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Motivation: neutron stars

I Produced in core-collapse supernova explosions
of intermediate-mass (8− 30M�) stars
[figure: supernova remnant RCW103 seen by Chandra in X-ray]

I Very compact: M ∼ 1− 2M� (2− 4× 1030 kg) in a radius of R ∼ 10 km

ρ > nuclear saturation density ρ0 = 2.7× 1014 g/cm3, n0 = 0.16 fm−3

I Typical temperatures T ≈ 106 − 109 K ≈ 0.1− 100 keV

T � EF → T = 0 formalism sufficient for many purposes

I Complex inner structure:

~10 km

1−2 km

outer crust: Coulomb lattice of neutron rich nuclei
in a degenerate electron gas

inner crust: unbound neutrons form a superfluid
neutron gas between the nuclei (clusters)

outer core: homogeneous matter (n, p, e−)

inner core: densities up to a few times ρ0,
new degrees of freedom: hyperons? quark matter?



What is “dilute” neutron matter?

I Upper layers of the inner crust (close to neutron-drip density ∼ 2.5× 10−4 fm−3)

ngas = 4× 10−5 fm−3 (14% of total nB)

ngas = 4.8× 10−4 fm−3 (54% of total nB)

[Negele and Vautherin, NPA 207 (1973); similar results by Baldo et al., PRC 76 (2007)]

I In spite of its “low” density (still ρ & 1011 g/cm3), the neutron gas is relevant
because it occupies a much larger volume than the clusters

I Deeper in the crust: ngas increases up to ∼ n0/2 = 0.08 fm−3



Ultracold Fermi gases

I 2004: trapped Fermions cooled down to
superfluidity

I Interaction between the atoms:

R ∼ 10−9 m � d ∼ 1/kF ∼ 10−6 m

→ practically contact interaction

I Pauli principle: interaction (s wave) only
between atoms of opposite “spin” (↑, ↓)

I Interaction strength is characterized by the
scattering length a

I Feshbach resonance: scattering length a
can be tuned experimentally by changing
the magnetic field B

I BEC-BCS crossover: ground state (GS)
evolves from BEC of dimers (a > 0)
to a BCS superfluid (a < 0)

I The case a→∞ is called the unitary limit
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Comparison: dilute neutron matter vs unitary Fermi gas

neutron gas unitary Fermi gas

n 4× 10−5 . . . 0.08 fm−3 ∼ 1 µm−3

d = n−1/3 30 . . . 2.3 fm ∼ 1 µm

kF = (3π2n)1/3 0.1 . . . 1.3 fm−1 ∼ 1 µm−1

EF = k2
F/2m 0.2 . . . 35 MeV ∼ 1 µK ∼ 10−10 eV

a −18 fm ∞
R 2.5 fm ∼ 1 nm
1/kFa −0.5 · · · − 0.07 0
kFR 0.25 . . . 3 10−3
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I Although the absolute scales are completely different, dimensionless quantities
1/kFa and kFR are comparable

I Effective range R not negligible in neutron matter at relevant densities

I The neutron gas is close to the crossover regime but not in the unitary limit



Standard regularization procedure for a contact interaction
I Scattering length for coupling constant g < 0 and cutoff Λ (εk = k2

2m )

4πa

m
= g + g

∫ Λ d3k

(2π)3

1

−2εk

4πa

m
= +

I Express g in terms of a, e.g. in the gap equation (Ek =
√

(εk − µ)2 + ∆2)

∆ = −g
∫ Λ d3k

(2π)3

∆

2Ek
⇔ ∆ = −4πa

m

∫ Λ d3k

(2π)3

( ∆

2Ek
− ∆

2εk

)
⇒ now the cutoff can be removed

I Coupling constant vanishes for Λ→∞:
1

g
=

m

4πa
− mΛ

2π2

I Keeping Λ finite would induce a finite effective range: reff =
4

πΛ
I For cold atoms one should take the limit Λ→∞

I No Hartree field: Uσ = gn−σ
Λ→∞−→ 0

I In order to get the simplest weak-coupling correction
4πa

m
n↑n↓ to the GS energy,

resummation of ladder diagrams is necessary



Low-momentum interactions with zero range
I In nuclear physics: “soft” Vlow-k or SRG interactions reproduce exactly the

low-momentum scattering phase shifts of the full NN interaction below the cutoff

I Is it possible to reproduce the scattering
amplitude of a contact interaction for k < Λ
with a finite cutoff Λ? → Yes!

I Explicit construction [Tabakin 1969] of a separable
s-wave interaction (V = 4πV0, F (0) = 1)

V0(k, k ′) = g0F (k)F (k ′)

that gives scattering phase shifts

δ(q) = R
( k

Λ

)
arccot

(
− 1

ka

)
I We use a smooth regulator R(x) = exp(−x20)

I In the unitary limit and with a sharp regulator,
i.e., δ(k) = π

2
θ(Λ− k), analytic expressions exist

[Köhler 2007, Ruiz Arriola et al. 2017]
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Hartree-Fock-Bogoliubov (HFB)

I In nuclear physics: hard core of “realistic” potentials requires explicit inclusion of
short-range correlations, and nuclei are not bound in HF(B) approximation

I Soft interactions (Vlow-k , SRG) much better suited for perturbative methods

I HFB with perturbative corrections can give good results for open-shell nuclei
[e.g., Tichai et al. 2019] → try this method for cold atoms

I Momentum dependent mean field Uk and gap ∆k : (Λ′ > Λ because of smooth cutoff)

