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How Diamagnetic Atoms Get EDMs, Roughly

Because Standard-Model CP violation is so weak, an additional
undiscovered source is required to explain why there is so much
more matter than antimatter.

The source can work its way into
nuclei through CP-violating πNN
vertices (in chiral EFT). . .

leading, e.g. to a neutron EDM. . .
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ḡ g

N

?
π

ḡ
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ḡ

γ

n p n

π−

γ
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How Diamagnetic Atoms Get EDMs, Roughly

. . . and to a nuclear EDM from the nucleon
EDM or a T-violating NN interaction:
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ḡ

γ

VPT ∝ ḡ (σ 1 ± σ2) · (+1 − +2)
exp (−mπ |r1 − r2 |)

mπ |r1 − r2 |
+ contact terms/etc.

Atoms get EDMs from nuclei. But electronic shielding replaces
nuclear dipole operator with “Schiff operator,”

S ∝
∑
p

(
r2p −

5
3R

2
ch

)
zp + . . . ,

making relevant nuclear quantity the Schiff moment:

〈S〉 =
∑
m

〈0| S |m〉 〈m| VPT |0〉
E0 − Em

+ c.c.

Job of nuclear-structure theory: compute de-
pendence of 〈S〉 on the three ḡ’s (and on the
contact-term coefficients and nucleon EDM).

It’s up to QCD/EFT to compute the dependence of the
ḡ vertices on fundamental sources of CP violation.
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Nuclear Models in One Slide
Starting point is always a mean field and potential

DFT: Large single-particle spaces in
arbitrary single mean field; simple
correlations and excitations within
the space.

Shell Model: Small single-particle
space in simple spherical mean field;
arbitrarily complex correlations within
the space.

+ + + + + · · ·· · ·+

Generator-Coordinate Method (GCM): extension of DFT that mixes
many mean-field states with different collective properties.

All such models require phenomenological
Hamiltonian/operators, with coefficients fit to
energies/transitions in heavy nuclei.
This is a problem if you’re looking at opera-
tors such as VPT , for which there are no data.
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Ab Initio Nuclear Structure
Starts with chiral effective-field theory

Nucleons, pions sufficient below chiral-symmetry breaking scale.
Expansion of operators in powers of Q/Λχ .
Q = mπ or typical nucleon momentum.
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Figure 1: Hierarchy of nuclear forces in ChPT. Solid lines represent nucleons and dashed lines pions. Small dots, large solid
dots, solid squares, and solid diamonds denote vertices of index � = 0, 1, 2, and 4, respectively. Further explanations are
given in the text.

The reason why we talk of a hierarchy of nuclear forces is that two- and many-nucleon forces are created
on an equal footing and emerge in increasing number as we go to higher and higher orders. At NNLO, the
first set of nonvanishing three-nucleon forces (3NF) occur [70, 71], cf. column ‘3N Force’ of Fig. 1. In fact, at
the previous order, NLO, irreducible 3N graphs appear already, however, it has been shown by Weinberg [52]
and others [70, 127, 128] that these diagrams all cancel. Since nonvanishing 3NF contributions happen first
at order (Q/⇤�)3, they are very weak as compared to 2NF which start at (Q/⇤�)0.

More 2PE is produced at ⌫ = 4, next-to-next-to-next-to-leading order (N3LO), of which we show only
a few symbolic diagrams in Fig. 1. Two-loop 2PE graphs show up for the first time and so does three-pion
exchange (3PE) which necessarily involves two loops. 3PE was found to be negligible at this order [57, 58].
Most importantly, 15 new contact terms ⇠ Q4 arise and are represented by the four-nucleon-leg graph with
a solid diamond. They include a quadratic spin-orbit term and contribute up to D-waves. Mainly due to
the increased number of contact terms, a quantitative description of the two-nucleon interaction up to about
300 MeV lab. energy is possible, at N3LO (for details, see below). Besides further 3NF, four-nucleon forces
(4NF) start at this order. Since the leading 4NF come into existence one order higher than the leading 3NF,
4NF are weaker than 3NF. Thus, ChPT provides a straightforward explanation for the empirically known
fact that 2NF � 3NF � 4NF . . . .

4. Two-nucleon interactions

The last section was just an overview. In this section, we will fill in all the details involved in the ChPT
development of the NN interaction; and 3NF and 4NF will be discussed in Section 5. We start by talking

19

At each “order,” only a finite
number of operators exist.

Leading-order terms in
VPT depend on source
of CP violation.

see Jordy’s talk.
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Ab Initio Many-Body Methods

Partition of Full Hilbert Space

P̂HP̂ P̂HQ̂

Q̂HP̂ Q̂HQ̂

P Q

P

Q

Simpler calculation done here.

P = “reference” space
Q = the rest

Task: Find unitary transformation to
make H block-diagonal in P and Q,
with Heff in P reproducing most
important eigenvalues.

Must must apply same unitary
transformation to transition
operator.

