A. Trombettoni (University of Trieste \& INFN)

Trento, ECT* workshop Connections between cold atoms and nuclear matter: From low to high energies, 8 June 2022

Outline

Ultracold atoms as quantum simulators for field theories

Symmetry-locked superfluid phases

Link models

Outline

> Ultracold atoms as quantum simulators for field theories
> Symmetry-locked superfluid phases

The ultracold family: Bosons \&

Typical values:

numbers: $10^{3}-10^{6}$ atoms
temperatures : 10-100 nanoKelvin
sizes : 1-50 micrometers

Controlling the system...

$>$ Bosons and/or fermions
$>$ Geometry (1D / 2D)
$>$ Long-range interactions
Add disorder
> Time-dependence (and to a certain extent spacedependence) of the parameters of the Hamiltonian

Simulate a magnetic field through a rotation or with optical tools
> Explicit tuning of the interactions via Feshbach resonances

Optical lattices (i.e., periodic potentials and minima of the potential located on a lattice)

Experimental setup (I)

Magnetic harmonic potential: $V(x, y, z)=\frac{1}{2} m\left(\omega_{x}^{2} x^{2}+\omega_{y}^{2} y^{2}+\omega_{z}^{2} z^{2}\right)$

$$
\omega_{x}=\omega_{y}=\omega_{z}
$$

$$
\omega_{x} \ll \omega_{y}=\omega_{z}
$$

$$
\omega_{x} \gg \omega_{y}=\omega_{z}
$$

Experimental setup (II)

Using optical lattices:

$$
V=V_{0} \cos ^{2}(k x)
$$

Other configurations (like ladders, coupled cigars or stars) are as well possible:

$$
V=V_{0}\left|\cos ^{2}(k x)+\cos ^{2}(k y)\right|
$$

Quantum Simulations

Realization by purpose of a model Hamiltonian (or an effective model) of interest in an experimental setup with highly tunable parameters

Ultracold atoms as quantum simulators of:

> Strongly interacting lattice systems (e.g., Fermi and/or Bose Hubbard-like models)
> Quantum magnetism
Fermionic superfluids with Cooper pairs
>Low-dimensional systems

- Quantum Hall physics

Topological states of matter
$>$ Field theories

Ultracold bosons in an optical lattice

$$
\begin{aligned}
& V_{o p t}(x)=V_{0} \sin ^{2}(k X) \\
& \text { e.g., a 1D lattice }
\end{aligned}
$$

It is possible to control:

- barrier height
- interaction term
- the shape of the network
- the dimensionality (1D, 2D, ...)
- the tunneling among planes or among tubes (in order to have a layered structure)

Effective Hamiltonian for ultracold bosons in optical lattices (I)

In second quantization, the full quantum many-body Hamiltonian is
$\hat{H}=\int d \vec{r}\left(\hat{\psi}^{+}(\vec{r})\left[\frac{-\hbar^{2}}{2 m} \nabla^{2}+V_{o p t}(\vec{r})\right] \hat{\psi}(\vec{r})+g_{0} \hat{\psi}^{+}(\vec{r}) \hat{\psi}^{+}(\vec{r}) \hat{\psi}(\vec{r}) \hat{\psi}(\vec{r})\right)$

A very good description of (equilibrium and dynamical) low-energy properties - valid for large values of lattice height - is obtained using the Ansatz

$$
\begin{array}{cc}
\hat{\psi}(\vec{r})=\sum_{i} \hat{b}_{i} \Phi_{i}(\vec{r}) \quad \text { tight-binding Ansatz } \\
{[\mathrm{D} . \text { Jaksch et al., PRL (1998)] }}
\end{array}
$$

Wannier functions
(to be determined)
One gets...