Uk =

∫
d3p

(2π)3
4πV0

( ~p − ~k
2

,
~p − ~k

2

)
v 2
p , ∆k = − 2

π

∫ Λ′

0

dp p2 V0(k, p) upvp

with the usual definitions

uk =

√
1

2
+

ξk
2Ek

, vk =

√
1

2
− ξk

2Ek
, ξk =

k2

2m
+ Uk − µ , Ek =

√
ξ2
k + ∆2

k

I Choice of the cutoff Λ: as small as possible to make the interaction perturbative,
but without cutting the physically relevant states

I Hartree-Fock requires Λ ≥ kF , with pairing we need somewhat higher cutoff



Cutoff dependence of HFB results

(a) Weak coupling (1/kFa = −5):

I Hartree shift UkF ≈
4πa

m
nσ for Λ→ kF ,

but UkF → 0 for Λ→∞

I Gap ∆kF reaches rapidly (for Λ & 1.5kF ) the

usual BCS result 8EF exp(−2 +
π

2kFa
)

(b) At unitarity (1/kFa = 0):

I Hartree shift UkF ∼ −0.5EF at small Λ,
but again UkF → 0 for Λ→∞

I Gap ∆kF less cutoff dependent but reaches
asymptotic value at larger Λ (∼ 3kF ) than in
weak coupling

Physical quantities should be cutoff independent!

I If perturbative corrections to HFB converge
in a range of cutoffs, the corrected results
should be cutoff independent in this range
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Bogoliubov Many-Body Perturbation Theory (BMBPT)

I Express K̂ = Ĥ − µN̂ in terms of quasiparticle (QP) operators

β~k↑ = uk a~k↑ − vk a
†
−~k↓

, β~k↓ = uk a~k↓ + vk a
†
−~k↑

I With the HFB solution for uk and vk , we can write

K̂ = EHFB +
∑
~kσ

Ek β
†
~kσ
β~kσ+ :V̂ :

:V̂ : = V04 ββββ + V13 β
†βββ + V22 β

†β†ββ + V31 β
†β†β†β + V40 β

†β†β†β†

I Treat :V̂ : as a perturbation

I Example: leading correction to GS energy is second order

E2 = − 1

4!

∑
ijkl

|〈ijkl |V̂40|HFB〉|2

Ei + Ej + Ek + El
with |ijkl〉 = β†i β

†
j β
†
kβ
†
l |HFB〉



BMBPT at second and third order

I In practice, E2 has three terms corresponding to three diagrams:

upwards going line u2
k

downwards going line v 2
k

anomalous line ukvk
horizontal dashed line V0(q, q′)

I Summation over intermediate 4 QP states:
12 (four momenta) −3 (momentum conservation) −3 (rotational invariance)
= 6 dimensional integral, evaluated with MC integration with importance sampling

I Third-order correction E3 has 27 terms (only three examples shown):

I Use Mathematica to automatically
generate all terms

I Number of integrations:
18 (six momenta)
−6 (momentum conservation)
−3 (rotational invariance)
= 9 dimensions



Cutoff dependence of HF(B)+(B)MBPT GS energy
ε
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[exp.: Horikoshi et al. (2017), kF a expansion: Wellenhofer et al. (2021)]

I Approximate cutoff independence reached in a region of small cutoffs (Λ ≤ 3kF )
at weak coupling

I Inclusion of pairing (thick vs thin lines) very important at stronger coupling

I For Λ ' 1.5− 2kF , results are close to experimental ones



Discussion

I BMBPT3 weakens cutoff dependence but is not enough to remove it

What is missing?

I Higher orders of BMBPT

Is it efficient to expand about the HFB GS although we know that
screening reduces the gap?

I Induced three-body force (3BF) and higher-body forces:

even if there is no 3BF in the limit Λ→∞, at finite Λ
there will be an effective 3BF to compensate for the
contributions of loop momenta above Λ in diagrams like
this one

I BMBPT expands the perturbed GS in terms of fermionic QP states:

approaching the BEC regime, bosonic degrees of freedom
(Bogoliubov-Anderson mode) become progressively more important
which require resummation of (Q)RPA diagrams



Differences between cold atoms and neutron matter

The nn interaction is more complicated:

I Even at the lowest relevant densities, the finite range of the nn
interaction is not negligible

I Not only s-wave, but also higher partial waves:

in practice we include waves up to L = 6

I Coupling between different L due to tensor force

I We use Vlow-k matrix elements [Bogner et al. 2007] generated from
AV18 or chiral interactions (both give practically the same results)

I Although it is relatively weak in pure neutron matter, the
3BF (neglected here) could play a role at higher densities



Neutron-matter energy (in units of E0) as fct. of kF

I In analogy with the cold atoms case, we expect best results for Λ ' 1.5− 2kF

I So far only BMBPT2 results available, BMBPT3 is work in progress

I Energies too low at high densities: missing 3BF?



Conclusions

I HFB+BMBPT with low-momentum interactions successfully used in
nuclear structure calculations (e.g. by the Saclay group)

I In infinite matter, one can scale the cutoff Λ with kF

I Low-momentum interactions give a better HF field and hence better results
already at the mean-field (HFB) level and corrections are perturbative

Outlook

I BMBPT3 for neutron matter: work in progress

I Missing (“genuine” and “induced”) 3BF: in-medium SRG method?

I Can IMSRG also help to solve the screening problem?

I Contribution of collective modes: work in progress

I Long-term objective: include also protons (neutron-star core)



Tabakin’s formula for the separable interaction

V0(q, q) = − sin δ(q)

mq
exp

(
2

π
P
∫ ∞

0

dq′
q′δ(q′)

q2 − q′ 2

)

g0 = V0(0, 0) , F (q) =
√
V0(q, q)/g0


