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FIG. 3: (color online) Equation of state for neutron matter

using di↵erent potentials. Shown are QMC results for the

s-wave potential (circles) and for the AV4 (squares). Also

shown is the analytic expansion of the ground-state energy of

a normal fluid (line).

below) [28], a Dirac-Brueckner-Hartree-Fock calculation
[12], a lattice chiral EFT method at next to leading or-
der [14] (see also Ref. [15]), and an approach that makes
use of chiral N2LO three-nucleon forces.[16] Of these,
Refs. [9], [28], and [16] include a three-nucleon inter-
action, though at the densities we consider, these are not
expected to be significant. Qualitatively all of these re-
sults agree within 20%.

A series of ab initio calculations for neutron matter us-
ing the AFDMC method have been published beginning
in 2005.[25] After our analysis of the finite-size e↵ects –
described for BCS in section II B and for QMC in Refs.
[32, 38] – was published in late 2007, the AFDMC group
repeated their calculations for larger systems, [28, 30]
bringing them closer to our results, though still, as can
be seen from Fig. 4 the results are distinct. Given the
ab initio nature of the powerful AFDMC method, [43] we
have attempted to compare results more extensively. The
advantage of the AFDMC approach is that it includes an
interaction which is more complete than the simpler ones
used here. The disadvantage of the AFDMC approach is
that it does not provide a variational bound to the energy,
and hence the wave functions are chosen from another
approach. In the calculations of Refs. [25, 28, 30] the
wave function was taken from a Correlated-Basis Func-
tion (CBF) approach that included a BCS-like initial
state. The pairing in that variational state is unusually
large, and in fact increases as a fraction of EF when the
density is lowered.

The QMC AV4 results use a wave function that has
been variationally optimized. QMC thus gives ener-
gies that are considerably lower than the AFDMC re-
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FIG. 4: (color online) Equation of state for neutron matter

compared to various previous results. Despite quantitative

discrepancies, all calculations give essentially similar results.

Our lowest density corresponds to kF a = �1.

sults. As both the wave functions and the interactions
are di↵erent in the previous QMC and AFDMC results,
we have repeated our calculations using the same input
wave function [44] used by the AFDMC group (which
comes from the same Correlated-Basis Function calcula-
tion) at kF = 0.4 fm�1 and at kF a = �10. We find that
in QMC the AV4 results for the optimized wave func-
tion [0.5866(6) MeV and 0.5870(3) MeV, respectively] are
consistently lower in energy than those using the CBF as
input [0.6254(9) MeV and 0.6014(7) MeV, respectively].
This means that they are closer to the true ground-state
energy for the Hamiltonian we consider. It would be
worth studying in more detail the di↵erences arising from
the di↵erent Hamiltonians; the most important remain-
ing di↵erences are likely the spin-orbit and pion-exchange
terms in the p-wave interaction. Extensions of previous
GFMC calculations [10] to lower densities would help to
resolve these issues.

It is interesting to note that at the lowest densities con-
sidered, the AFDMC and QMC results are still distinct.
At those densities contributions of p- and higher partial
waves in the Hamiltonian should be very small, and thus
the two methods should give identical results. The three-
nucleon interaction included in the AFDMC calculations
is one possible source of the di↵erence, though this ap-
pears unlikely at the smallest densities considered. This
suggests that the CBF wave function at very low densi-
ties is problematic; additional studies with Jastrow-BCS
or other wave functions would be useful.

(b)

Figure 1: The equation of state of low-density neutron matter compared to that
of cold atoms at the same value of Fermi momentum times scattering length
(kFa). The left side compares cold atoms and neutron matter (see text), and the
right panel shows neutron matter results for di↵erent methods over a wider range
of kFa. Figures taken from (21,22).

Fermi Gas wave function. The radial form of the function �(r) and f(r) are
determined in variational calculations.

These calculations have a fixed-node approximation that implies they provide
variational upper bounds to the true energy. They have proven to be very accuate
in studies of cold atom systems, where accurate lattice calculations without a
fixed-node approximation are available (3). These calculations are also in very
good agreement with cold atom experiments (2).

The results of the equation-of-state calculations are shown in Fig. 1. The
left panel compares neutron matters and cold atoms at very low density. The
vertical axis indicates the ratio of fully interacting energy to the energy of the free
Fermi gas at the same density, the horizontal axis is the Fermi momentum times
the scattering length kFa; on the upper axis the equivalent Fermi momentum
for neutron matter is indicated. At extremely low densities, or equivalently small
value of kFa, analytic results are available (24,25), and the higher-order Lee-Yang
result is plotted as a line in the figure.

