

Quantum simulation of jet quenching

Wenyang Qian

Iowa State University, Ames, IA, USA & IGFAE, University of Santiago de Compostela, Spain

Jet quenching in the quark-gluon plasma, Trento, 17 June 2022

Outline

- 1. Introduction to quantum computing (QC)
- 2. Applications in HEP/NP
- 3. Our recent work in jet quenching

3

Introduction to QC

- Classical computers:
- classical bit: 0, 1
- classical gates: AND, OR, NOT, Bitwise logic gates
- deterministic nature
- Quantum computers:
- quantum bit (qubit): $|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, |1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$
- implementation: two-level quantum systems

$$|\Psi\rangle = \alpha |0\rangle + \beta |1\rangle, \ |\alpha|^2 + |\beta|^2 = 1$$

- quantum gates: unitary operators
- features: superposition & entanglement
- states only collapse when measured

Developments in QC

Quantum computing has come a long way in past 40 years Feynman (1981)

Toffoli Gate	Shor's Algo	Error Correction	Variational Eigensolver	Quantum Machine Learning
(1980)	(1994)	(1995)	(2014)	(2017)

Currently, we are in the **Noisy Intermediate-Scale Quantum (NISQ)**: qubits and quantum operations are substantially imperfect. Nonetheless, Preskill (2018)

Recently, "Quantum Simulation for High Energy Physics", 2204.03381 (2022)

Qiskit

ХЛИЛДИ

Cirq

Why are we interested in QC?

"Nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical" (Richard Feynman)

- Many problems are inherently quantum mechanical.
- <u>Vast amount (exponential) of encoded information</u> in a many-qubit state: Impossible to compete on classical computers; Nature does it automatically
- High <u>scalability</u> in quantum applications (compact encoding)
- Many-body problems and quantum computing are similar by nature
- Rapid progress in hardware, software, algorithms, benchmark

Applications in HEP/NP

Two main directions:

- Variational Quantum Eigensolver (VQE), a hybrid optimization algorithm, widely-used in quantum chemistry, many variants
- **Quantum Phase Estimation (QPE)**, prepare, evolve, fourier transform, measure to find quantum state of the system (eigenvector)

VQE paradigm, hybrid optimization approach

Peruzzo et al., 1304.3061 (2013)

Inspired by Variational Principle

Large group of QC approaches (UCC, QAOA, etc); very successful in quantum chemistry

Review at Bharti et al., 2101.08448 (2021)

With optimized/finalized quantum state, we compute additional observables directly or indirectly on the quantum circuit

Quantum simulation of quantum field theory in the light-front formulation Kreshchuk, Jia, Kirby, Goldstei

Kreshchuk, Jia, Kirby, Goldstein, Vary, Love, 2011.13443 (2020) & 2009.07885 (2020) WQ, Basili, Pal, Luecke, Vary, 2112.01927 (2021)

Direct/Compact qubit encoding and careful design of ansatz in VQE calculation for bound state properties.

Partonic Structure by Quantum Computing

Evaluate PDF for 1+1 Nambu-Jona-Lasinio (NJL) model

Li et al., 2106.03865 (2021)

Quantum Imaginary Time Evolution (QITE) & Quantum Simulation of Chiral Phase Transitions

Czajka, Kang, Ma, Zhao, 2112.03944 (2021)

Motta et al., 1901.07653 (2020)

Competitors of VQE & application to 1+1 NJL model

Quantum Simulation Algorithm

- 1. Define problem Hamiltonian
- 2. Encode Hamiltonian onto basis
- 3. Prepare initial states
- 4. Evolution
- 5. Measurement protocol

Image from Lamm's talk (2021)

Wiesner, 9603028 (1996); Zalka, 9603026 (1996)

Quantum simulation of open quantum systems in heavy-ion collisions

Jong, Metcalf, Mulligan, Ploskon, Ringer, Yao, 2010.03571 (2021)

Simulating Lindblad equation for hard probes in thermal bath

Quantum Simulation of Light-Front QCD for Jet Quenching in Nuclear Environments

Yao, 2205.07902 (2022)

Demo of Landau-Pomeranchuk-Migdal (LPM) effect observed in the quantum simulator (2+1 scalar fields, allowing 1-particle and 2-particle state splitting)

