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The ultracold family: Bosons & 
Fermions

Typical values:














smicrometersizes

nanoKelvinestemperatur

atomsnumbers

501:

10010:

1010: 63



Controlling the system...
 Bosons and/or fermions

 Geometry (1D / 2D) 

 Long-range interactions

 Add disorder

 Simulate a magnetic field through a rotation or with 
optical tools

 Time-dependence (and to a certain extent space-
dependence) of the parameters of the Hamiltonian 

 Explicit tuning of the interactions via Feshbach 
resonances

 Optical lattices (i.e., periodic potentials and minima of 
the potential located on a lattice) 



Experimental setup (I)

Magnetic harmonic potential:  222222
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Experimental setup (II)
Using optical lattices:

 kxVV 2
0 cos     kykxVV 22

0 coscos 

Other configurations (like 
ladders, coupled cigars 
or stars) are as well 
possible:



Realization by purpose of a model Hamiltonian 
(or an effective model) of interest in an 
experimental setup with highly tunable 
parameters

Quantum Simulations



Ultracold atoms as 
quantum simulators of:

 Strongly interacting lattice systems (e.g., Fermi 
 and/or Bose Hubbard-like models )

 Quantum magnetism

 Fermionic superfluids with Cooper pairs

 Low-dimensional systems

 Quantum Hall physics

 Topological states of matter

 Field theories 

 ... 

 



Ultracold bosons in an optical 
lattice

e.g., a 1D lattice 

It is possible to control:
- barrier height
- interaction term
- the shape of the network
- the dimensionality (1D, 2D, …)
- the tunneling among planes or 
among tubes (in order to have a 
layered structure)
…

V opt ( x)=V 0 sin
2(kx)



Effective Hamiltonian for ultracold 
bosons in optical lattices (I)

Ĥ=∫ d r⃗ (ψ̂+ ( r⃗ )[−ℏ
2

2m
∇
2
+V opt ( r⃗ )] ψ̂ ( r⃗ )+g0 ψ̂

+ ( r⃗ ) ψ̂+ ( r⃗ ) ψ̂ ( r⃗ ) ψ̂ ( r⃗ ))

In second quantization, the full quantum many-body Hamiltonian is 

A very good description of (equilibrium and dynamical) low-energy 
properties – valid for large values of lattice height - is obtained using the 
Ansatz

ψ̂ ( r⃗ )=∑
i

b̂iΦi ( r⃗ )

Wannier functions 
(to be determined)

tight-binding Ansatz 
[D. Jaksch et al., PRL (1998)]

One gets...



n̂i≡b̂i
+ b̂i NT numberof particleson N sites filling f=

NT

N
Bose-Hubbard Hamiltonian

Effective Hamiltonian for ultracold 
bosons in optical lattices (II)

Ĥ=−t ∑
<i , j>

( b̂i
+ b̂ j+h . c .)+

U
2
∑
i

n̂i( n̂i−1)

t/U>>1  Superfluid 
dynamics described by the discrete 
nonlinear Schroedinger equation  

t/U<<1  Mott 
insulator quantum 
fluctuations dominate

increasing the scattering length 
or 

increasing the barrier height

the ratio U/t increases



Effective Hamiltonian for ultracold 
fermions in optical lattices

Similarly, for a dilute single-species Fermi gas the effective  Hamiltonian is 

Notice that informations about the geometry and the Wannier functions are 
into the matrix A and the coefficients t, U: 

Ĥ=−t ∑
<i , j>

( ĉ i
+ ĉ j+h.c. )≡−t∑

i , j

A ij ĉi
+ ĉ j

t=−∫d r⃗ Φ i
∗
( r⃗ )[−ℏ

2

2m
∇

2
+V opt ( r⃗ )]Φ j ( r⃗ )

U=g0∫d r⃗∣Φi ( r⃗ )∣
4

( f≤1)
TIGHT-BINDING HAMILTONIAN



Quantum simulation of graphene 
properties (I) 

Implementable putting ultracold fermions 
in lattices having Dirac points 

e.g., in 2D, using the honeycomb lattice 
itself: using three optical lattices 

Tight-binding model on the honeycomb 
(alias, graphene)



Ĥ=−t∑
i , j

A ij ĉ i
+ ĉ j

The 3D case 

Not a straigthforward generalization of the 2D case: indeed, having 
2D honeycomb coupled along the z-direction in general destroys the 
Dirac cones.

More formally: 

adjacency matrix of the 
graph [cfr. N. Biggs, 
Algebraic Graph Theory] 

−t∑
j

A ijϕ α ( j )=ϵαϕα ( i ) d̂α=∑
j⃗

ϕα ( j ) ĉ j⃗

Ĥ=∑
α
ϵα d̂α

+ d̂α



The requests are that:

i) the single particle spectrum has Dirac points 
(and cones) and the graph has spectral dimension 3

ii) that the the adjacency matrix has nearest- 
neighbour couplings

iii) not too many lasers are needed...

Although symmetries have been studied 
[A.A. Abrikosov and S.D. Beneslavskii, JETP (1970) – 

J.L. Manes, PRB (2012)], not easy to satisfy in practice 
i)-ii)-iii)...



