

Bayesian analyses with JETSCAPE

Yi Chen (MIT) ECT* Jet Workshop, Jun 17, 2022

MITHIG's work is supported by DOE-NP

What / Why

Problems

Recent

What / Why

Problems

Recent

Goal: better understand heavy-ion collisions

Rigorous model-data comparison

More precise data & sophisticated models

Comparing data to model

Key task: quantify "distance" between point in model space and "truth" (data = proxy of truth)

Candidate: Bayesian posterior

What / Why

Problems

Recent

The problems of heavy ions

A LOT of parameters needed to specify the whole thing

Both in <u>each block</u> and the interface between blocks

Usually different code bases

The JETSCAPE framework

JETSCAPE framework:

- Modular design
- Easily extensible
- Unified block interface

different code bases

Dealing with large parameter space

Problem: computing cost + continuous space + large dimensions

One solution: strategic points + interpolation

+ a lot of analysis details

A lot of care goes into making sure each step is robust

What / Why

Problems

Recent

Future

* in the context of JETSCAPE

Soft observables

 $h^{\pm}: dN/d\eta$ $dE_T/d\eta$ $\pi, K, p: dN/dy, \langle p_T \rangle$ $v_2\{2\}, v_3\{2\}, v_4\{2\}$ $\delta p_T/p_T$

Parameters in initial state hydro etc. (next page)

Model setup

Example posterior distributions

Phys. Rev. C 103, 054904 (2021)

Decent agreement to both LHC and RHIC data

Extracted viscosities

RHIC vs LHC Complementary

Non-negligible effect in particlization model

(+ many other results I don't have time to go into)

\hat{q} extraction: JET Collaboration

Separate analyses to RHIC and LHC data from a variety of models

Can we take it one step further?

Phys. Rev. C 90, 014909 (2014)

Analysis Setup

Parametrization of \hat{q}

$$\frac{\hat{q}}{T^3} \propto A \frac{\ln(E/\Lambda) - \ln(B)}{\ln^2(E/\Lambda)} + C \frac{\ln(E/T) - \ln(D)}{\ln^2(ET/\Lambda^2)}$$

MATTER-inspired term

LBT-inspired term

LBT: design vs posterior

MATTER vs LBT

$$\frac{\hat{q}}{T^3} \propto A \frac{\ln(E/\Lambda) - \ln(B)}{\ln^2(E/\Lambda)} + C \frac{\ln(E/T) - \ln(D)}{\ln^2(ET/\Lambda^2)}$$

LBT prefers the C term, MATTER prefers the A term

Higher order term B & D only loosely constrained

MATTER & LBT: \hat{q}

Compatible with JET collaboration results

Prior range >> posterior range

Multi-stage approach

Use MATTER for high virtuality and LBT for low Best switching

virtuality ~ 2 GeV

Result dominated by LHC because of choice of experimental data input

Recent results: remarks

- Due to time many things not covered
- What is done so far is just the beginning! Further analyses are ongoing
 - More observables, more flexible model, ...

What / Why

Problems

Recent

<u>Choice of data</u>

. . .

0

...

- <u>Scope of data to include</u>
- Uncertainty treatment

Complexity of modelGenerators

Computational challenge
Extensions

. . .

Data choice

Important to pick a scope and include ALL eligible data

*unless there are known issues (ps. tension doesn't count)

High chance of bias if only a subset is used

Data scope

Systematically expand the scope to probe more physics

Example:

(Analogous systematic expansion of model complexity)

Choice of data

. . .

0

. . . .

- Scope of data to include
- Uncertainty treatment

- Data Dota Model
- Complexity of modelGenerators

Computational challenge
Extensions

. . .

Data uncertainty correlation

Prediction

Correlation is key!

Agreement depends on uncertainty correlation

- Fully Correlated: 1σ
- Non-correlated: 2σ
- Anti-correlated: $>2\sigma$

Faithfully capturing the correlation is crucial

- Complexity of model
- <u>Generators</u>

. . .

. . .

Computational challenge
Extensions

. . .

Generators

- What Bayesian analysis does is to find the region of phase space matching the best to the data/truth
- If generator does not have required physics it's easy to misinterpret the result
 - Case for better vacuum shower modeling (for example)
- Ratios help but not everything is multiplicative

Choice of data
Scope of data to include
Uncertainty treatment

Complexity of modelGenerators

0

0

. . . .