Ongoing work: Medium induced jet broadening in a quantum computer

Barata, Salgado, 2104.04661 (2021) (In preparation) Barata, Du, Li, Salgado, WQ

High-energy quark moving close to the light cone scattering on a dense nucleus medium

$$\mathcal{L}_q = \overline{\Psi}(i\gamma^{\mu}D_{\mu} - m)\Psi$$

 $D^{\mu} \equiv \partial_{\mu} I + i g \mathcal{A}^{\mu}$

Light-front Hamiltonian becomes:

$$P^{-}(x^{+}) = P_{\text{KE}}^{-} + V_{\text{A}}(x^{+}) = \frac{p_{\perp}^{2}}{p^{+}} + gA(x^{+}) \cdot T$$

M. Li, Zhao, Maris, Chen, Y. Li, Tuchin, Vary, 2002.09757 (2020)

Background field

The background field uses the MV model

$$\langle\!\langle \rho_a(\vec{x}_\perp, x^+) \rho_b(\vec{y}_\perp, y^+) \rangle\!\rangle = g^2 \tilde{\mu}^2 \delta_{ab} \delta^2(\vec{x}_\perp - \vec{y}_\perp) \delta(x^+ - y^+)$$
$$(m_g^2 - \nabla_\perp^2) \mathcal{A}_a^-(\vec{x}_\perp, x^+) = \rho_a(\vec{x}_\perp, x^+)$$

static, non-dynamical

The correlation is achieved by using a local Gaussian distribution

Here, we are interested in the jet evolution using quantum simulation.

Quantum simulation

Field evolution

$$A(x) \cdot T = \sum_{a=X,Y,Z} A^a \sigma^a / 2$$

simplest colorful case, with two colors, SU(2)

$$\exp(-ig\delta x^{+}A(x)\cdot T) = \exp\left\{-ig\delta x^{+}(A^{X}\otimes\sigma^{X}+A^{Y}\otimes\sigma^{Y}+A^{Z}\otimes\sigma^{Z})\right\}$$

Implementations:

- Exact method using property of the *exponential of a Pauli vector* • Exact method using property of the *exponential of a Pauli vector*
- Exponent matrix approximation
- Linear-order, allows for separation of color and pos space (circuit modularization)
- higher orders

$$\exp\left(-iA(x)\sigma^{Z}\right)|\boldsymbol{x}\rangle|c\rangle = \begin{cases} e^{-iA(x)}|\boldsymbol{x}\rangle|c\rangle , \text{ if } c=0\\ e^{+iA(x)}|\boldsymbol{x}\rangle|c\rangle , \text{ if } c=1 \end{cases}$$

Basis space encoding

Basis space encoding

Here, we have 2D momentum/position space + 1D color space

$$n_{tot} = (2N_{\perp})^2 N_c$$

For SU(2), *Nc* = 2,

state =
$$|q_{2n_Q}...q_1\rangle |q_0\rangle$$

= $|n_x, n_y\rangle |c\rangle$
= $|k_x, k_y\rangle |c\rangle$ $c = 1, 2$

Periodical Lattice

Physical			^{<i>n</i>} , Computational					$a_{\perp} =$
(-3, 3)	(-2, 3)	(-1, 3)	(0, 3)	(1, 3)	(2, 3)	(3, 3)	(4, 3)	mom la
(-3, 2)	(-2, 2)	(-1, 2)	(0, 2)	(1, 2)	(2, 2)	(3, 2)	(4, 2)	$d_p =$
(-3, 1)	(-2, 1)	(-1, 1)	(0, 1)	(1, 1)	(2, 1)	(3, 1)	(4, 1)	
(-3, 0)	(-2, 0)	(-1, 0)	(0, 0)	(1, 0)	(2, 0)	(3, 0)	(4, 0)	n _x
<mark>(-3, -1)</mark>	(-2, -1)	(-1, -1)	(0, -1)	(1, -1)	(2, -1)	(3, -1)	(4, -1)	
(-3, 3)	(-2, -2)	(-1, -2)	(0, -2)	(1, -2)	(2, 2)	(3, 2)	(4, 2)	
(-3, 3)	(-2, -3)	(-1, -3)	(0, -3)	(1, -3)	(2, 3)	(3, 3)	(4, 3)	
the second se	and the second		Internet and a second	A COLUMN TWO IS NOT	and the second se		Contraction of the second s	