Results for cold atoms with zero e↵ective range are plotted as filled blue circles,
in the limit of infinite kFa these should approach 0.37. Cold atom results for the
dependence on the e↵ective range are also available, the equation of state can be
expanded in terms of kF :

E /EFG = ⇠ + S kF re + ..., (5)

where S = 0.12(3) is a universal constant that has been determined in the lattice
calculations and in Di↵usion Monte Carlo (3, 26). Using the above equation of
including the experimental neutron-neutron e↵ective range re gives the dashed
line in the figure.

Equation of State 
Neutron Matter vs. Cold Atoms 

Dilute Neutron Matter vs UFG 

Similarity - large scattering length 
Differences- effective range, p-wave 

Neutrons have little interaction in p-waves 

 

Gezerlis, JC, PRC 2010

• Density functional from many-body 
calculations of static response/ neutrons in external field

Unitary Fermi Gas:  
Static Properties 



1S0 gap in neutron matter vs. cold atoms

Neutron Matter

agreement between  
different MC methods

Gandolfi, Palkanoglo

Cold atoms vs. NM
Gap / EF 



Quasiparticle Dispersion and the Gap 

� = �
�2k2

F

2m
� = 0.50 (03)

(kmin/kf )2 = 0.80(10)

JC and Reddy, PRL 2005

� = 0.45(05)

Spin up, down densities in a trap
ρ

ρ
radius

JC and Reddy, PRL 2007
analyzing MIT data
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Tan’s contact (from QMC) 
Gandolfi, Schmidt, JC; PRA 2011

Also related to EOS, …

pair distribution function
kF r < ~0.8

Momentum distribution function
Asymptotic form at k >~ 2 kF 

Tan’s contact in UFG via MC at T=0

Similar concepts in NP


For  scatteringe/ν



Recent Review of RF and  Bragg Spectroscopy:
Spectroscopic probes of quantum gases
Chris J. Vale  and Martin Zwierlein,  Nature Physics17, 1305–1315 (2021)

RF response: spin flip, essentially zero momentum transfer
                       high frequency tail gives contact
                       beautiful measurements at different T
                       Can be obtained from spectral function

NP analogs to  neutrino emissivity of neutron matter
                     spin flip response (to leading order)
                      q small (astrophysical energies) but not zero
                      But Hamiltonian flips/exchanges spins
                      in general, low E collective excitations (EW transitions, …)

 
Bragg spectroscopy:  high momentum transfer
                                   spin (parallel vs. anti-parallel) response can be resolved
                                   Simple single-atom coupling
                                   Can separate into parallel/anti-parallel spin response

NP analogs to neutrino and electron scattering in QE regime
                           high momentum transfer
                            one- and two-nucleon couplings



Zwierlein- RF Spectra & contact - PRL 2019
     Low (near zero) q

RF response vs. temperature

(Single Peak: Narrow at low T)

spectra at low T, peak near ω ≈ kF

Contact and condensate  
fraction vs. T



RF response: 
Analogy to neutrino emissivity in neutron matter

(cooling of neutron stars)
Compute spin susceptibility (1/H sum rule)

Sum Rule and Energy weighted sum rule

Statics: structure factor S(q) in blue
Pair correlation function (spin-spin)

in red (inset)

Reconstructed response fns
vs. density (note assuming T > Tc

Shen, Gandolfi, Reddy, JC; PRC 2013

Ignoring superfluid nature (T> Tc),
two-nucleon currents

Energy loss rate:

Want strength < 50 MeV Similarity vs. RF response
Peak near EF, large energy tail

but comes from spin exchange in H



High Momentum Transfer Response (Bragg Spectroscopy) 

Experiment: Bragg Spectroscopy and contact 
(q ~ 5 kF) 

Extracted value at unitarity roughly  
consistent with experiment 

Two distinct peaks near unitary region 
Lower energy peak dominates in BEC regime

Δ = 0.45(5)EFSascha Hoinka, Marcus Lingham, Kristian Fenech,  
Hui Hu, Chris J. Vale, Joaquın E. Drut, and  
Stefano Gandolfi, PRL(2013)

Response Functions (Bragg Spectroscopy) 
in general two peaks

Static Structure Factor

Contact



Review article by Zwierlein and Vale 
Nature Physics 2021

Parallel (red) 
and anti-parallel (blue)  

spin response 

at unitarity (top) and in BEC regime 
(bottom)

Basic Properties predicted by Tan in  OPE 

Bragg Spectroscopy 
(Vale et al)

Son and Thompson: Short-distance and short-time structure of the Unitary Fermi Gas 
PRA 81, 063634 (2010) 

OPE for unitary Fermions; many other papers since



quently discuss scaling and the related superscaling. For
light nuclei and nonrelativistic final states, exact calcula-
tions can be performed. For lower momentum transfers,
an alternative approach, the use of the Euclidean re-
sponse, is available and presented. We then study the
results obtained after a longitudinal/transverse !L /T"
separation of the cross section, and their impact on the
Coulomb sum rule. A bothersome correction, namely,
the effect of Coulomb distortion on the cross sections, is
addressed as well. We also show how data for an impor-
tant model system for nuclear theory, infinite nuclear
matter, can be obtained. Last, we address other fields of
quasielastic scattering and discuss their common aspects.