A possible solution: use a synthetic 
magnetic field

 Using rotating traps 
[see the review N. Cooper, Adv. Phys. (2008)]

 With spatially dependent optical couplings 
between internal states of the atoms [Y.-J. Lin et al., 
Nature (2009) – J. Dalibard et al, RMP (2011)]
 



For our purposes: single-species 
Fermi gas in a p-flux magnetic field

(at half filling)

Ĥ=−t ∑
<i , j>

ĉ i
+ e−i aij ĉ j+h.c.

a ij=∫
i

j

A⃗⋅d l⃗ B⃗≡rot A⃗=p (1,1,1 )

(we can also assume different hoppings t
x
, t

y
 and t

z 
along the 

three directions x, y and z)



Single-particle spectrum and Dirac 
cones (I)

E
k⃗
=±2√ t x

2 cos2 k x+t y
2 cos2k y+t z

2 cos2 k z

Using the Hasegawa's gauge: 

A⃗=p (0,x− y , y−x )
 [Y. Hasegawa, J. Ph. Soc. Jap. (1990)]

one gets 

with k belonging to the first (magnetic) Brillouin zone. 



Single-particle spectrum and Dirac 
cones (II)

- For t
z 
=0 the results for the 2D case with p-flux are  

 retrieved [I. Affleck and ].B. Marston, PRB (1988)] are retrieved.

- Excitations around the two inequivalent Dirac points 
 obey the 3D Dirac equation.

 - In the limit of vanishing  t
z
 one retrieves the 2D Dirac 

 equation.
 
- A mass term can be added using a Bragg pulse.

- The Dirac points does not depend on t
x
, t

y
 and t

z
.

- With an attractive interaction U one has a semimetal-
superfluid transition at a finite value of U

- Extendable to many components



Applications

- With a spatial control of the synthetic magnetic 
field one can an e.m. field.

- With a dynamical gauge field one can then have a 
simulation of the 3+1 QED.

- One may also think to have the fermions living in 
one dimension and the gauge field in an higher 
dimension: this has been studied in the context of 
graphene, giving rise to pseudo-QED [E.C. Marino, Nucl. 

Phys. B, 1993]. In one dimension one would then have 
the pseudo-Schwinger model.



Outline

 Ultracold atoms as quantum simulators 
 for relativistic field theories

 

 Symmetry-locked superfluid phases

 Topological Kondo model in junctions of 
 Tonks-Girardeau gases



Small Dictionary (I) 



Small Dictionary (II) 



Motivations

 → physics of interacting fermionic        
     mixtures 

 → QCD inspired problem(s)



The proposed quantum simulation
→ 4 fermionic species: e.g., 4 species of Yb or a 
mixture 171Yb-173Yb

→

→

→    



Order parameters

a 2x2 matrix

Order  parameters:

We consider



Results (I)

We find a “two-flavors” symmetry-locked phase 
(TFSL) for U

cf
>U:

[L. Lepori, A. Trombettoni, and W. Vinci, Europhys. Lett. (2015); J. Pinto Barros, L. Lepori, and A. 
Trombettoni PRA (2017); J. Pinto Barros, M. Burrello, and A. Trombettoni (2021)]



Results (II)

vortices in the CFL phase have fractional flux

Non-TFSL superfluid phase abelian: 

“Two-Flavours locking” phase :  

Spont. Symm. Break.



Results (III)

But it does survive when interactions are 
different? Especially if U

f
<0...  



Results (IV)

 The previous are mean-field results → combining with a strong-
coupling computation 

 To have a “true” color-flavor locking: even without putting 
interactions, use dynamical gauge fields 
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 Symmetry-locked superfluid phases

 Link models → how to generate plaquette 
 terms?



 Basic quantities 
on the lattice

𝑈𝜇   (𝒏)=𝑒𝑖𝑒𝑎𝐴𝜇   (𝒏 )

𝑈𝜇𝜈 (𝒏 )=𝑈𝜇   (𝒏 )𝑈𝜈 (𝒏+ �̂�)𝑈𝜇
† (𝒏+�̂� )𝑈𝜈

† (𝒏 )

𝑈𝜇𝜈 (𝒏 )=𝑒𝑖𝑒𝑎2𝐹 𝜇𝜈   (𝒏)

LINKS  

PLAQUETTES  



 Link models
ELECTRIC FIELD  

KOGUT-SUSSKIND HAMILTONIAN  

ROKHSAR-KIVELSON HAMILTONIAN

Quantum link models → replace the Wilson operators 
by discrete quantum degrees of freedom, still living on 
the links of the lattice (quantum links)



 Link models (II)
Bosonic quantum link models

Fermionic quantum link models: in terms of fermionic 
states and occupation numbers, we denote the two states of 
the local Hilbert space with |0⟩ and |1⟩ 



→ 4 correlated hoppings + angular momentum conservation 
[Zohar, Cirac, and Reznik, PRA (2013)]

→ Dual formulation: single hopping  + conditional operations on the 

nearest-neigbours [A. Celi et al,  PRX (2020)]

Proposals for having 
plaquette terms



A proposal using a spin 
dependent-optical lattice



Derivation of the plaquette 
term in perturbation theory 

At the third order of the perturbation theory for large h one finds:

(hard-core condition assumed)

 [P. Fontana, J. Pinto-Barros, M. Burrello, and A. 
Trombettoni, to be submitted]



Connections with link models 



Conclusions 

Ultracold atoms as quantum simulators for field 
theories models

Ultracold fermions and gauge fields are a tool to 
emulate mechanisms such as the color-flavor 
locking

Quantum simulation of link models with plaquette 
terms is demanding → we discussed a proposal 
involves spinor dipolar gases
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