As difficult as solving original problem.
But many-body effective operators (beyond
2- or 3-body) can be treated approximately.
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In-Medium Similarity Renormalization Group
One way to determine the transformation

Flow equation for effective Hamiltonian.
Gradually decouples reference space.
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Figure 7: Decoupling for the White generator, Eq. (41), in the Jπ = 0+ neutron-
neutron interaction matrix elements of 40Ca (emax = 8, ~ω = 20 MeV, Entem-Machleidt
N3LO(500) evolved to λ = 2.0 fm−1). Only hhhh, hhpp, pphh, and pppp blocks of the
matrix are shown.

mechanism. A likely explanation is that the truncation of the commutator (49) to one-
and two-body contributions only (Eqs. (50), (51)) causes an imbalance in the infinite-
order re-summation of the many-body perturbation series. For the time being, we have to
advise against the use of the Wegner generator in IM-SRG calculations with (comparably)
“hard” interactions that exhibit poor order-by-order convergence of the perturbation
series.

5.4. Decoupling

As discussed in Sec. 4.1, the IM-SRG is built around the concept of decoupling the
reference state from excitations, and thereby mapping it onto the fully interacting ground
state of the many-body system within truncation errors. Let us now demonstrate that
the decoupling occurs as intended in a sample calculation for 40Ca with our standard
chiral N3LO interaction at λ = 2.0 fm−1. Figure 7 shows the rapid suppression of the
off-diagonal matrix elements in the Jπ = 0+ neutron-neutron matrix elements as we
integrate the IM-SRG(2) flow equations. At s = 2.0, after only 20–30 integration steps
with the White generator, the Γpp′hh′(s) have been weakened significantly, and when we
reach the stopping criterion for the flow at s = 18.3, these matrix elements have vanished
to the desired accuracy. While the details depend on the specific choice of generator, the
decoupling seen in Fig. 7 is representative for other cases.

With the suppression of the off-diagonal matrix elements, the many-body Hamiltonian
is driven to the simplified form first indicated in Fig. 2. The IM-SRG evolution not only
decouples the ground state from excitations, but reduces the coupling between excitations
as well. This coupling is an indicator of strong correlations in the many-body system,
which usually require high- or even infinite-order treatments in approaches based on the
Goldstone expansion. As we have discussed in Sec. 3, the IM-SRG can be understood as
a non-perturbative, infinite-order re-summation of the many-body perturbation series,
which builds the effects of correlations into the flowing Hamiltonian. To illustrate this,
we show results from using the final IM-SRG Hamiltonian H(∞) in Hartree-Fock and
post-HF methods in Fig. 8.

After the same 20–30 integration steps that lead to a strong suppression of the off-
diagonal matrix elements (cf. Fig. 14), the energies of all methods collapse to the same
result, which is the IM-SRG(2) ground-state energy. By construction, this is the result

29

from H. Hergert

d
dsH(s) = [η (s),H(s)] , η (s) = [Hd (s),Hod (s)] , H(∞) = Heff

Trick is to keep all 1- and 2-body terms in H at each step after normal
ordering (IMSRG-2, includes most important parts of 3, 4-body . . . terms).
If reference space is a single state, end up with g.s. energy. If, e.g., it is a
valence space, get effective shell-model interaction and operators.



Reference State with Collective Correlations
Background: Generator Coordinate Method

Construct set of mean fields by constraining coordinate(s), e.g.
quadrupole moment 〈Q0〉. Then diagonalize H in space of
symmetry-restored quasiparticle vacua with different 〈Q0〉.

+ + + + + · · ·· · ·+

Potential energy surface

MICROSCOPIC DESCRIPTION OF SPHERICAL TO . . . PHYSICAL REVIEW C 81, 034316 (2010)

FIG. 2. (Color online) Same as
Fig. 1, but for the isotopes 134-128Xe.

barriers are concentrated around β ≈ 0, and therefore, rather
than two separate minima, the potentials display continuous
γ -soft minima that extend from prolate to oblate shapes.

Of particular interest in the present analysis are the nuclei
that have been identified as possible candidates for a shape
phase transition that can be characterized by the E(5) dynami-
cal symmetry [7]. The experimental realization of this critical-
point symmetry, associated with a second-order quantum
phase transition between spherical and γ -soft potential shapes,
was first identified in 134Ba [8]. E(5) is the symmetry of a
five-dimensional (intrinsic variables β and γ and the three
Euler angles) infinite well in the axial deformation variable β

[V (β) = 0 for |β| � βW , and V (β) = ∞ for |β| > βW ], and
the potential is completely γ independent. The microscopic
binding energy curve E(β) of 134Ba (Fig. 1) displays a shape
that is almost symmetric with respect to β = 0. One notes
a relatively flat bottom between β ≈ −0.1 and β ≈ 0.1 (the
oblate configuration is only ≈0.5 MeV above the prolate
minimum), and the potential is rather stiff for |β| > 0.15.
The dependence on the triaxial deformation parameter γ is
shown in the corresponding three-dimensional energy map
and, even more clearly, in Fig. 3, where we plot the binding
energy curves as functions of γ for several values of axial
deformation: β = 0.05, 0.1, 0.15, and 0.2. In the region of
the flat bottom |β| � 0.1 the binding energy of 134Ba is
indeed almost independent of γ , and even for somewhat larger
deformations, 0.1 � |β| � 0.2, only a weak dependence on γ

is predicted by the calculation based on the PC-F1 functional.
A very similar energy surface is calculated for the isotone
132Xe (Figs. 2 and 4).

