

Fermi gases and dilute neutron matter with low-momentum interactions

Michael Urban (IJCLab, Orsay, France)

in collaboration with:

Sunethra Ramanan (IIT Madras, Chennai, India) Viswanathan Palaniappan (IIT Madras & IJCLab)

Outline

- Neutron stars, dilute neutron matter, and ultracold atoms
- Usual regularization procedure for a contact interaction
- Low-momentum interactions with zero range
- Hartree-Fock-Bogoliubov with perturbative corrections
- Results for cold atoms
- Results for neutron matter
- Conclusions and outlook

More details: M.U. and S. Ramanan, Phys. Rev. A 103, 063306 (2021).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Motivation: neutron stars

▶ Produced in core-collapse supernova explosions of intermediate-mass (8 - 30M_☉) stars [figure: supernova remnant RCW103 seen by Chandra in X-ray]

- ▶ Very compact: $M \sim 1 2M_{\odot}$ (2 4 × 10³⁰ kg) in a radius of $R \sim 10$ km ρ > nuclear saturation density $\rho_0 = 2.7 \times 10^{14}$ g/cm³, $n_0 = 0.16$ fm⁻³
- ► Typical temperatures $T \approx 10^6 10^9$ K $\approx 0.1 100$ keV $T \ll E_F \rightarrow T = 0$ formalism sufficient for many purposes
- Complex inner structure:

outer crust: Coulomb lattice of neutron rich nuclei in a degenerate electron gas inner crust: unbound neutrons form a superfluid neutron gas between the nuclei (clusters) outer core: homogeneous matter (n, p, e^-) inner core: densities up to a few times ρ_0 , new degrees of freedom: hyperons? quark matter?

What is "dilute" neutron matter?

• Upper layers of the inner crust (close to neutron-drip density $\sim 2.5 \times 10^{-4}$ fm⁻³)

[Negele and Vautherin, NPA 207 (1973); similar results by Baldo et al., PRC 76 (2007)]

In spite of its "low" density (still ρ ≥ 10¹¹ g/cm³), the neutron gas is relevant because it occupies a much larger volume than the clusters

• Deeper in the crust: $n_{\rm gas}$ increases up to $\sim n_0/2 = 0.08~{\rm fm}^{-3}$

Ultracold Fermi gases

- 2004: trapped Fermions cooled down to superfluidity
- Interaction between the atoms: $R \sim 10^{-9} \text{ m} \ll d \sim 1/k_F \sim 10^{-6} \text{ m}$
 - \rightarrow practically contact interaction
- Pauli principle: interaction (s wave) only between atoms of opposite "spin" (↑,↓)
- Interaction strength is characterized by the scattering length a
- Feshbach resonance: scattering length a can be tuned experimentally by changing the magnetic field B
- BEC-BCS crossover: ground state (GS) evolves from BEC of dimers (a > 0) to a BCS superfluid (a < 0)
- The case $a \to \infty$ is called the unitary limit

Comparison: dilute neutron matter vs unitary Fermi gas

	neutron gas	unitary Fermi gas	• • •
n	$4\times 10^{-5}\dots 0.08~\text{fm}^{-3}$	$\sim 1 \; \mu { m m}^{-3}$	0-31KF
$d = n^{-1/3}$	302.3 fm	$\sim 1~\mu$ m	ě
$k_F = (3\pi^2 n)^{1/3}$	$0.1 \dots 1.3 \; fm^{-1}$	$\sim 1 \; \mu { m m}^{-1}$	• •
$E_F = k_F^2/2m$	0.235 MeV	$\sim 1~\mu{ m K} \sim 10^{-10}~{ m eV}$	VA
а	-18 fm	∞	
R	2.5 fm	$\sim 1 \text{ nm}$	
$1/k_Fa$	$-0.5\cdots-0.07$	0	r
k _F R	0.253	10^{-3}	R

- Although the absolute scales are completely different, dimensionless quantities $1/k_F a$ and $k_F R$ are comparable
- Effective range R not negligible in neutron matter at relevant densities
- The neutron gas is close to the crossover regime but not in the unitary limit

Standard regularization procedure for a contact interaction

► Scattering length for coupling constant g < 0 and cutoff Λ $(\epsilon_k = \frac{k^2}{2m})$

• Express g in terms of a, e.g. in the gap equation $(E_k = \sqrt{(\epsilon_k - \mu)^2 + \Delta^2})$

$$\Delta = -g \int^{\Lambda} \frac{d^3k}{(2\pi)^3} \frac{\Delta}{2E_k} \qquad \Leftrightarrow \qquad \Delta = -\frac{4\pi a}{m} \int^{\Lambda} \frac{d^3k}{(2\pi)^3} \left(\frac{\Delta}{2E_k} - \frac{\Delta}{2\epsilon_k}\right)$$