II. ELECTRON-NUCLEUS SCATTERING IN THE
IMPULSE APPROXIMATION

A. Electron-nucleus cross section

The differential cross section of the process

e + A → e! + X , !1"

in which an electron of initial four-momentum ke
#!Ee ,ke" scatters off a nuclear target to a state of four-
momentum ke!#!Ee! ,ke!", the target final state being un-
detected, can be written in the Born approximation as
!Itzykson and Zuber, 1980"

d2!

d"e!dEe!
=

#2

Q4

Ee!

Ee
L$%W$%, !2"

where #=1/137 is the fine-structure constant, d"e! is the
differential solid angle in the direction specified by ke!,
Q2=−q2, and q=ke−ke!#!& ,q" is the four-momentum
transfer.

The tensor L$%, which can be written neglecting the
lepton mass as

L$% = 2$ke
$ke!

% + ke
%ke!

$ − g$%!keke!"% , !3"

where g$%#diag!1,−1,−1,−1" and !keke!"=EeEe!
−ke ·ke! is fully specified by the measured electron kine-
matic variables. All information on target structure is
contained in the tensor W$%, whose definition involves
the initial and final nuclear states &0' and &X', carrying
four-momenta p0 and pX, as well as the nuclear current
operator J$,

W$% = (
X

)0&J$&X')X&J%&0''!4"!p0 + q − pX" , !4"

where the sum includes all hadronic final states.
The most general expression of the target tensor of

Eq. !4", fulfilling the requirements of Lorentz covari-
ance, conservation of parity, and gauge invariance, can
be written in terms of two structure functions W1 and W2
as

W$% = W1*− g$% +
q$q%

q2 +
+

W2

M2*p0
$ −

!p0q"
q2 q$+*p0

% −
!p0q"

q2 q%+ , !5"

where M is the target mass and the structure functions
depend on the two scalars Q2 and !p0q". In the target
rest frame, !p0q"=m& and W1 and W2 become functions
of the measured momentum and energy transfer &q& and
&.

Substitution of Eq. !5" into Eq. !2" leads to

d2!

d"e!dEe!
= * d!

d"e!
+

M

( ,W2!&q&,&" + 2W1!&q&,&"tan2)

2- , !6"

where ) and !d! /d"e!"M=#2 cos2!) /2" /4Ee sin4!) /2" de-
note the electron scattering angle and the Mott cross
section, respectively.

The right-hand side of Eq. !6" can be rewritten sin-
gling out the contributions of scattering processes in-
duced by longitudinally !L" and transversely !T" polar-
ized virtual photons. The resulting expression is

d2!

d"e!dEe!
= * d!

d"e!
+

M
, Q4

&q&4
RL!&q&,&"

+ *1
2

Q2

&q&2
+ tan2)

2
+RT!&q&,&"- , !7"

where the longitudinal and transverse structure func-
tions are trivially related to W1 and W2 through

RT!&q&,&" = 2W1!&q&,&" !8"

and

Q2

&q&2
RL!&q&,&" = W2!&q&,&" −

Q2

&q&2
W1!&q&,&" . !9"

In principle, calculations of W$% of Eq. !4" at moder-
ate momentum transfer !&q & *0.5 GeV/c" can be carried
out within nuclear many-body theory !NMBT", using
nonrelativistic wave functions to describe the initial and
final states and expanding the current operator in pow-
ers of &q & /m !Carlson and Schiavilla, 1998", where m is
the nucleon mass. The available results for medium-
heavy targets have been obtained mostly using the
mean-field approach, supplemented by inclusion of
model residual interactions to take into account long-
range correlations !Dellafiore et al., 1985".

FIG. 2. Schematic representation of the IA regime, in which
the nuclear cross section is replaced by the incoherent sum of
cross sections describing scattering off individual nucleons, the
recoiling !A−1"-nucleon system acting as a spectator.