In the next step the constrained self-consistent solutions
of the relativistic mean-field plus BCS equations, that is, the
single-particle wave functions, occupation probabilities, and
quasiparticle energies that correspond to each point on the

binding energy surfaces in Figs. 1 and 2, are used to calculate
the parameters that determine the collective Hamiltonian [21],

Ĥ = T̂vib + T̂rot + Vcoll, (3)

with the vibrational kinetic energy,

T̂vib = − h̄2

2
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FIG. 3. (Color online) Self-consistent RMF + BCS binding en-
ergy curves of the 134Ba nucleus, as functions of the deformation
parameter γ , for four values of axial deformation, β = 0.05, 0.1,
0.15, and 0.2.
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Li et al.: Potential energy surface for 130Xe
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Figure 1: (a)-(c) Collective wave functions, GT intensity with, (d)-(f) full and, (g)-(i) constant spatial
dependence and (j)-(l) pairing energies for (left) A = 48, (middle) A = 76 and (right) A = 150 decays.
Shaded areas corresponds to regions explored by the collective wave functions.

different deformations (β ≈ +0.40 and β ≈ +0.25, respectively). According to Eq. 6, the final results
depend on the convolution of the collective wave functions with the 0νββ matrix elements as a function
of deformation. In Fig. 1(d)-(f) we show schematically -shaded circles- the areas of the GT intensity
explored by the collective wave functions. We observe, on the one hand, that configuration mixing is
very important in the final result because several shapes can contribute to the value of NME, especially
in A = 48 and 76. On the other hand, we see that the regions with largest values of the GT intensity
are excluded by the collective wave functions. For example, calculations assuming spherical symmetry
give systematically larger NME -except for A = 96- as we show in Figure 2.

To summarize, we have presented a method for calculating 0νββ nuclear matrix elements based on
Gogny D1S Energy Density Functional including beyond mean field effects such as symmetry restoration
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β2

Rodŕıguez and Mart́ınez-Pinedo: Wave
functions in 76Ge,Se peaked at two
different deformed shapes.
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were derived microscopically form the covariant density functional PC-F1. The

resulting spectrum and the electromagnetic transition probabilities are more or less

the same as in the 1D-AMP GCM calculation shown in Fig. 4.

4. Summary and outlook.

Among the microscopic approaches to the nuclear many-body problem, the frame-

work of nuclear density functional theory provides the most complete description

of ground-state properties and collective excitations over the whole nuclide chart.

Here we have seen that the self-consistent relativistic mean-field model based on

a universal density functional provides an excellent description of the inner fission

barriers in actinide nuclei with an average deviation between theory and exper-

iment of 0.76 MeV. For transitional nuclei relativistic models not only describe

general features of shape transitions but also particular properties of spectra and

transition rates at the critical point of the QPT. However, to calculate excitation

spectra and transition probabilities, the self-consistent mean-field approach has to

be extended to include correlations related to restoration of broken symmetries and

fluctuations of collective variables. This can be done either by performing GCM

P. Ring et al, 2011
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barriers are concentrated around β ≈ 0, and therefore, rather
than two separate minima, the potentials display continuous
γ -soft minima that extend from prolate to oblate shapes.

Of particular interest in the present analysis are the nuclei
that have been identified as possible candidates for a shape
phase transition that can be characterized by the E(5) dynami-
cal symmetry [7]. The experimental realization of this critical-
point symmetry, associated with a second-order quantum
phase transition between spherical and γ -soft potential shapes,
was first identified in 134Ba [8]. E(5) is the symmetry of a
five-dimensional (intrinsic variables β and γ and the three
Euler angles) infinite well in the axial deformation variable β

[V (β) = 0 for |β| � βW , and V (β) = ∞ for |β| > βW ], and
the potential is completely γ independent. The microscopic
binding energy curve E(β) of 134Ba (Fig. 1) displays a shape
that is almost symmetric with respect to β = 0. One notes
a relatively flat bottom between β ≈ −0.1 and β ≈ 0.1 (the
oblate configuration is only ≈0.5 MeV above the prolate
minimum), and the potential is rather stiff for |β| > 0.15.
The dependence on the triaxial deformation parameter γ is
shown in the corresponding three-dimensional energy map
and, even more clearly, in Fig. 3, where we plot the binding
energy curves as functions of γ for several values of axial
deformation: β = 0.05, 0.1, 0.15, and 0.2. In the region of
the flat bottom |β| � 0.1 the binding energy of 134Ba is
indeed almost independent of γ , and even for somewhat larger
deformations, 0.1 � |β| � 0.2, only a weak dependence on γ

is predicted by the calculation based on the PC-F1 functional.
A very similar energy surface is calculated for the isotone
132Xe (Figs. 2 and 4).