. . .

- Computational challenge
- Extensions

. . .

Extension possibilities

Model selection Model combination

. . .

Event generation with full posterior (not just MAP)

<u>Tension quantification</u> (in context of model)

We're just getting started: Many possibilities with **using the Bayesian analysis as a tool** to probe different things

Tension quantification

Bayesian posterior = data vs. model point compatibility

Set 2

even

Set

different Bayesian analysis with different sets of data => controlled way to study compatibility

Combining: model averaging

Application of Bayesian model averaging

Grad/CE/PTB: different particlization models

Combine using the Bayesian evidence Rigorous data-driven way to combine the models

Concluding remarks

What / Why

Problems

Recent

Rigorous data-model comparison

Data-model "distance": Bayesian posterior

Problems

Recent

Rigorous data-model comparison

Data-model "distance": Bayesian posterior Different code => JETSCAPE framework

Large parameter space => design point + interpolation

Recent

Rigorous data-model comparison

Data-model "distance": Bayesian posterior Different code => JETSCAPE framework

Large parameter space => design point + interpolation

Soft sector: bulk properties

Hard sector: first step \hat{q}

Data-model "distance": Bayesian posterior Different code => JETSCAPE framework

Large parameter space => design point + interpolation

Soft sector: bulk properties

Hard sector: first step \hat{q}

Better data handling

Progressively more data and model complexity

Many extensions possible

Backup Slides Ahead

Rigorous model-data comparison

Computational challenge

- Complex parameter space & more precise data
 - More calculation needed both in precision and number of points to run over
- Challenge in organizing large-scale calculation: highly non-trivial task, operate more similar to large experiment collaborations
 - Placement of design points more important than ever
- Challenge in speeding things up

Simulation Setup

Label	Comment	Parameters
MATTER	MATTER all the way	A, B, C, D
LBT	LBT all the way	A, B, C, D
MATTER+LBT1	Same formula as above, but just switch at Q_0	A, B, C, D, Q ₀
MATTER+LBT2	Virtuality Q used instead of E in the MATTER-only term	A, C, D, Q ₀

Multi-stage approach

Implement a "switching scale" Q_0 , where we switch from MATTER to LBT

Use the same \hat{q} parameterization on both models

"MATTER+LBT1": same \hat{q} formula as before $\frac{\hat{q}}{T^3} \propto A \frac{\ln(E/\Lambda) - \ln(B)}{\ln^2(E/\Lambda)} + C \frac{\ln(E/T) - \ln(D)}{\ln^2(ET/\Lambda^2)}$

Multi-stage approach

MATTER+LBT2 parameterization

$$\frac{\hat{q}}{T^3} \propto A \frac{\ln(Q/\Lambda) - \ln(Q_0/\Lambda)}{\ln^2(Q/\Lambda)} \theta(Q - Q_0) + C \frac{\ln(E/T) - \ln(D)}{\ln^2(ET/\Lambda^2)}$$

MATTER-only term

Switch to virtuality instead of energy to better capture the nature of virtuality evolution in MATTER

Multi-stage approach: (1)

MATTER+LBT1

LBT-only

Inclusion of Q₀ does not improve agreement much

Multi-stage approach: (1)

MATTER+LBT1 ≤ MATTER or LBT alone

Multi-stage approach: (2)

MATTER > LBT ~ by construction ($\theta(Q - Q_0)$)

Multi-stage approach: (2)

Consistent picture compared to MATTER+LBT1 setting

Q₀ slightly higher but consistent

Viscosity parameterization

Model complexity

As the data scope expands we also need to expand on the modeling side

Add up the covariance matrices source-by-source

Some uncertainties are correlated across measurements

For example luminosity uncertainty from the same experiment

T_{AA} across experiment

Unfortunately, experiments do not provide full correlation matrix 😢

...and we are forced to make guesses

RAA

$$\Sigma_{ij} \sim \sigma_i \sigma_j \exp\left(-\left|\frac{\Delta p}{\ell}\right|^{1.9}\right)$$

In the \hat{q} case, we guess the correlation using a correlation length $\ell = 0.2 \text{ x} (\text{max } p_T \text{ range})$ for the "catch-all" uncertainty* рт

* cross check with $\ell = 10$