191Benhar, Day, and Sick: Inclusive quasielastic electron-nucleus …

Rev. Mod. Phys., Vol. 80, No. 1, January–March 2008

Quasi-elastic scattering: higher q, E
q ~ kF   E ~ EF

Electron Scattering: 2 response functions

Neutrino/Antineutrinos:  5 response functions

Why study electron scattering?
not to determine properties of electron or photon



Superscaling in inclusive e-nucleus scattering

Different nuclei at the same kinematics


 Same kinematics: same ratio of L/T response

Donnelly, Sick PRL (1999)


Superscaling: for the same kinematics, response looks
similar for different nuclei (q > kF )

Some basic Observations from Electron Scattering

n(k) 

n2(k,K=0) 

Lonardoni, Gandolfi, Wang, JC (2018)

Related to back-to-back pairs


Gives y-scaling




Neutrino Scattering
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TABLE I: The expected (unconstrained) number of events for
the 200 < EQE

⌫ < 1250 MeV neutrino energy range from all
of the backgrounds in the ⌫e and ⌫̄e appearance analysis. Also
shown are the constrained background and the expected num-
ber of events corresponding to the LSND best fit oscillation
probability of 0.26%. The table shows the diagonal-element
systematic uncertainties, which become substantially reduced
in the oscillation fits when correlations between energy bins
and between the electron and muon neutrino events are in-
cluded. The antineutrino numbers are from a previous analy-
sis [3].

Process Neutrino Mode Antineutrino Mode
⌫µ & ⌫̄µ CCQE 73.7 ± 19.3 12.9 ± 4.3

NC ⇡0 501.5 ± 65.4 112.3 ± 11.5
NC � ! N� 172.5 ±24.1 34.7 ± 5.4

External Events 75.2 ± 10.9 15.3 ± 2.8
Other ⌫µ & ⌫̄µ 89.6 ± 22.9 22.3 ± 3.5

⌫e & ⌫̄e from µ± Decay 425.3 ± 100.2 91.4 ± 27.6
⌫e & ⌫̄e from K± Decay 192.2 ± 41.9 51.2 ± 11.0
⌫e & ⌫̄e from K0

L Decay 54.5 ± 20.5 51.4 ± 18.0
Other ⌫e & ⌫̄e 6.0 ± 3.2 6.7 ± 6.0

Unconstrained Bkgd. 1590.5 398.2
Constrained Bkgd. 1577.8± 85.2 398.7± 28.6

Total Data 1959 478
Excess 381.2 ± 85.2 79.3 ± 28.6

0.26% (LSND) ⌫µ ! ⌫e 463.1 100.0

energy range for the total 12.84⇥ 1020 POT data. Each
bin of reconstructed EQE

⌫ corresponds to a distribution
of “true” generated neutrino energies, which can overlap
adjacent bins. In neutrino mode, a total of 1959 data
events pass the ⌫e CCQE event selection requirements
with 200 < EQE

⌫ < 1250 MeV, compared to a back-
ground expectation of 1577.8 ± 39.7(stat.) ± 75.4(syst.)
events. The excess is then 381.2 ± 85.2 events or a
4.5� e↵ect. Note that the 162.0 event excess in the
first 6.46 ⇥ 1020 POT data is approximately 1� lower
than the average excess, while the 219.2 event excess in
the second 6.38 ⇥ 1020 POT data is approximately 1�
higher than the average excess. Combining the Mini-
BooNE neutrino and antineutrino data, there are a to-
tal of 2437 events in the 200 < EQE

⌫ < 1250 MeV en-
ergy region, compared to a background expectation of
1976.5±44.5(stat.)±84.8(syst.) events. This corresponds
to a total ⌫e plus ⌫̄e CCQE excess of 460.5± 95.8 events
with respect to expectation or a 4.8� excess. The signif-
icance of the combined LSND (3.8�) [1] and MiniBooNE
(4.8�) excesses is 6.1�. Fig. 2 shows the total event ex-
cesses as a function of EQE

⌫ in both neutrino mode and
antineutrino mode. The dashed curves show the best fits
to standard two-neutrino oscillations.

Fig. 3 compares the L/EQE
⌫ distributions for the Mini-

BooNE data excesses in neutrino mode and antineutrino
mode to the L/E distribution from LSND [1]. The er-
ror bars show statistical uncertainties only. As shown
in the figure, there is agreement among all three data
sets. Fitting these data to standard two-neutrino oscil-
lations including statistical errors only, the best fit oc-
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FIG. 1: The MiniBooNE neutrino mode EQE
⌫ distributions,

corresponding to the total 12.84 ⇥ 1020 POT data, for ⌫e
CCQE data (points with statistical errors) and background
(histogram with systematic errors). The dashed curve shows
the best fit to the neutrino-mode data assuming standard two-
neutrino oscillations.
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FIG. 2: The MiniBooNE total event excesses as a function
of EQE

⌫ in both neutrino mode and antineutrino mode, cor-
responding to 12.84 ⇥ 1020 POT and 11.27 ⇥ 1020 POT, re-
spectively. (Error bars include both statistical and correlated
systematic uncertainties.) The dashed curves show the best
fits to the neutrino-mode and antineutrino-mode data assum-
ing standard two-neutrino oscillations.