In the next step the constrained self-consistent solutions
of the relativistic mean-field plus BCS equations, that is, the
single-particle wave functions, occupation probabilities, and
quasiparticle energies that correspond to each point on the

binding energy surfaces in Figs. 1 and 2, are used to calculate
the parameters that determine the collective Hamiltonian [21],

Ĥ = T̂vib + T̂rot + Vcoll, (3)

with the vibrational kinetic energy,

T̂vib = − h̄2
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ergy curves of the 134Ba nucleus, as functions of the deformation
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0.15, and 0.2.
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Figure 1: (a)-(c) Collective wave functions, GT intensity with, (d)-(f) full and, (g)-(i) constant spatial
dependence and (j)-(l) pairing energies for (left) A = 48, (middle) A = 76 and (right) A = 150 decays.
Shaded areas corresponds to regions explored by the collective wave functions.

different deformations (β ≈ +0.40 and β ≈ +0.25, respectively). According to Eq. 6, the final results
depend on the convolution of the collective wave functions with the 0νββ matrix elements as a function
of deformation. In Fig. 1(d)-(f) we show schematically -shaded circles- the areas of the GT intensity
explored by the collective wave functions. We observe, on the one hand, that configuration mixing is
very important in the final result because several shapes can contribute to the value of NME, especially
in A = 48 and 76. On the other hand, we see that the regions with largest values of the GT intensity
are excluded by the collective wave functions. For example, calculations assuming spherical symmetry
give systematically larger NME -except for A = 96- as we show in Figure 2.

To summarize, we have presented a method for calculating 0νββ nuclear matrix elements based on
Gogny D1S Energy Density Functional including beyond mean field effects such as symmetry restoration
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skopf units) of the ground-state and the β-band. The theoretical spectra are normalized to the
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experimental B(E2;2+1 → 0+1 ).

were derived microscopically form the covariant density functional PC-F1. The

resulting spectrum and the electromagnetic transition probabilities are more or less

the same as in the 1D-AMP GCM calculation shown in Fig. 4.

4. Summary and outlook.

Among the microscopic approaches to the nuclear many-body problem, the frame-

work of nuclear density functional theory provides the most complete description

of ground-state properties and collective excitations over the whole nuclide chart.

Here we have seen that the self-consistent relativistic mean-field model based on

a universal density functional provides an excellent description of the inner fission

barriers in actinide nuclei with an average deviation between theory and exper-

iment of 0.76 MeV. For transitional nuclei relativistic models not only describe

general features of shape transitions but also particular properties of spectra and

transition rates at the critical point of the QPT. However, to calculate excitation

spectra and transition probabilities, the self-consistent mean-field approach has to

be extended to include correlations related to restoration of broken symmetries and

fluctuations of collective variables. This can be done either by performing GCM
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barriers are concentrated around β ≈ 0, and therefore, rather
than two separate minima, the potentials display continuous
γ -soft minima that extend from prolate to oblate shapes.

Of particular interest in the present analysis are the nuclei
that have been identified as possible candidates for a shape
phase transition that can be characterized by the E(5) dynami-
cal symmetry [7]. The experimental realization of this critical-
point symmetry, associated with a second-order quantum
phase transition between spherical and γ -soft potential shapes,
was first identified in 134Ba [8]. E(5) is the symmetry of a
five-dimensional (intrinsic variables β and γ and the three
Euler angles) infinite well in the axial deformation variable β

[V (β) = 0 for |β| � βW , and V (β) = ∞ for |β| > βW ], and
the potential is completely γ independent. The microscopic
binding energy curve E(β) of 134Ba (Fig. 1) displays a shape
that is almost symmetric with respect to β = 0. One notes
a relatively flat bottom between β ≈ −0.1 and β ≈ 0.1 (the
oblate configuration is only ≈0.5 MeV above the prolate
minimum), and the potential is rather stiff for |β| > 0.15.
The dependence on the triaxial deformation parameter γ is
shown in the corresponding three-dimensional energy map
and, even more clearly, in Fig. 3, where we plot the binding
energy curves as functions of γ for several values of axial
deformation: β = 0.05, 0.1, 0.15, and 0.2. In the region of
the flat bottom |β| � 0.1 the binding energy of 134Ba is
indeed almost independent of γ , and even for somewhat larger
deformations, 0.1 � |β| � 0.2, only a weak dependence on γ

is predicted by the calculation based on the PC-F1 functional.
A very similar energy surface is calculated for the isotone
132Xe (Figs. 2 and 4).