 \Rightarrow now the cutoff can be removed

- Coupling constant vanishes for $\Lambda \to \infty$: $\frac{1}{g} = \frac{m}{4\pi a} \frac{m\Lambda}{2\pi^2}$
- Keeping Λ finite would induce a finite effective range: $r_{\text{eff}} = \frac{4}{\pi \Lambda}$

• For cold atoms one should take the limit $\Lambda \to \infty$

- No Hartree field: $U_{\sigma} = gn_{-\sigma} \stackrel{\Lambda \to \infty}{\longrightarrow} 0$
- In order to get the simplest weak-coupling correction $\frac{4\pi a}{m}n_{\uparrow}n_{\downarrow}$ to the GS energy, resummation of ladder diagrams is necessary

Low-momentum interactions with zero range

- ▶ In nuclear physics: "soft" V_{low-k} or SRG interactions reproduce exactly the low-momentum scattering phase shifts of the full NN interaction below the cutoff
- Is it possible to reproduce the scattering amplitude of a contact interaction for $k < \Lambda$ with a finite cutoff Λ ? \rightarrow **Yes!**
- Explicit construction [Tabakin 1969] of a separable s-wave interaction $(V = 4\pi V_0, F(0) = 1)$

$$V_0(k,k') = g_0 F(k) F(k')$$

that gives scattering phase shifts

$$\delta(q) = R\left(rac{k}{\Lambda}
ight) \operatorname{arccot}\left(-rac{1}{ka}
ight)$$

• We use a smooth regulator $R(x) = \exp(-x^{20})$

In the unitary limit and with a sharp regulator, i.e., $\delta(k) = \frac{\pi}{2}\theta(\Lambda - k)$, analytic expressions exist [Köhler 2007, Ruiz Arriola et al. 2017]

Hartree-Fock-Bogoliubov (HFB)

- In nuclear physics: hard core of "realistic" potentials requires explicit inclusion of short-range correlations, and nuclei are not bound in HF(B) approximation
- Soft interactions (V_{low-k} , SRG) much better suited for perturbative methods
- ► HFB with perturbative corrections can give good results for open-shell nuclei [e.g., Tichai et al. 2019] → try this method for cold atoms
- Momentum dependent mean field U_k and gap Δ_k : ($\Lambda' > \Lambda$ because of smooth cutoff)

$$U_{k} = \int \frac{d^{3}p}{(2\pi)^{3}} 4\pi V_{0} \left(\frac{\vec{p}-\vec{k}}{2},\frac{\vec{p}-\vec{k}}{2}\right) v_{p}^{2}, \qquad \Delta_{k} = -\frac{2}{\pi} \int_{0}^{\Lambda'} dp \, p^{2} \, V_{0}(k,p) \, u_{p} v_{p}$$

with the usual definitions

$$u_k = \sqrt{\frac{1}{2} + \frac{\xi_k}{2E_k}}, \quad v_k = \sqrt{\frac{1}{2} - \frac{\xi_k}{2E_k}}, \quad \xi_k = \frac{k^2}{2m} + U_k - \mu, \quad E_k = \sqrt{\xi_k^2 + \Delta_k^2}$$

- Choice of the cutoff A: as small as possible to make the interaction perturbative, but without cutting the physically relevant states
- ► Hartree-Fock requires $\Lambda \ge k_F$, with pairing we need somewhat higher cutoff

Cutoff dependence of HFB results

(a) Weak coupling $(1/k_F a = -5)$:

- ► Hartree shift $U_{k_F} \approx \frac{4\pi a}{m} n_{\sigma}$ for $\Lambda \rightarrow k_F$, but $U_{k_F} \rightarrow 0$ for $\Lambda \rightarrow \infty$
- ► Gap Δ_{k_F} reaches rapidly (for $\Lambda \gtrsim 1.5k_F$) the usual BCS result $8E_F \exp(-2 + \frac{\pi}{2k_Fa})$

(b) At unitarity $(1/k_F a = 0)$:

- ► Hartree shift $U_{k_F} \sim -0.5 E_F$ at small Λ , but again $U_{k_F} \rightarrow 0$ for $\Lambda \rightarrow \infty$
- Gap Δ_{k_F} less cutoff dependent but reaches asymptotic value at larger Λ (~ 3k_F) than in weak coupling

Physical quantities should be cutoff independent!