curs at �m2 = 0.040 eV2 and sin2 2✓ = 0.894 with
a �2/ndf = 35.2/28, corresponding to a probability of
16.4%. This best fit agrees with the MiniBooNE only
best fit described below. The MiniBooNE excess of
events in both oscillation probability and L/E spectrum
is, therefore, consistent with the LSND excess of events,
even though the two experiments have completely dif-
ferent neutrino energies, neutrino fluxes, reconstruction,
backgrounds, and systematic uncertainties.
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of the backgrounds in the ⌫e and ⌫̄e appearance analysis. Also
shown are the constrained background and the expected num-
ber of events corresponding to the LSND best fit oscillation
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in the oscillation fits when correlations between energy bins
and between the electron and muon neutrino events are in-
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events pass the ⌫e CCQE event selection requirements
with 200 < EQE
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ground expectation of 1577.8 ± 39.7(stat.) ± 75.4(syst.)
events. The excess is then 381.2 ± 85.2 events or a
4.5� e↵ect. Note that the 162.0 event excess in the
first 6.46 ⇥ 1020 POT data is approximately 1� lower
than the average excess, while the 219.2 event excess in
the second 6.38 ⇥ 1020 POT data is approximately 1�
higher than the average excess. Combining the Mini-
BooNE neutrino and antineutrino data, there are a to-
tal of 2437 events in the 200 < EQE

⌫ < 1250 MeV en-
ergy region, compared to a background expectation of
1976.5±44.5(stat.)±84.8(syst.) events. This corresponds
to a total ⌫e plus ⌫̄e CCQE excess of 460.5± 95.8 events
with respect to expectation or a 4.8� excess. The signif-
icance of the combined LSND (3.8�) [1] and MiniBooNE
(4.8�) excesses is 6.1�. Fig. 2 shows the total event ex-
cesses as a function of EQE

⌫ in both neutrino mode and
antineutrino mode. The dashed curves show the best fits
to standard two-neutrino oscillations.

Fig. 3 compares the L/EQE
⌫ distributions for the Mini-

BooNE data excesses in neutrino mode and antineutrino
mode to the L/E distribution from LSND [1]. The er-
ror bars show statistical uncertainties only. As shown
in the figure, there is agreement among all three data
sets. Fitting these data to standard two-neutrino oscil-
lations including statistical errors only, the best fit oc-
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FIG. 1: The MiniBooNE neutrino mode EQE
⌫ distributions,

corresponding to the total 12.84 ⇥ 1020 POT data, for ⌫e
CCQE data (points with statistical errors) and background
(histogram with systematic errors). The dashed curve shows
the best fit to the neutrino-mode data assuming standard two-
neutrino oscillations.
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FIG. 2: The MiniBooNE total event excesses as a function
of EQE

⌫ in both neutrino mode and antineutrino mode, cor-
responding to 12.84 ⇥ 1020 POT and 11.27 ⇥ 1020 POT, re-
spectively. (Error bars include both statistical and correlated
systematic uncertainties.) The dashed curves show the best
fits to the neutrino-mode and antineutrino-mode data assum-
ing standard two-neutrino oscillations.

curs at �m2 = 0.040 eV2 and sin2 2✓ = 0.894 with
a �2/ndf = 35.2/28, corresponding to a probability of
16.4%. This best fit agrees with the MiniBooNE only
best fit described below. The MiniBooNE excess of
events in both oscillation probability and L/E spectrum
is, therefore, consistent with the LSND excess of events,
even though the two experiments have completely dif-
ferent neutrino energies, neutrino fluxes, reconstruction,
backgrounds, and systematic uncertainties.

MiniBoone (2018)

Need energy (L/E) for oscillation analysis

DUNE



duce large effects in combination with ground-state
wave functions calculated including the short-range n-p
correlations. As most previous calculations were based
on independent-particle-type wave functions, the small-
ness of the resulting MEC contributions is thus under-
stood. To verify this point further, Carlson et al. have
repeated their calculation using the same operators, but
with a Fermi-gas wave function. Instead of an enhance-
ment factor of 1.47 coming from MEC at !q !
=600 MeV/c, they find a factor of 1.06 only, i.e., an eight
times smaller MEC effect.

The results of Carlson et al. also show, somewhat sur-
prisingly, that the MEC contribution is large at low mo-
mentum transfer. It decreases toward the larger Q2, in
agreement with the expectation that at very large Q2 it
falls "Sargsian, 2001# like Q−4 relative to quasielastic
scattering.