In the next step the constrained self-consistent solutions
of the relativistic mean-field plus BCS equations, that is, the
single-particle wave functions, occupation probabilities, and
quasiparticle energies that correspond to each point on the

binding energy surfaces in Figs. 1 and 2, are used to calculate
the parameters that determine the collective Hamiltonian [21],

Ĥ = T̂vib + T̂rot + Vcoll, (3)

with the vibrational kinetic energy,

T̂vib = − h̄2
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FIG. 3. (Color online) Self-consistent RMF + BCS binding en-
ergy curves of the 134Ba nucleus, as functions of the deformation
parameter γ , for four values of axial deformation, β = 0.05, 0.1,
0.15, and 0.2.
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Figure 1: (a)-(c) Collective wave functions, GT intensity with, (d)-(f) full and, (g)-(i) constant spatial
dependence and (j)-(l) pairing energies for (left) A = 48, (middle) A = 76 and (right) A = 150 decays.
Shaded areas corresponds to regions explored by the collective wave functions.

different deformations (β ≈ +0.40 and β ≈ +0.25, respectively). According to Eq. 6, the final results
depend on the convolution of the collective wave functions with the 0νββ matrix elements as a function
of deformation. In Fig. 1(d)-(f) we show schematically -shaded circles- the areas of the GT intensity
explored by the collective wave functions. We observe, on the one hand, that configuration mixing is
very important in the final result because several shapes can contribute to the value of NME, especially
in A = 48 and 76. On the other hand, we see that the regions with largest values of the GT intensity
are excluded by the collective wave functions. For example, calculations assuming spherical symmetry
give systematically larger NME -except for A = 96- as we show in Figure 2.

To summarize, we have presented a method for calculating 0νββ nuclear matrix elements based on
Gogny D1S Energy Density Functional including beyond mean field effects such as symmetry restoration
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Fig. 4. The particle-number projected GCM spectrum of 150Nd (left), compared with the and
the X(5)-symmetry predictions (right) for the excitation energies, and B(E2) values (in Weis-
skopf units) of the ground-state and the β-band. The theoretical spectra are normalized to the
experimental energy of the state 2+1 , and the X(5) transition strengths are normalized to the
experimental B(E2;2+1 → 0+1 ).

were derived microscopically form the covariant density functional PC-F1. The

resulting spectrum and the electromagnetic transition probabilities are more or less

the same as in the 1D-AMP GCM calculation shown in Fig. 4.

4. Summary and outlook.

Among the microscopic approaches to the nuclear many-body problem, the frame-

work of nuclear density functional theory provides the most complete description

of ground-state properties and collective excitations over the whole nuclide chart.

Here we have seen that the self-consistent relativistic mean-field model based on

a universal density functional provides an excellent description of the inner fission

barriers in actinide nuclei with an average deviation between theory and exper-

iment of 0.76 MeV. For transitional nuclei relativistic models not only describe

general features of shape transitions but also particular properties of spectra and

transition rates at the critical point of the QPT. However, to calculate excitation

spectra and transition probabilities, the self-consistent mean-field approach has to

be extended to include correlations related to restoration of broken symmetries and

fluctuations of collective variables. This can be done either by performing GCM

P. Ring et al, 2011
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barriers are concentrated around β ≈ 0, and therefore, rather
than two separate minima, the potentials display continuous
γ -soft minima that extend from prolate to oblate shapes.

Of particular interest in the present analysis are the nuclei
that have been identified as possible candidates for a shape
phase transition that can be characterized by the E(5) dynami-
cal symmetry [7]. The experimental realization of this critical-
point symmetry, associated with a second-order quantum
phase transition between spherical and γ -soft potential shapes,
was first identified in 134Ba [8]. E(5) is the symmetry of a
five-dimensional (intrinsic variables β and γ and the three
Euler angles) infinite well in the axial deformation variable β

[V (β) = 0 for |β| � βW , and V (β) = ∞ for |β| > βW ], and
the potential is completely γ independent. The microscopic
binding energy curve E(β) of 134Ba (Fig. 1) displays a shape
that is almost symmetric with respect to β = 0. One notes
a relatively flat bottom between β ≈ −0.1 and β ≈ 0.1 (the
oblate configuration is only ≈0.5 MeV above the prolate
minimum), and the potential is rather stiff for |β| > 0.15.
The dependence on the triaxial deformation parameter γ is
shown in the corresponding three-dimensional energy map
and, even more clearly, in Fig. 3, where we plot the binding
energy curves as functions of γ for several values of axial
deformation: β = 0.05, 0.1, 0.15, and 0.2. In the region of
the flat bottom |β| � 0.1 the binding energy of 134Ba is
indeed almost independent of γ , and even for somewhat larger
deformations, 0.1 � |β| � 0.2, only a weak dependence on γ

is predicted by the calculation based on the PC-F1 functional.
A very similar energy surface is calculated for the isotone
132Xe (Figs. 2 and 4).