Effective Hamiltonian for ultracold bosons in optical lattices (II)

$$
\begin{gathered}
\hat{H}=-t \sum_{<i, j>}\left(\hat{b}_{i}^{+} \hat{b}_{j}+h . c .\right)+\frac{U}{2} \sum_{i} \hat{n}_{i}\left(\hat{n}_{i}-1\right) \\
\hat{n}_{i}=\hat{b}_{i}^{+} \hat{b}_{i} \quad N_{T} \text { number of particles on } N \text { sites filling } f=\frac{N_{T}}{N} \\
\text { Bose-Hubbard Hamiltonian }
\end{gathered}
$$

$\mathrm{t} / \mathrm{U} \gg 1 \rightarrow$ Superfluid
dynamics described by the discrete nonlinear Schroedinger equation
$\mathrm{t} / \mathrm{U} \ll 1 \rightarrow$ Mott insulator quantum fluctuations dominate

Effective Hamiltonian for ultracold fermions in optical lattices

Similarly, for a dilute single-species Fermi gas the effective Hamiltonian is

$$
\begin{aligned}
& \hat{H}=-t \sum_{<i, j>}\left(\hat{c}_{i}^{+} \hat{c}_{j}+h . c .\right) \equiv-t \sum_{i, j} A_{i j} \hat{c}_{i}^{+} \hat{c}_{j} \\
& \text { TIGHT-BINDING HAMILTONIAN }
\end{aligned}
$$

Notice that informations about the geometry and the Wannier functions are into the matrix A and the coefficients t, U :

$$
\begin{gathered}
t=-\int d \vec{r} \Phi_{i}^{*}(\vec{r})\left[\frac{-\hbar^{2}}{2 \mathrm{~m}} \nabla^{2}+V_{o p t}(\vec{r})\right] \Phi_{j}(\vec{r}) \\
U=g_{0} \int d \vec{r}\left|\Phi_{i}(\vec{r})\right|^{4}
\end{gathered}
$$

Quantum simulation of graphene properties (I)

Implementable putting ultracold fermions

 in lattices having Dirac pointse.g., in 2D, using the honeycomb lattice itself: using three optical lattices

$$
\begin{aligned}
V(x, y)= & \sum_{j=1,2,3} V_{j} \sin ^{2}\left[k_{L}\left(x \cos \theta_{j}+y \sin \theta_{j}\right)+\pi / 2\right] \\
& \theta_{1}=\pi / 3, \theta_{2}=2 \pi / 3, \theta_{3}=0
\end{aligned}
$$

Tight-binding model on the honeycomb (alias, graphene)

The 3D case

Not a straigthforward generalization of the 2D case: indeed, having 2D honeycomb coupled along the z-direction in general destroys the Dirac cones.

More formally:

$$
\hat{H}=-t \sum_{i, j} A_{i j} \hat{c}_{i}^{+} \hat{c}_{j}
$$

adjacency matrix of the graph [cfr. N. Biggs, Algebraic Graph Theory]

$$
\begin{gathered}
-t \sum_{j} A_{i j} \phi_{\alpha}(j)=\epsilon_{\alpha} \phi_{\alpha}(i) \quad \hat{d}_{\alpha}=\sum_{j} \phi_{\alpha}(j) \hat{c}_{j} \\
\hat{H}=\sum_{\alpha} \epsilon_{\alpha} \hat{d}_{\alpha}^{+} \hat{d}_{\alpha}
\end{gathered}
$$

The requests are that:

i) the single particle spectrum has Dirac points (and cones) and the graph has spectral dimension 3
ii) that the the adjacency matrix has nearestneighbour couplings
iii) not too many lasers are needed...

Although symmetries have been studied [A.A. Abrikosov and S.D. Beneslavskii, JETP (1970) J.L. Manes, PRB (2012)], not easy to satisfy in practice i)-ii)-iii)...

A possible solution: use a synthetic magnetic field

$>$ Using rotating traps [see the review N. Cooper, Adv. Phys. (2008)]

> With spatially dependent optical couplings between internal states of the atoms [r.-.. Lin et al., Nature (2009) - J. Dalibard et al, RMP (2011)]

For our purposes: single-species Fermi gas in a π-flux magnetic field (at half filling)

$$
\begin{gathered}
\hat{H}=-t \sum_{<i, j>} \hat{c}_{i}^{+} e^{-i a_{i j}} \hat{c}_{j}+\text { h.c. } \\
a_{i j}=\int^{j} \vec{A} \cdot d \vec{l} \quad \vec{B} \equiv \operatorname{rot} \vec{A}=\pi(1,1,1)
\end{gathered}
$$

(we can also assume different hoppings $\mathrm{t}_{\mathrm{x}^{\prime}} \mathrm{t}_{\mathrm{y}}$ and t_{z} along the three directions x, y and z)