From the above discussion it becomes clear that the
Euclidean response, despite inherent drawbacks, is a
valuable quantity. Since the final continuum state does
not have to be treated explicitly, calculations of much
higher quality can be performed than for the response,
and the role of two-body currents can be treated quan-
titatively. Comparison between data and calculation has
shown in particular that for a successful prediction of
MEC, correlated wave functions for the ground state are
needed; such wave functions today are available up to
A$12 and for A=!. Unfortunately, the usage of the
Euclidean response for the time being is restricted to a
regime in which relativistic effects are not too large,
such that they can be included as corrections.

X. L ÕT SEPARATION AND COULOMB SUM RULE

In the impulse approximation, and when neglecting
the "small# contribution from nucleonic convection cur-
rents, the longitudinal and transverse response functions
RL and RT contain the same information and have the
same size. This has sometimes been called scaling of the
zeroth kind "see Sec. VII#. It was realized early on, how-
ever, that the transverse response receives significant
contributions from meson exchange currents and " ex-
citation "which are of a largely transverse nature#. It is
therefore clear that there is a high premium on separat-
ing the L and T responses, both because the L response
is easier to interpret and because of the additional infor-
mation contained in the T response.

The separation of the L and T responses is performed
using the Rosenbluth technique, which is justified only
in the single-photon exchange approximation. The cross
section, divided by a number of kinematical factors

d#

d$d%

&

#Mott

!q!4

Q4 = &RL"!q!,%# +
!q!2

2Q2RT"!q!,%# = ' ,

"65#

is a linear function of the virtual photon polarization

& = %1 +
2!q!2

Q2 tan2(

2
&−1

"66#

with q "Q# being the 3- "4-# momentum transfer and &
varying from 0 to 1 for scattering angles ( between 180°
and 0°. The slope of the linear function yields RL and
the intercept at &=0 yields RT. Figure 30 shows an early
example for an L /T separation, and demonstrates the
excess observed for the transverse strength.

While conceptually very straightforward, this L/T
separation is difficult in practice. It involves data taking
at the same !q!, but varying &, i.e., varying beam energy.
For an accurate separation of RL and RT, obviously the
largest possible range in &, hence beam energy, is re-
quired. As data are usually not taken at constant !q!, but
at a given beam energy and variable energy loss, obtain-
ing the responses at constant !q! involves interpolations
of the data. We show in Fig. 31 two examples for a
Rosenbluth separation, performed on the low- and
large-% side of the quasielastic peak, which also illus-
trate the importance of the forward angle "high-energy#
data for the determination of RL, i.e., the slope of the fit.

The Rosenbluth technique is applicable in the plane-
wave Born approximation, and fails once Coulomb dis-
tortion of the electron waves is present. Neglect of dis-
tortion is justified for the lightest nuclei alone, and only
if RT is not much bigger "or much smaller# than RL.
When one of the two contributions gets too small, even
minor corrections due to Coulomb distortion can have
large effects. At large !q!, for instance, even the determi-
nation of the proton charge form factor via the Rosen-
bluth technique is significantly affected by Coulomb cor-
rections "Arrington and Sick, 2004#. In order to extract
RL and RT in the presence of Coulomb distortion, the
data must first be corrected for these effects; this is dis-
cussed in Sec. XI.

Here we concentrate on the discussion of the longitu-

FIG. 30. Longitudinal "lower data set# and transverse re-
sponses of 12C "Finn et al., 1984#, plotted in terms of the scaling
function F"y#.

214 Benhar, Day, and Sick: Inclusive quasielastic electron-nucleus …
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Scaled longitudinal vs.  
transverse scattering from 12C

from Benhar, Day, Sick,  
RMP 2008

data Finn, et al 1984

But, incoherent scaling from  
single nucleons is not the full picture 
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FIG. 4. The 4He longitudinal response functions at k 400
MeVlc obtained from a fit of E~(GFMC) (curve labeled
GFMC) and in PWIA are compared with the Bates and Saclay
data.

tions as a consequence of the orthogonality imposed upon
the OCS wave functions describing the ground state and
two- and three-body breakup channels [9]. The approxi-
mate nature of treating the FSI in the OCS approach,
however, did not produce a large enough shift of strength
towards low ru.
To summarize, GFMC simulations of the He proton

response in imaginary time have been carried out for a
realistic nuclear Hamiltonian. The results of these calcu-
lations, in which FSI are included exactly, are in excel-
lent agreement with the experimental data. The present
method can be easily generalized to calculate other prop-
erties, such as Euclidean transverse response functions
with one- and two-body current operators, or Euclidean
proton spectral functions, of light nuclei. Because of the
special nature of these systems, it appears feasible to ob-
tain reliable estimates of these properties in real time.
Work in these areas is being vigorously pursued.
The authors would like to thank S. A. Dytman, J. L.