In the next step the constrained self-consistent solutions
of the relativistic mean-field plus BCS equations, that is, the
single-particle wave functions, occupation probabilities, and
quasiparticle energies that correspond to each point on the

binding energy surfaces in Figs. 1 and 2, are used to calculate
the parameters that determine the collective Hamiltonian [21],

Ĥ = T̂vib + T̂rot + Vcoll, (3)

with the vibrational kinetic energy,

T̂vib = − h̄2
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FIG. 3. (Color online) Self-consistent RMF + BCS binding en-
ergy curves of the 134Ba nucleus, as functions of the deformation
parameter γ , for four values of axial deformation, β = 0.05, 0.1,
0.15, and 0.2.
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Figure 1: (a)-(c) Collective wave functions, GT intensity with, (d)-(f) full and, (g)-(i) constant spatial
dependence and (j)-(l) pairing energies for (left) A = 48, (middle) A = 76 and (right) A = 150 decays.
Shaded areas corresponds to regions explored by the collective wave functions.

different deformations (β ≈ +0.40 and β ≈ +0.25, respectively). According to Eq. 6, the final results
depend on the convolution of the collective wave functions with the 0νββ matrix elements as a function
of deformation. In Fig. 1(d)-(f) we show schematically -shaded circles- the areas of the GT intensity
explored by the collective wave functions. We observe, on the one hand, that configuration mixing is
very important in the final result because several shapes can contribute to the value of NME, especially
in A = 48 and 76. On the other hand, we see that the regions with largest values of the GT intensity
are excluded by the collective wave functions. For example, calculations assuming spherical symmetry
give systematically larger NME -except for A = 96- as we show in Figure 2.

To summarize, we have presented a method for calculating 0νββ nuclear matrix elements based on
Gogny D1S Energy Density Functional including beyond mean field effects such as symmetry restoration
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were derived microscopically form the covariant density functional PC-F1. The

resulting spectrum and the electromagnetic transition probabilities are more or less

the same as in the 1D-AMP GCM calculation shown in Fig. 4.

4. Summary and outlook.

Among the microscopic approaches to the nuclear many-body problem, the frame-

work of nuclear density functional theory provides the most complete description

of ground-state properties and collective excitations over the whole nuclide chart.

Here we have seen that the self-consistent relativistic mean-field model based on

a universal density functional provides an excellent description of the inner fission

barriers in actinide nuclei with an average deviation between theory and exper-

iment of 0.76 MeV. For transitional nuclei relativistic models not only describe

general features of shape transitions but also particular properties of spectra and

transition rates at the critical point of the QPT. However, to calculate excitation

spectra and transition probabilities, the self-consistent mean-field approach has to

be extended to include correlations related to restoration of broken symmetries and

fluctuations of collective variables. This can be done either by performing GCM

P. Ring et al, 2011

GCM in DFT

Combining GCM reference state this
with the IMSRG yields the IM-GCM.

See talk by H. Hergert



Reference State with Collective Correlations
Background: Generator Coordinate Method

Construct set of mean fields by constraining coordinate(s), e.g.
quadrupole moment 〈Q0〉. Then diagonalize H in space of
symmetry-restored quasiparticle vacua with different 〈Q0〉.+ + + + + · · ·· · ·+

Potential energy surface
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FIG. 2. (Color online) Same as
Fig. 1, but for the isotopes 134-128Xe.

barriers are concentrated around β ≈ 0, and therefore, rather
than two separate minima, the potentials display continuous
γ -soft minima that extend from prolate to oblate shapes.
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energy curves as functions of γ for several values of axial
deformation: β = 0.05, 0.1, 0.15, and 0.2. In the region of
the flat bottom |β| � 0.1 the binding energy of 134Ba is
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quasiparticle energies that correspond to each point on the

binding energy surfaces in Figs. 1 and 2, are used to calculate
the parameters that determine the collective Hamiltonian [21],
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different deformations (β ≈ +0.40 and β ≈ +0.25, respectively). According to Eq. 6, the final results
depend on the convolution of the collective wave functions with the 0νββ matrix elements as a function
of deformation. In Fig. 1(d)-(f) we show schematically -shaded circles- the areas of the GT intensity
explored by the collective wave functions. We observe, on the one hand, that configuration mixing is
very important in the final result because several shapes can contribute to the value of NME, especially
in A = 48 and 76. On the other hand, we see that the regions with largest values of the GT intensity
are excluded by the collective wave functions. For example, calculations assuming spherical symmetry
give systematically larger NME -except for A = 96- as we show in Figure 2.

To summarize, we have presented a method for calculating 0νββ nuclear matrix elements based on
Gogny D1S Energy Density Functional including beyond mean field effects such as symmetry restoration
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experimental B(E2;2+1 → 0+1 ).

were derived microscopically form the covariant density functional PC-F1. The

resulting spectrum and the electromagnetic transition probabilities are more or less

the same as in the 1D-AMP GCM calculation shown in Fig. 4.

4. Summary and outlook.

Among the microscopic approaches to the nuclear many-body problem, the frame-

work of nuclear density functional theory provides the most complete description

of ground-state properties and collective excitations over the whole nuclide chart.

Here we have seen that the self-consistent relativistic mean-field model based on

a universal density functional provides an excellent description of the inner fission

barriers in actinide nuclei with an average deviation between theory and exper-

iment of 0.76 MeV. For transitional nuclei relativistic models not only describe

general features of shape transitions but also particular properties of spectra and

transition rates at the critical point of the QPT. However, to calculate excitation

spectra and transition probabilities, the self-consistent mean-field approach has to

be extended to include correlations related to restoration of broken symmetries and

fluctuations of collective variables. This can be done either by performing GCM

P. Ring et al, 2011

GCM in DFT

Combining GCM reference state this
with the IMSRG yields the IM-GCM.