Single-particle spectrum and Dirac cones (I)

Using the Hasegawa's gauge:

$$
\vec{A}=\pi(0, x-y, y-x)
$$

[Y. Hasegawa, J. Ph. Soc. Jap. (1990)]
one gets

$$
E_{\vec{k}}= \pm 2 \sqrt{t_{x}^{2} \cos ^{2} k_{x}+t_{y}^{2} \cos ^{2} k_{y}+t_{z}^{2} \cos ^{2} k_{z}}
$$

with \mathbf{k} belonging to the first (magnetic) Brillouin zone.
[L. Lepori et al, Europhys. Lett. (2010), PRB (2016);
M. Burrello et al, JPA (2017); J. Pinto Barros, M. Burrello, and A. Trombettoni (2020)]

Single-particle spectrum and Dirac cones (II)

- For $t_{z}=0$ the results for the 2D case with π-flux are retrieved [I. Affleck and].B. Marston, PRB (1988)] are retrieved.
- Excitations around the two inequivalent Dirac points obey the 3D Dirac equation.
- In the limit of vanishing t_{z} one retrieves the 2D Dirac equation.
- A mass term can be added using a Bragg pulse.
- The Dirac points does not depend on t_{x}, t_{y} and t_{z}.
- With an attractive interaction U one has a semimetalsuperfluid transition at a finite value of U
- Extendable to many components

Applications

- With a spatial control of the synthetic magnetic field one can an e.m. field.
- With a dynamical gauge field one can then have a simulation of the $3+1$ QED.
- One may also think to have the fermions living in one dimension and the gauge field in an higher dimension: this has been studied in the context of graphene, giving rise to pseudo-QED [E.C. Marino, Nucl. Phys. B, 1993]. In one dimension one would then have the pseudo-Schwinger model.

Outline

\rangle Ultracold atoms as quantum simulators for relativistic field theories

Symmetry-locked superfluid phases

Small Dictionary (I)

Abelian transformation: only one parameter/generator

$$
U=e^{i \phi}
$$

Non Abelian symmetry : more

$$
\begin{gathered}
U=e^{i \alpha_{j} T^{j}} \\
{\left[T_{i}, T_{k}\right] \neq 0}
\end{gathered}
$$

Small Dictionary (II)

Global transformation :
parameters NOT space-time

$$
U=e^{i a_{j} T^{j}}
$$

dependent

Local (gauge) trasnformation :
parameters space-time $\quad U\left(x^{\mu}\right)=e^{i a_{j}\left(x^{\mu}\right) T^{j}}$ dependent

Motivations

\rightarrow physics of interacting fermionic mixtures

\rightarrow QCD inspired problem(s)

The proposed quantum simulatio

$\rightarrow 4$ fermionic species: e.g., 4 species of Yb or a mixture ${ }^{171} \mathbf{Y b}-{ }^{173} \mathbf{Y b}$
$\rightarrow \quad 2$ doublets $\binom{c_{1}}{c_{2}}\binom{f_{1}}{f_{2}}$
$\rightarrow \quad U(2)_{c} \times U(2)_{f}$ (global) invariant Hamiltonian

$$
\begin{aligned}
& \rightarrow \quad \hat{H}_{\text {int }}=-U_{c} \sum_{i, c}\left(c_{i ; c}^{\dagger} c_{i ; c}\right)^{2}-U_{f} \sum_{i, f}\left(c_{i, f}^{\dagger} c_{i ; f}\right)^{2}+ \\
&-U_{c f} \sum_{i, c, f} c_{i ; c}^{\dagger} c_{i ;} c_{i, f}^{\dagger} c_{i ; f} \\
& {\left[\begin{array}{c}
\binom{c_{1}}{c_{2}} \equiv\binom{c_{g}}{c_{r}} \\
\binom{f_{1}}{f_{2}} \equiv\binom{c_{u}}{c_{d}}
\end{array}\right.}
\end{aligned}
$$

Order parameters

$$
\left\langle c_{i ; u} c_{i, d}\right\rangle \equiv \Delta_{f},\left\langle c_{i, r} c_{i ; g}\right\rangle \equiv \Delta_{c},\left\langle c_{i ; c} c_{i ; f}\right\rangle \equiv \Delta_{c f}
$$