Friar, V. R. Pandharipande, and S. C. Pieper for valuable
discussions, and J. Morgenstern for allowing us to publish
the He(e, e') Sac]ay data. We would also like to thank
the Institute for Nuclear Theory in Seattle, where this
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scattering as being dominated by a single-nucleon knock
out. This fact also has implications for the nuclear weak
response probed in inclusive neutrino scattering induced by
charge-changing and neutral current processes. In particu-
lar, the energy dependence of the cross section is quite
important in extracting neutrino oscillation parameters. An
earlier study of the sum rules associated with the weak
transverse and vector-axial interference response functions
in 12C found [42] a large enhancement due to two-body
currents in both the vector and axial components of the
neutral current. Only neutral weak processes have been
considered so far, but one would expect these conclusions
to remain valid in the case of charge-changing ones. In this
connection, it is important to realize that neutrino and
antineutrino cross sections differ only in the sign of this
vector-axial interference response, and that this difference
is crucial for inferring the charge-conjugation and parity
violating phase, one of the fundamental parameters of
neutrino physics, to be measured at the Deep Underground
Neutrino Experiment (DUNE)[43].
We conclude by updating in Fig. 3 the results for the

Coulomb sum rule of 12C obtained in Ref. [5]. The
theoretical calculation (solid line) is identical to the one

reported in that work. In the present analysis of the
experimental data (empty and full circles), the inelastic
threshold has been assumed to correspond to the energy of
the 4þ state rather than to that of the 2þ state, as we have
explicitly accounted for the transitions to the low-lying
states. We recall that the empty circles are obtained by
integrating RLðq;ωÞ up to ωmax, the highest measured
energy transfer, while the full circles also include the “tail”
contribution for ω > ωmax and into the timelike region
(ω > q), which cannot be accessed in (e, e0) scattering
experiments, by assuming that the longitudinal response in
12C is proportional to that of the deuteron [5]. As the direct
calculations demonstrate in Figs. 1 and 2, there is non-
vanishing strength in the timelike region (see in particular
the top panels of these figures which extend to ω > q), and
this strength needs to be accounted for before comparing
theory to experiment.
The square data points in Fig. 3 have been obtained by

adding to the full circles the contribution due to the low-
lying Jπ ¼ 2þ, 0þ2 , and 4þ states. Given the choice of
normalization for SLðqÞ in Fig. 3, this contribution is
simply given by the sum of the squares—each multiplied
by Z ¼ 6—of the (longitudinal) transition form factors
listed in Table I. Among these, the dominant one is the form
factor to the 2þ state at a 4.44 MeV excitation energy. The
contributions associated with these states, in particular the
2þ state, were overlooked in the analysis of Ref. [5] and, to
the best of our knowledge, in all preceding analyses—the
difference between the total inelastic and quasielastic
strength alluded to earlier was not fully appreciated.
While they are negligible at large q (certainly at
q ¼ 570 MeV=c), they are significant at low q. They help
to bring theory into excellent agreement with experiment.
Figures 1 and 2 clearly demonstrate that the picture of

interacting nucleons and currents quantitatively describes
the electromagnetic response of 12C in the quasielastic
regime. The key features necessary for this successful

FIG. 2. Same as Fig. 1 but for the electromagnetic transverse
response functions. Because pion production mechanisms are not
included, the present theory underestimates the (transverse)
strength in the Δ peak region; see in particular the q ¼
570 MeV=c case.

FIG. 3. Coulomb sum rule in 12C: theory (black solid line
labeled 1bþ 2b) and analyses of experimental data (blue empty
and full circles labeled EXP-TR and EXP) are from Ref. [5]; the
(red square) data points, labeled EXP-TFF, include the contri-
butions of the low-lying Jπ ¼ 2þ, 0þ2 (Hoyle), and 4þ states,;
see the text for explanations.
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Factorization:  1- or 2-nucleon at vertex 
Two nucleons included in propagation: 

Short-Time approximation (STA): I. INTRODUCTION

The scattering of electrons and neutrinos by nuclei is governed by the relevant electroweak

response functions. These are given in detail in Refs. [1, 2], generically they are given by:

RO(q,!) =

R
d⌦q

4⇡

X

f

h 0|O
†(q)| fih f |O(q)| 0i�(Ef � E0 � !), (1)

for all relevant electroweak current operators O. This can be equivalently written as a

current-current matrix element with the insertion of a real-time propagator in place of the

sum over final states:

RO(q,!) =

R
d⌦q

4⇡

Z
dt

2⇡
exp[i!t]h 0|O

†(q, t0) exp[�iHt]O(q, t = 0) 0i, (2)

The nuclear Hamiltonian is a sum of one-particle kinetic terms plus two- and three-nucleon

interactions: H =
P

i
�

~2
2mr

2
i
+

P
i<j

Vij +
P

i<j<k
Vijk. Similarly the current operators O

are written as a sum of one-, two- and in principle many-nucleon operators: O =
P

i
Oi +

P
i<j

Oij + ...

