Introduction 000	Path length 00	Event shape engineering	Event plane selection	Back-to-back probes 00	Conclusions and outlook

Hard probe path lengths and event-shape engineering of the quark-gluon plasma

Govert Nijs

June 17, 2022

イロト イボト イヨト イヨト

Based on:

Beattie, GN, Sas, van der Schee, 2203.13265

Govert Nijs

Motivation

- Hard probes lose energy while traversing the QGP.
- Energy loss depends on path length.
- Can we make this cartoon a bit more quantitative?

Govert Nijs

Trajectum

- New heavy ion code developed in Utrecht/MIT/CERN.
- Contains initial state, hydrodynamics and freeze-out, as well as an analysis suite.
- Easy to use, example parameter files distributed alongside the source code.
- Fast, fully parallelized.
- Publicly available at

sites.google.com/view/govertnijs/trajectum/

[GN, van der Schee, Gürsoy, Snellings, 2010.15130; 2010.15134]

Parameters used: MAP values from Bayesian analysis

Govert Nijs

Different path length measures

- L_{static} is the distance from the probe origin to the freeze-out surface at $\tau = \tau_{\text{fs}}$.
- L_{dyn} is the same distance, but measured along a lightlike path.
- $\int u_{\mu} dL^{\mu}$ takes the fluid velocity into account.
- $\int T^{\alpha}/\gamma u_{\mu} dL^{\mu}$ also takes time dilation and hotspots into account.
- $\int T^3 / \gamma u_{\mu} dL^{\mu}$ is what is expected up to $\mathcal{O}(v^2)$ assuming probes do not change direction.

イロト イポト イヨト イヨト

3

00

Several different pathlength measures

- $L_{\rm dyn}$ has a 'cliff' at $au \sim 11$ due to the lifetime of the QGP.
- Velocity- and temperature-dependent measures are considerably smaller.

Govert Niis

Event shape engine 200 Event plane selec

Back-to-back prob

Conclusions and outlook

Several different pathlength measures

- $L_{\rm dyn}$ has a 'cliff' at $\tau \sim 11$ due to the lifetime of the QGP.
- Velocity- and temperature-dependent measures are considerably smaller.

Govert Nijs

Event shape engineering

For each event, we compute $q_2 = \left|\sum_{i=1}^{M} e^{2i\varphi}\right| / \sqrt{M}$, which measures how elliptical the particle distribution is.

Govert Nijs

	Introduction	Path length 00	Event shape engineering ●00	Event plane selection	Back-to-back probes 00	Conclusions and outlool O
--	--------------	-------------------	--------------------------------	-----------------------	---------------------------	------------------------------

Event shape engineering

- For each event, we compute $q_2 = \left|\sum_{i=1}^{M} e^{2i\varphi}\right| / \sqrt{M}$, which measures how elliptical the particle distribution is.
- We then select the 10% lowest or highest q₂ values in each centrality bin.

Govert Nijs

	Introduction	Path length 00	Event shape engineering •00	Event plane selection	Back-to-back probes 00	Conclusions and outlook 0
--	--------------	-------------------	--------------------------------	-----------------------	---------------------------	------------------------------

Event shape engineering

For each event, we compute

$$q_2 = \left| \sum_{i=1}^{M} e^{2i\varphi} \right| / \sqrt{M},$$

which measures how
elliptical the particle
distribution is.

- We then select the 10% lowest or highest q₂ values in each centrality bin.
- q₂ has a mild but important dependence on centrality: must use narrow centrality bins.

Govert Nijs

Introduction 000	Path length 00	Event shape engineering ○●○	Event plane selection	Back-to-back probes 00	Conclusions and outlook

Soft observables

- High q_2 leads to high $v_2\{2\}$ as expected.
- ESE selected v₂{4} and v₂{2} are close together, indicating a narrow range of underlying v₂.
- ESE selected $\langle p_T \rangle$ is in agreement with $\rho(v_2\{2\}^2, \langle p_T \rangle)$.
- ESE selected v₃{2} shows a negative correlation between v₂ and v₃, in agreement with SC(3,2) < 0.</p>

イロト 不得 トイヨト イヨト

Govert Nijs

ESE selected path length

- Path length does not change when selecting on q_2 alone.
- Something else is needed.

Govert Nijs

Back-to-back prot

Conclusions and outlook

In-plane vs. out-of-plane probes

- q₂ can also be given a direction.
- We define probes with azimuthal angle difference Δφ < 22° as being in-plane.
- Out-of-plane probes are defined analogously.
- We expect the average path length to be shorter in-plane than out-of-plane.

Govert Nijs

Event plane selection 0 = 0

Back-to-back prob

Conclusions and outlook

Institute of

イロト イボト イヨト イヨト

Path length distributions

- Indeed path length is on average shorter in-plane than out-of-plane.
- ESE can enlarge these differences when selecting the largest q_2 values.
- For central collisions, the smallest q₂ remove differences almost completely.

Govert Nijs

イロト イボト イヨト イヨト

Out-of-plane to in-plane average path length ratio

- ESE can increase the path length differences by a factor 2.
- Choosing the Δφ limit to be 22° instead of 45° gains another factor 2, but decreasing to 11° yields little gain.
- Larger path length differences for $\int T^{\alpha}/\gamma u_{\mu}dL^{\mu}$ than for L_{dyn} .
- See also QM talk by Caitlin Beattie https://indico.cern. ch/event/895086/contributions/4715857/.

Govert Nijs

Back-to-back probes

- We can also produce probes back-to-back.
- We then show the longest and shortest path of each pair separately.

Govert Niis

Back-to-back probes

Adding ESE and in-/out-of-plane selection

- We show the average path length ratio of shortest over longest.
- Selecting in-plane pairs can decrease the ratio.
- Selecting elliptical events further decreases the ratio.

Govert Nijs

Conclusions and outlook

Conclusions:

- In-plane probes have a smaller average path length than out-of-plane probes.
- Choosing a Δφ limit of 22° gives a larger path length difference compared to 45°, by a factor of 2.
- Selecting high q₂ events enhances this difference by a further factor of 2.
- In back-to-back probes event plane selections and event shape engineering can decrease the path length ratio between the pair.

Outlook:

• Implementing a full parton shower in *Trajectum*.

イロト 不得下 イヨト イヨト

Govert Nijs