See talk by H. Hergert



199Hg: A Challenging Nucleus

198Hg has a very soft
oblate minimum.

(a) (b)

(c) (d)

(e) (f)

Figure 1: Self-consistent RHB triaxial quadrupole energy
surfaces of even-even 190−200Hg isotopes in the β−γ plane
(0◦ < γ < 60◦). All energies are normalized with respect
to the binding energy of the corresponding ground state.

lective potential is obtained by subtracting the zero-point
energy corrections[58] from the total energy that corre-
sponds to the solution of constrained triaxial SCMF cal-
culations. The resulting collective potential and inertia pa-
rameters as functions of the collective coordinates deter-
mine the dynamics of the 5DCH. Calculations shown here
have been partially presented in [59].

2 Potential energy surfaces

To illustrate the rapid change of equilibrium shapes in
Fig. 1 we present the potential energy surfaces of even-
even 190−200Hg within the SCMF framework with the DD-
PC1 functional and a separable pairing force. Starting with
the lighter isotope 190Hg the energy surface is γ-soft with
two minima within an energy difference of 500keV, which
indicates a case of shape coexistence of the two different
configurations. The more pronounced minimum is oblate
deformed at β ≈ 0.15 and the second one is prolate at
β ≈ 0.25. In 192Hg the energy surface is still rather flat
in the γ-direction with the equilibrium configuration on
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Figure 2: Low-lying level scheme of the even-even 196Hg
nucleus. The excitation energies, the B(E2) values (in
Weisskopf units) and the ρ2(E0; 0+2 −→ 0+1 ) obtained with
the 5DCH based on the DD-PC1 functional are shown.

The experimental data are taken from Ref. [21].

the oblate side at 0.1 < β < 0.2. The prolate minimum
diminishes and only the oblate one is seen in 194−198Hg.
The single oblate minimum becomes less deformed and
approaches β = 0 for 200Hg, which implies a structural
change from weakly oblate deformed to nearly spherical
states.

The present calculations, based on the relativistic DD-
PC1 functional, are consistent with other theoretical ef-
forts in this region (using the interacting boson model
based on the Gogny-D1M EDF [40], the D1 [33] and
D1S [34, 60] parametrizations of the Gogny-EDF, the
Skyrme-SLy4 EDF [35],other Skyrme[39],the relativistic
NL3 parametrization [36], and the relativistic PC-PK1
functional [61]).

3 Spectroscopic properties

The constrained self-consistent solutions of the relativistic
Hartree-Bogoliubov (RHB) equations at each point on the
energy surface determine the mass parameters the three
moments of inertia and the zero-point energy corrections
as functions of the deformation parameters β and γ. The
diagonalization of the Hamiltonian yields the excitation
spectra and collective wave functions that are used in the
calculation of various observables, e.g., electromagnetic
transition probabilities B(E2) and electric monopole tran-
sition strengths ρ(E0). Physical observables are calculated
in the full configuration space and there are no effective
charges in the model.

As an example in Fig. 2 we display the low-lying col-
lective spectrum of 196Hg, in comparison to available data
for the excitation energies and reduced electric quadrupole
transition probabilities B(E2) in Weisskopf units (W.u.)
taken from Refs. [21]. In addition to the yrast ground-state
band, in deformed and transitional nuclei excited states
are also assigned to (quasi-) β and γ-bands. The com-
parison with the few existing experimental data shows a

EPJ Web of Conferences 252, 02007 (2021)
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sponds to the solution of constrained triaxial SCMF cal-
culations. The resulting collective potential and inertia pa-
rameters as functions of the collective coordinates deter-
mine the dynamics of the 5DCH. Calculations shown here
have been partially presented in [59].
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even 190−200Hg within the SCMF framework with the DD-
PC1 functional and a separable pairing force. Starting with
the lighter isotope 190Hg the energy surface is γ-soft with
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functional [61]).
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The constrained self-consistent solutions of the relativistic
Hartree-Bogoliubov (RHB) equations at each point on the
energy surface determine the mass parameters the three
moments of inertia and the zero-point energy corrections
as functions of the deformation parameters β and γ. The
diagonalization of the Hamiltonian yields the excitation
spectra and collective wave functions that are used in the
calculation of various observables, e.g., electromagnetic
transition probabilities B(E2) and electric monopole tran-
sition strengths ρ(E0). Physical observables are calculated
in the full configuration space and there are no effective
charges in the model.

As an example in Fig. 2 we display the low-lying col-
lective spectrum of 196Hg, in comparison to available data
for the excitation energies and reduced electric quadrupole
transition probabilities B(E2) in Weisskopf units (W.u.)
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sponds to the solution of constrained triaxial SCMF cal-
culations. The resulting collective potential and inertia pa-
rameters as functions of the collective coordinates deter-
mine the dynamics of the 5DCH. Calculations shown here
have been partially presented in [59].