Calculations of nuclear response based upon realistic interactions and currents using

the imaginary-time formalism have been used to calculate electron[? ] and neutrino[?

] scattering. In this approach, one calculates the imaginary-time response RO(q, ⌧) =
R
exp[�!⌧ ]RO(q,!) through the imaginary-time correlation function, making the replace-

ment (t ! �i⌧) in Eq. 2. Quantum Monte Carlo methods can then be used to calculate

the relevant matrix elements. Since the nuclear response in the quasi-elastic region is fairly

smooth in the energy !, maximum entrop techniques are successful in obtaining the real-time

response from the imaginary time response.

This method has the advantage that final-state interactions and two-nucleon currents are

included completely, that these interactions and currents are tied to the same interaction

used to calculate the ground state | 0i, and that the current operators are the same as

those used to study other observables like nuclear form factors [, REF] low-energy transitions

including beta decay [, REF] and double beta decay [? , REF] The disadvantages of this

approach are that it is computationally intensive since it involves the propagation of the full

A-nucleon system, and that it provides direct information on only inclusive response, the

sum over all final states.

Other approaches including PWIA and spectral function approaches involve o↵-diagonal

density matrix elements of one (and sometimes two-) nucleons. However the propagation of
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2

the final state is treated in a rather simplified way and in general these approaches often

do not include full two-nucleon interactions and currents and do not yield the correct sum

rules of the response.

II. REAL-TIME RESPONSE AT SHORT TIMES

In this paper we evaluate the real-time matrix element in Eq. 2 for short times including

the full ground state wave function, current operator and final-state interactions. The short-

time approximation should be valid at high energies such as the quasielastic regime. It

naturally incorporates two nucleon interactions, currents, and their interference that have

been demonstrated to be important in [? ]. Since it is based on the full A-nucleon ground

state, it also includes the Pauli principle and reproduces the correct nuclear sum rules.

Calculating the full response requires the matrix element of the real-time propagator

hR0, �0, ⌧ 0| exp[�iHt]|R, �, ⌧i between A-particle spatial, spin, and isospin states denoted by

R0, �0, ⌧ 0 and R, �, ⌧ . The propagator can be expanded in a manner similar to the Trotter

decomposition typically used in Quantum Monte Carlo (QMC) simulations:

hR0, �0, ⌧ 0| exp[�iHt]|R, �, ⌧i ⇡ hR0, �0, ⌧ 0|
Y

i

exp[�iH0
i
t]
S
Q

i<j
exp[�iHijt]Q

i<j
exp[�iH0

ij
t]

|R, �, ⌧i (3)

where H0
i
is the single-particle kinetic energy and Hij and Hij are the interacting and free

two-particle Hamiltonians. The interacting Hamiltonian includes the two-nucleon interac-

tion, we have dropped the three-nucleon interaction in the final state interaction but its

should be of order 10 per cent of the two-nuceon interaction

Inserting this expression into Eq. 2, keeping only the single-particle propagators and

currents, and factoring out the spectator nucleons reproduces the plane-wave impulse ap-

proximation (PWIA) calculation at high-momentum transfer. At low momentum transfer

Eq. 2 includes Pauli blocking as it is evaluated in the full A-nucleon ground state. Since the

full currents and ground-state are included in Eq. 2 the sum rules are also exactly recovered

at t = 0 in the short-time approximation.

We can go further and include the two-nucleon contributions to the response. Includ-

ing two-nucleon current operators, ground-state correlations, and two-nucleon terms in the

propagator allows us to go beyond the PWIA or spectral function approach. Calculations of

the imaginary-time response have demonstrated that both two-nucleon correlations and cur-

3

At short time evolution can be described as a product of  NN propagators

Saori Pastore, et al, 2019

component and the spectator nucleus, one can more easily incorporate relativistic kinemat-

ics and currents, pion production, and resonance production. Treating such e↵ects at the

two-nucleon level is vastly easier than calculating the same processes in a full A-nucleon

treatment. We expect that interference processes, for example di↵ernt processes leading to

pion production, may be important here as well.
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 Summary & Outlook

• Quantum dynamics in strongly-correlated systems 
 is an important (and difficult) problem, 
 Linear response somewhat easier than general problem 
 with many important applications in HENP and cold atoms, … 

• Many analogies between NP applications and cold atom    
( both static and dynamic properties) 

• Few-body dynamics can be visible in response of many-body systems 

• Improved theories of response has very many important 
applications, in nuclear (and nuclear astrophysics), 
neutrino physics,  and cold atom physics.  
Often advances can impact  multiple fields both