 $O(n_x, n_y) = O(n_x + i2N_\perp, n_y + j2N_\perp)$

pos lattice spacing

$$a_{\perp} = L_{\perp}/N_{\perp}$$

mom lattice spacing

$$d_p = \pi / L_\perp$$

Simulation parameters:

- We study both evolutions with and without color, initial state: $(p_x, p_y) = (0, 0)$
- Duration of static medium: $L_{\eta} = 50 \,\mathrm{GeV}^{-1} \approx 10 \,\mathrm{fm}$
- 5 field configurations
- Two sets of lattice grids, 32 X 32 (10 qubits) and 64 X 64 (12 qubits)
- Fix g = 1, physical IR regulator $m_g = 0.8 \text{ GeV}(\ll Q_s)$
- Selected values of saturation scales Q_s

$$\lambda_{IR} = \frac{\pi}{N_{\perp}a_{\perp}} \ll m_g \ll Q_s \ll \lambda_{UV} = \frac{\pi}{a_{\perp}}$$

range coverage cond

$$a_{\perp}^2 Q_s^2 < \frac{4\pi^2}{3} \left[\log(\frac{1}{a_{\perp}^2 m_g^2/\pi^2} + 1) - \frac{1}{1 + a_{\perp}^2 m_g^2/\pi^2} \right]^{-1}$$

broadening coverage cond

 $g^2 \tilde{\mu} = \sqrt{\frac{2\pi Q_s^2}{C_E L_m}}$

Event simulations Measurement (collapse) of quantum state

sampling noise statistical uncertainty

Numerical results, colorless U(1) case

819200 shots quantum simulation

Numerical results, colorful SU(2) case

819200 shots quantum simulation

See Li's talk (06/14)

Analytical

identical curve for U(1) and SU(2)

 $\hat{q} = \frac{g^4}{4\pi} C_F \tilde{\mu}^2 \left\{ \log \left(1 + \frac{\frac{\pi^2}{a_\perp^2}}{m_g^2} \right) - \frac{1}{1 + \frac{a_\perp^2 m_g^2}{\pi^2}} \right\}$

Simulation

 $\hat{q} = \langle \boldsymbol{p}_{\perp}^2 \rangle / L_{\eta}$

Static field layers

As layer increases, the correlation condition is approximately satisfied

$$\langle \rho_a(n^x, n^y, n_\tau) \rho_b(n'^x, n'^y, n'_\tau) \rangle = g^2 \tilde{\mu}^2 \delta_{ab} \frac{\delta_{n^x, n'^x} \delta_{n^y, n'^y}}{a_\perp^2} \frac{\delta_{n_\tau, n'_\tau}}{\tau}$$

In reality

noise model using IBMQ manila

customized noise model with errors (0.01% for 1-qubit gates)

Future plans

- Incorporate multiple Fock sectors, for example, to study gluon absorption and emission $|\psi\rangle = c_1 |q\rangle + c_2 |qg\rangle + c_3 |qgg\rangle + \cdots$ Li, Lappi, Zhao, 2107.02225 (2021)
- Simulation-friendly implementation of the potential fields on the quantum circuit, for example, polynomial-time discretization method, approximation is well-controlled

Kassal, Jordan, Love, Mohseni, Aspuru-Guzik, 0801.2986 (2008)

- Investigate the effect of other medium and initial states, etc
- Approximate QFT might help runtime on NISQ QCs
- Adding more colors, SU(3), to simulate a realistic QCD

Thank you very much!

Sainadh, 1309.2736 (2013)

$$\lambda^{1} = \begin{pmatrix} 0 \ 1 \ 0 \\ 1 \ 0 \ 0 \\ 0 \ 0 \ 0 \end{pmatrix} \to \begin{pmatrix} 0 \ 1 \ 0 \ 0 \\ 1 \ 0 \ 0 \\ 0 \ 0 \ 0 \\ 0 \ 0 \ 0 \end{pmatrix} \equiv \tilde{\lambda}^{1}$$