If perturbative corrections to HFB converge in a range of cutoffs, the corrected results should be cutoff independent in this range

・ロト ・四ト ・ヨト ・ヨ

Bogoliubov Many-Body Perturbation Theory (BMBPT)

• Express $\hat{K} = \hat{H} - \mu \hat{N}$ in terms of quasiparticle (QP) operators

$$\beta_{\vec{k}\uparrow} = u_k \, a_{\vec{k}\uparrow} - v_k \, a^{\dagger}_{-\vec{k}\downarrow} \,, \quad \beta_{\vec{k}\downarrow} = u_k \, a_{\vec{k}\downarrow} + v_k \, a^{\dagger}_{-\vec{k}\uparrow}$$

• With the HFB solution for u_k and v_k , we can write

$$\hat{\mathcal{K}} = \mathcal{E}_{\mathsf{HFB}} + \sum_{\vec{k}\sigma} \mathcal{E}_{k} \beta^{\dagger}_{\vec{k}\sigma} \beta_{\vec{k}\sigma} + : \hat{\mathcal{V}}:$$

$$: \hat{V}: = V_{04} \beta \beta \beta \beta + V_{13} \beta^{\dagger} \beta \beta \beta + V_{22} \beta^{\dagger} \beta^{\dagger} \beta \beta + V_{31} \beta^{\dagger} \beta^{\dagger} \beta^{\dagger} \beta + V_{40} \beta^{\dagger} \beta^{\dagger} \beta^{\dagger} \beta^{\dagger} \beta^{\dagger}$$

- Treat : \hat{V} : as a perturbation
- Example: leading correction to GS energy is second order

$$\mathcal{E}_{2} = -\frac{1}{4!} \sum_{ijkl} \frac{|\langle ijkl | \hat{V}_{40} | \mathsf{HFB} \rangle|^{2}}{E_{i} + E_{j} + E_{k} + E_{l}} \qquad \text{with} \qquad |ijkl \rangle = \beta_{i}^{\dagger} \beta_{j}^{\dagger} \beta_{k}^{\dagger} \beta_{l}^{\dagger} | \mathsf{HFB} \rangle$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

BMBPT at second and third order

• In practice, \mathcal{E}_2 has three terms corresponding to three diagrams:

Summation over intermediate 4 QP states:
 12 (four momenta) -3 (momentum conservation) -3 (rotational invariance)
 6 dimensional integral, evaluated with MC integration with importance sampling

- Third-order correction \mathcal{E}_3 has 27 terms (only three examples shown):
- Use Mathematica to automatically generate all terms
- Number of integrations: 18 (six momenta)
 - -6 (momentum conservation)
 - -3 (rotational invariance)
 - = 9 dimensions

500

Cutoff dependence of HF(B)+(B)MBPT GS energy

- Approximate cutoff independence reached in a region of small cutoffs ($\Lambda \leq 3k_F$) at weak coupling
- Inclusion of pairing (thick vs thin lines) very important at stronger coupling
- ► For $\Lambda \simeq 1.5 2k_F$, results are close to experimental ones

Discussion

- BMBPT3 weakens cutoff dependence but is not enough to remove it What is missing?
 - ► Higher orders of BMBPT

Is it efficient to expand about the HFB GS although we know that screening reduces the gap?

▶ Induced three-body force (3BF) and higher-body forces:

even if there is no 3BF in the limit $\Lambda\to\infty,$ at finite Λ there will be an effective 3BF to compensate for the contributions of loop momenta above Λ in diagrams like this one

BMBPT expands the perturbed GS in terms of fermionic QP states: approaching the BEC regime, bosonic degrees of freedom (Bogoliubov-Anderson mode) become progressively more important which require resummation of (Q)RPA diagrams

Differences between cold atoms and neutron matter

The nn interaction is more complicated:

- Even at the lowest relevant densities, the finite range of the nn interaction is not negligible
- Not only s-wave, but also higher partial waves: in practice we include waves up to L = 6
- Coupling between different L due to tensor force
- ▶ We use V_{low-k} matrix elements [Bogner et al. 2007] generated from AV18 or chiral interactions (both give practically the same results)
- Although it is relatively weak in pure neutron matter, the 3BF (neglected here) could play a role at higher densities

Neutron-matter energy (in units of \mathcal{E}_0) as fct. of k_F

▶ In analogy with the cold atoms case, we expect best results for $\Lambda \simeq 1.5 - 2k_F$

- So far only BMBPT2 results available, BMBPT3 is work in progress
- Energies too low at high densities: missing 3BF?

Conclusions

- HFB+BMBPT with low-momentum interactions successfully used in nuclear structure calculations (e.g. by the Saclay group)
- ▶ In infinite matter, one can scale the cutoff Λ with k_F
- ► Low-momentum interactions give a better HF field and hence better results already at the mean-field (HFB) level and corrections are perturbative

Outlook

- BMBPT3 for neutron matter: work in progress
- Missing ("genuine" and "induced") 3BF: in-medium SRG method?
- Can IMSRG also help to solve the screening problem?
- Contribution of collective modes: work in progress
- Long-term objective: include also protons (neutron-star core)

Tabakin's formula for the separable interaction

$$V_0(q,q) = -rac{\sin\delta(q)}{mq} \exp\left(rac{2}{\pi} \mathcal{P}\!\!\int_0^\infty\! dq' \, rac{q'\delta(q')}{q^2 - {q'}^2}
ight)$$

$$g_0 = V_0(0,0), \quad F(q) = \sqrt{V_0(q,q)/g_0}$$