effect of valence sources dies
off at transverse length scales larger than 1/ΛQCD

- UV regulator
Qs - saturation scale

Summary of the method:

ρ(x−, ~x⊥) → β(x−, ~x⊥) → α(0, ~x⊥) → α(τ, ~x⊥) → E(τ, ~x⊥), B(τ, ~x⊥)
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Energy loss of a probe: Fokker-Planck equation

Evolution equation on the distribution function of heavy quarks:
Mrówczyński, Eur. Phys. J, A54 no 3, 43 (2018)(

D −∇α
pX

αβ(v)∇β
p −∇α

pY
α(v)

)
n(t,x,p) = 0

n(t,x,p) - distribution of hard probes D ≡ ∂
∂t

+ v · ∇

Collision terms:

Xαβ(v) =
1

2Nc

∫ t

0
dt′〈Fαa (t,x)Fβa (t′,x− v(t− t′))〉

Y α(v) = Xαβ v
β

T

T - temperature of a plasma that has the same energy density as in equilibrium
F(t, r) = g(E(t, r) + v ×B(t, r)) - color Lorentz force
g - constant coupling
E(t, r),B(t, r) - chromoelectric and chromomagnetic fields
v = p

Ep
- velocity of the probe:

v ' 1 - light quarks and gluons v ≤ 1 - heavy quarks

A. Czajka (NCBJ, Warsaw) Transport of hard probes through glasma



Energy losses

Physical meaning of the collision terms:

〈∆pα〉
∆t

= −Y α(v)
〈∆pα∆pβ〉

∆t
= Xαβ(v) +Xβα(v)

Energy losses are defined by:

dE

dx
=
vα

v

〈∆pα〉
∆t

q̂ =
1

v

(
δαβ −

vαvβ

v2

) 〈∆pα∆pβ〉
∆t

Collisional energy loss and transverse momentum broadening

−
dE

dx
=

v

T

vαvβ

v2
Xαβ(v)

q̂ =
2

v

(
δαβ −

vαvβ

v2

)
Xαβ(v)

Xαβ(v) =
g2

2Nc

∫ t

0
dt′
[〈
Eαa (t,x)Eβa (t− t′,y)

〉
+ εβγγ

′
vγ
〈
Eαa (t,x)Bγ

′
a (t− t′,y)

〉
+ εαγγ

′
vγ
〈
Bγ

′
a (t,x)Eβa (t− t′,y)

〉
+ εαγγ

′
εβδδ

′
vγvδ

〈
Bγ

′
a (t,x)Bδ

′
a (t− t′,y)

〉]
,
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Schematic picture

Hard probe traversing glasma at τ = 0 (λ‖, λ⊥ - correlation lengths)

→ momentum-space rapidity y = 1
2

ln
1+v‖
1−v‖

∗ experiments focus on the region y ∈ (−1, 1) → v‖ ∈ (−0.76, 0.76)
→ transport coefficients built up during the time that the probe spends within the
domain of correlated field
∗ this time determined by λ⊥ and v
∗ role of the velocity: v⊥ = 1 → dE/dx is minimal and q̂ is maximal
→ transport coefficients saturate when the probe leaves the region of correlated fields
→ at higher order in τ → calculations needed

Consistency and reliability of the approach are fixed by convergence of the proper
time expansion and saturation of the results.
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Time dependence of q̂ and dE/dx

• dE/dx and q̂ calculated up to τ5 order

• parameters m = 0.2 GeV, Qs = 2 GeV, Nc = 3, g = 1

• in case of dE/dx we need temperature T :

εQGP = π2

60

(
4(N2

c − 1) + 7NfNc
)
T 4

εQGP = 130.17
(
15.9773− 29.6759 τ̃2 + 42.6822 τ̃4 − 49.2686 τ̃6

)
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• q̂: saturation observed before the τ expansion breaks down,
q̂ ' 6 GeV2/fm - maximal value,
similar result was found using real-time QCD calculations
Ipp, Müller, Schuh, Phys. Lett. B 810, 135810 (2020)

• dE/dx: reaches a maximal value 0.9 GeV/fm, no saturation → order of
magnitude estimate only
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Velocity dependence of q̂

Purely transverse motion of hard probes through the glasma (v‖ = 0)
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2

4

6

8

q̀ @GeV2�fmD

• the results at orders τ4 and τ5 agree quite well up to about τ ∼ 0.07− 0.08 fm

• the probe spends less time in the region of correlated fields →reduction of the
coefficient for ultra-relativistic quarks
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Velocity dependence of q̂

Dependence on the longitudinal component of the velocity v‖

fixed v⊥ fixed v
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• for larger values of v‖ saturation is less evident

• fixed v⊥: the effect of the velocity dependence of the Lorentz force
→ the role of electric contribution decreases when v‖ increases

• fixed v: the effect of changing the amount of time that the probe spends in the
region of correlation
→ probes with larger v⊥ escape from the region of correlated fields fast, before
the fields become large
→ probes with smaller v⊥ remain longer in the region and eventually interact
with very large glasma fields
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Space-time rapidity dependence of q̂

dependence on spatial rapidity η → dependence on the initial position of the probe in
the glasma
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• q̂ at orders τ4 and τ5 agree well up to τ ' 0.07 fm

• q̂ is weakly dependent on η fo small values of η (CGC is expected to work best
in the region of mid-spatial-rapidity region)
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Dependence on Qs

Qs=2.0 GeV
Qs=1.5 GeV
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→ q̂ sensitive to the choice of Qs
→ decreasing Qs decreases the maximal value of q̂ but extends the validity region of τ
→ Qs is smaller at smaller collision energies → q̂ is smaller at smaller collision
energies (RHIC vs LHC collision energies)

→ reduction in q̂ at τ = 0.6 fm for high-pT hadron at the RHIC energies compared to
LHC energies observed by the JET Collaboration
K. M. Burke et al (JET Collaboration), Phys. Rev. C 90, 014909 (2014)
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Glasma impact on jet quenching

Total accumulated transverse momentum: ∆p2T =
∫ L
0 dt q̂(t)

• non-equilibrium case: ∆p2T

∣∣∣non−eq
= 1

2
q̂maxt0 + 1

2
q̂0(t0 − tmax)

• equilibrium case: ∆p2T

∣∣∣eq = 3T 3
0 t0 ln L

t0

where we used q̂(t) = 3T 3 and T = T0
(
t0
t

)1/3
• parameters:
q̂max ≈ 6 GeV2/fm, tmax ≈ 0.06 fm

L = 10 fm, q̂0 ≈ 1.4 GeV2/fm, t0 ≈ 0.6 fm, T0 = 0.45 GeV
JETSCAPE, Phys. Rev. C 104, 024905 (2021), C. Shen et al, Phys. Rev. C 84, 044903 (2011)

∆p2T

∣∣∣non−eq

∆p2T

∣∣∣eq = 0.93

Non-equilibrium phase gives comparable contribution to the radiative energy loss as
the equilibrium phase.
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Summary and conclusions

∗ Transport of hard probes through glasma studied in the proper time expansion

∗ Impact of the glasma on hard probes quantified

∗ Convergence of the proper time expansion tested

• Both q̂ and dE/dx are found to be relatively large

• Our approach is most reliable for probes moving transversally to the collision axis

Significant impact of glasma on hard probes
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