2 Potential energy surfaces

To illustrate the rapid change of equilibrium shapes in
Fig. 1 we present the potential energy surfaces of even-
even 190−200Hg within the SCMF framework with the DD-
PC1 functional and a separable pairing force. Starting with
the lighter isotope 190Hg the energy surface is γ-soft with
two minima within an energy difference of 500keV, which
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functional [61]).
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The constrained self-consistent solutions of the relativistic
Hartree-Bogoliubov (RHB) equations at each point on the
energy surface determine the mass parameters the three
moments of inertia and the zero-point energy corrections
as functions of the deformation parameters β and γ. The
diagonalization of the Hamiltonian yields the excitation
spectra and collective wave functions that are used in the
calculation of various observables, e.g., electromagnetic
transition probabilities B(E2) and electric monopole tran-
sition strengths ρ(E0). Physical observables are calculated
in the full configuration space and there are no effective
charges in the model.

As an example in Fig. 2 we display the low-lying col-
lective spectrum of 196Hg, in comparison to available data
for the excitation energies and reduced electric quadrupole
transition probabilities B(E2) in Weisskopf units (W.u.)
taken from Refs. [21]. In addition to the yrast ground-state
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Full Self-Consistent DFT Calculation

Small and soft deformation a worst case scenario for mean-field.
We did it nonetheless1.
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density distribution
indicates delicate
Schiff moment.

1S. Ban, JE, J. Dobaczewski, A. Shukla, Phys. Rev. C 82, 015501 (2010)



Results

〈S〉Hg ≡ a0 gg0 + a1 gg1 + . . . (e fm3)

a0 a1

HFB SkM∗ 4.1 −2.7
HFB SLy4 1.3 −0.6
Typical QRPA 1.0 7.4

Shell Model2 8.0 7.8

Sign of a1 not clear.
Yanase and Shimizu suggest HFB calculation examined the “wrong”
1/2− state. We’re re-examining the situation in an equivalent
approach (Finite Amplitude Method, an implementation of QRPA).

New results soon.

2Yanase and Shimizu, PRC 102 065502 (2020)



The Future
DFT: GCM: Mixing of many mean fields around the soft minimum.
No immediate plans to do this.

Valence-Space IMSRG: Include VPT as part of the Hamiltonian, so
that the flow generator η and the transformed Hamiltonian will
have negative-parity parts η− and H− :

d
dsH

−(s) = [η0(s),H−(s)] + [η−(s),H0(s)]

H−(0) = VPT .

η0 and H0 are what you get without VPT .
Diagonalize transformed Hamiltonian in shell-model space, and
use transformed Schiff operator to compute 〈S〉.
R. Stroberg doing this with me for 205Tl first.
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225Ra and Other Light Actinides
Octupole Physics and DFT
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Fig. 5. Proposed grcxxping of the low-lying states OF 2zSRa into rotation& bands. T’ke two members of 
tke f? = $- band have been reported in a study of the ‘%?r decay 2oj; they are not observed in the 

present study. 

of the favored K * = z* band. (We have chosen to show in fig. 4 the M 1 multipolarity 
for the 134 keV y so that this apparent con%& in the data will not be overlooked 
by the reader.) 

Definitive I” assignments for the remaining levels above 236 keV are difficult to 
make fram the available data, although the y-ray multipolarities and o-transition 
hindrance factors provide at least some insight. Again, the low value (23) of the 
hindrance factor of the rw-transition to the 394.7 keV Ievel is quite interesting, but 
no definite conclusion can be drawn regarding the I” assignment of this fevei. 

Parity doublet

〈S〉 = ∑
m
〈0 |S |m〉 〈m |VPT |0〉

E0−Em + c.c.

Unlike in other nuclei, these
two states are the whole story.

Deformed density

Two members of the parity
doublet correspond to the same
intrinsic mean-field state:

| 12
±
〉 = 1√

2
( | 〉 ± | 〉 )

and, to good approximation,

〈S〉 ≈ 2
3

〈S〉intr.

〈 | Sz | 〉〈 | VPT | 〉
E+ − E−



Octupole Systematics
More DFT

From Cao et al., Phys. Rev. C 102, 024311 (2020)



Correlation of 225Ra 〈S〉 with 224Ra Octupole Moment
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J. Dobaczewski et al., Phys. Rev. Lett. 121, 232501 (2018)

Looks good, but we’re at the left end of the lines.

a0 a1

-0.4 − 0.8 -2 − -8

Range doesn’t include systematic uncertainty.



IM-GCM
Application to Neutrinoless ββ Decay of 48Ca

J.M. Yao et al., Phys. Rev. Lett. 124, 232501 (2020).

Potential Energy Surfaces

48Ca is spherical and 48Ti is weakly deformed.



Spectrum in 48Ti

In 9 shells
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E2’s are realistic (large).



The Future: IM-GCM for Schiff Moment of 225Ra

Required Improvements to Methods

More nucleons = larger spaces
= more memory, processors
= code refactorization for efficient

supercomputer use

Chiral interactions will need to be tested in really heavy nuclei.

That’s about it!

Howmuch smaller will the uncertainty be?

Not clear, but it will be more believable.

That’s all; thanks.
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