Order parameters:

$$
2\left|\Delta_{0}\right|^{2}=\left(\left|\Delta_{c}\right|^{2}+\left|\Delta_{f}\right|^{2}\right)
$$

$$
\Delta_{+}^{2}=\operatorname{Tr}\left(\Delta_{c f}^{\dagger} \Delta_{c f}\right), \Delta_{-}^{2}=2 \operatorname{det} \Delta_{c f}
$$

We consider $U_{c}=U_{f} \equiv U$

Results (I)

$$
\begin{aligned}
& 2\left|\Delta_{o}\right|^{2}=\left(\left|\Delta_{c}\right|^{2}+\left|\Delta_{f}\right|^{2}\right) \\
& \Delta_{+}^{2}=\operatorname{Tr}\left(\Delta_{c f}^{\dagger} \Delta_{c f}\right), \Delta_{-}^{2}=2 \operatorname{det} \boldsymbol{\Delta}_{c f}
\end{aligned}
$$

We find a "two-flavors" symmetry-locked phase

 (TFSL) for $\mathbf{U}_{\mathrm{cf}}>\mathbf{U}$:The minimization of F with respect to $\Delta_{ \pm}$and Δ_{0} gives $\left|\Delta_{+}\right|=\left|\Delta_{-}\right|$and $\left|\Delta_{c}\right|=\left|\Delta_{f}\right|$. We find that for $U_{c f} \neq$ U the gap equations are not consistent if both Δ_{+}and Δ_{0} are non-zero both $T=0$ and finite temperature and two phases are found as follows (see fig. 1): i) Non-TFSL phase: for $U_{c f}<U$ it is $\Delta_{+}=0$ and $\Delta_{0} \neq 0$; ii) TFSL phase: for $U_{c f}>U$ it is $\Delta_{0}=0$ and $\Delta_{+} \neq 0$.

[L. Lepori, A. Trombettoni, and W. Vinci, Europhys. Lett. (2015); J. Pinto Barros, L. Lepori, and A.
Trombettoni PRA (2017); J. Pinto Barros, M. Burrello, and A. Trombettoni (2021)]

Results (II)

Non-TFSL superfluid phase abelian:
$U(2)_{c} \times U(2)_{f} \rightarrow S U(2)_{c} \times S U(2)_{f}$
"Two-Flavours locking" phase :
Spont. Symm. Break. $U(2)_{c} \times U(2)_{f} \rightarrow U(2)_{c+f}$

$$
\downarrow
$$

vortices in the CFL phase have fractional flux

Results (III)

But it does survive when interactions are different? Especially if $U_{f}<0 \ldots$

$$
\begin{aligned}
& a_{171-173}=-578 a_{0} \\
& a_{173-173}=+200 a_{0} \\
& a_{171-171}=-3 a_{0}
\end{aligned}
$$

Results (IV)

The previous are mean-field results \rightarrow combining with a strongcoupling computation

To have a "true" color-flavor locking: even without putting interactions, use dynamical gauge fields

Outline

 for field theories$>$ Link models

Outline

> Ultracold atoms as quantum simulators for field theories
$>$ Link models \rightarrow how to generate plaquette terms?

Basic quantities on the lattice

[Wilson, PRD (1974)]
$$
U_{\mu \nu} \mid \boldsymbol{n}=e^{i e a^{2} F_{\mu \nu} \mid \boldsymbol{n}}
$$
PLAQUETTES

Link models

ELECTRIC FIELD

$$
\left[U_{\mu}(\mathbf{n}), E_{\nu}\left(\mathbf{n}^{\prime}\right)\right]=-\delta_{\mu, \nu} \delta_{\mathbf{n}, \mathbf{n}^{\prime}} U_{\mu}(\mathbf{n})
$$

KOGUT-SUSSKIND HAMILTONIAN

$$
H_{g}=\frac{e^{2}}{2} \sum_{\mathbf{n}, \mu} E_{\mu}^{2}(\mathbf{n})-\frac{1}{4 a^{2} e^{2}} \sum_{P}\left(U_{\mu \nu}+U_{\mu \nu}^{\dagger}\right)
$$

ROKHSAR-KIVELSON HAMILTONIAN

$$
H_{R K}=H_{g}+\lambda \sum_{P}\left(U_{\mu \nu}+U_{\mu \nu}^{\dagger}\right)^{2}
$$

Quantum link models \rightarrow replace the Wilson operators by discrete quantum degrees of freedom, still living on the links of the lattice (quantum links)

Link models (II)

Bosonic quantum link models

$$
U_{\mu}(\mathbf{n})=S_{\mu}^{+}(\mathbf{n}), \quad U_{\mu}^{\dagger}(\mathbf{n})=S_{\mu}^{-}(\mathbf{n}), \quad E_{\mu}(\mathbf{n})=S_{\mu}^{z}(\mathbf{n})
$$

Fermionic quantum link models: in terms of fermionic states and occupation numbers, we denote the two states of the local Hilbert space with $|0\rangle$ and $|1\rangle$

$$
|1\rangle=c_{\mu}^{\dagger}(\mathbf{n})|0\rangle \quad U_{\mu \nu}(\mathbf{n})=c_{\mu}(\mathbf{n}) c_{\nu}(\mathbf{n}+\hat{\nu}) c_{\mu}^{\dagger}(\mathbf{n}+\hat{\nu}) c_{\nu}^{\dagger}(\mathbf{n})
$$

Proposals for having plaquette terms

$\rightarrow 4$ correlated hoppings + angular momentum conservation [Zohar, Cirac, and Reznik, PRA (2013)]
\rightarrow Dual formulation: single hopping + conditional operations on the nearest-neigbours [A. Celi et al, PRX (2020)]

A proposal using a spin dependent-optical lattice

Derivation of the plaquette term in perturbation theory

$$
H_{1}=H_{\mathrm{hop}}+H_{\mathrm{int}} \equiv-t \sum_{\langle i, j\rangle_{d}, m}\left(b_{i m}^{\dagger} b_{j m}+\text { h.c. }\right)+\frac{1}{2} \sum_{\langle i, j\rangle, m, m^{\prime}} V_{m m^{\prime}}^{i, j} b_{x m}^{\dagger} b_{y m^{\prime}}^{\dagger} b_{x m^{\prime}} b_{y m}
$$

(hard-core condition assumed)
At the third order of the perturbation theory for large h one finds:
$H^{(\mathrm{eff})}=\frac{t^{2}}{h} \sum_{\langle i, j\rangle_{d}, m, m^{\prime}} n_{i m} n_{j m^{\prime}}-\frac{1}{h} \sum_{\langle i, j\rangle, m, m^{\prime}}\left(V_{m m^{\prime}}^{i, j}\right)^{2} n_{i m} n_{j m^{\prime}}+\frac{t^{2}}{h} \sum_{\substack{i, i^{\prime}, j, j^{\prime} \in \\ m, m^{\prime}}} V_{m m^{\prime}}^{\left(i, i^{\prime}\right)} b_{j^{\prime} m}^{\dagger} b_{j m^{\prime}}^{\dagger} b_{i^{\prime} m^{\prime}} b_{i m}$

Connections with link models

$$
\begin{gathered}
U_{i m}=b_{i m}^{\dagger}, \quad U_{i m}^{\dagger}=b_{i m} \\
E_{i m} \equiv n_{i m}-\frac{1}{2} \\
H^{(\mathrm{eff})}=\sum_{\langle x, y\rangle_{d}, m, m^{\prime}} \lambda_{1}^{\left(m m^{\prime}\right)} E_{x m} E_{y m^{\prime}}-\sum_{\langle x, y\rangle, m, m^{\prime}} \lambda_{2}^{\left(m m^{\prime}\right)} E_{x m} E_{y m}-J \sum_{\square}\left(U_{\square}+U_{\square}^{\dagger}\right)
\end{gathered}
$$

Conclusions

Ultracold atoms as quantum simulators for field theories models

Ultracold fermions and gauge fields are a tool to emulate mechanisms such as the color-flavor locking

Quantum simulation of link models with plaquette terms is demanding \rightarrow we discussed a proposal involves spinor dipolar gases

Acknoledgements

P. Fontana
(SISSA \rightarrow Barcelona)

J. Pinto-Barros
(ETH Zurich)

L. Lepori
(Firenze)

M. Burrello (Copenhagen)

Thank you!

