

Studies of electromagnetic moments in nuclei within nuclear DFT

Jacek Dobaczewski University of York & University of Warsaw

Nuclear physics from atomic spectroscopy ECT*,Trento, April 11-15, 2022

Jacek Dobaczewski

In collaboration with

- Paolo Sassarini, Jérémy Bonnard, York
- Witek Nazarewicz, MSU
- Ronald Fernando Garcia Ruiz, Adam R. Vernon, MIT
- Ruben P. de Groote, Leuven
- Magda Kowalska, CERN
- Jacinda Ginges, Georgy Sanamyan, Queensland
- Andrew Stuchbery, ANU, Tim Gray, ORNL

Jacek Dobaczewski

Outline

- 1. Recap on nuclear electromagnetic moments
- 2. Odd near doubly magic nuclei
- 3. Indium isotopes
- 4. Magnetic octupole moments
- 5. Bohr-Weisskopf correction in silver
- 6. Antimony
- **7.** Tin
- 8. Schiff moment in ²²⁵Ra
- 9. Conclusions

Jacek Dobaczewski

Jacek Dobaczewski

Basic definitions

The electric and magnetic moments are defined as

$$egin{aligned} Q_{\lambda\mu} &= \langle \Psi | \hat{Q}_{\lambda\mu} | \Psi
angle = \int q_{\lambda\mu}(ec{r}) \, d^3ec{r}, \ M_{\lambda\mu} &= \langle \Psi | \hat{M}_{\lambda\mu} | \Psi
angle = \int m_{\lambda\mu}(ec{r}) \, d^3ec{r}, \end{aligned}$$

where $|\Psi\rangle$ is a many-body state, and $q_{\lambda\mu}(\vec{r})$ and $m_{\lambda\mu}(\vec{r})$ are the corresponding electric and magnetic-moment densities:

$$egin{aligned} q_{\lambda\mu}(ec{r}) &= e
ho(ec{r})Q_{\lambda\mu}(ec{r}), \ m_{\lambda\mu}(ec{r}) &= \mu_N \Big[g_sec{s}(ec{r}) + rac{2}{\lambda+1}g_lig(ec{r} imesec{j}(ec{r})ig) \Big]\cdotec{
abla}Q_{\lambda\mu}(ec{r}), \end{aligned}$$

and e, g_s , and g_l are the elementary charge, and the spin and orbital gyromagnetic factors, respectively. The multipole functions (solid harmonics) have the standard form: $Q_{\lambda\mu}(\vec{r}) = r^{\lambda}Y_{\lambda\mu}(\theta, \phi)$.

Function $m_{\lambda\mu}(\vec{r})$ is called magnetization density and its higher radial moments

$$M^{(n)}_{\lambda\mu} = \int\,r^n\,m_{\lambda\mu}(ec r)\,d^3ec r,$$

define the Bohr-Weisskopf hyperfine splitting corrections.

Mechanism for e-m moments generation

- In nuclear DFT, properties of odd nuclei can be analysed in terms of the self-consistent polarisation effects caused by the presence of the unpaired nucleon.
- A non-zero quadrupole moment of the odd nucleon induces deformation of the total mean field and thus generates quadrupole moments of all remaining nucleons. $V=-\lambda Q_1 Q_2$
 - The latter moments enhance the deformation of the mean field even more, which in turn influences the quadrupole moment of the odd nucleon.
 - In a self-consistent solution, these mutual polarisation are effectively summed up to infinity, whereupon the final total quadrupole deformation and electric quadrupole moment Q of the system are generated.
 - A non-zero spin and current distributions of the odd particle influence those of all other nucleons and in the self-consistent solution lead to a specific polarisation of the system and its non-zero magnetic dipole moment μ . $V=-\lambda\sigma_1\sigma_2$
 - All nucleons contribute to the moments Q and μ of the system, with individual contributions of nucleons depending on their individual polarisation responses to the deformed and polarised mean field.

Odd near doubly magic nuclei

Jacek Dobaczewski

Quadrupole & dipole moments

- **Spectroscopic moments**
- Proton-odd (squares) & neutron-odd (circles) nuclei •
- Average of UNEDF1, SLy4, SkO', D1S, N3LO functionals
- **RMS** deviations much smaller than the residuals

Time-odd densities & Landau parameters

- In nuclear DFT, what really matters is not the interaction but the functional, that is, the energy density expressed as a function of local or nonlocal particle $\rho(\vec{r})$, spin $\vec{s}(\vec{r})$, kinetic $\tau(\vec{r})$, spin-kinetic $\vec{T}(\vec{r})$, current $\vec{j}(\vec{r})$, spin-current $J(\vec{r})$, ..., densities.
- In particular, for one-body time-odd observables like magnetic moments, the time-odd densities $\vec{s}(\vec{r})$ and $\vec{j}(\vec{r})$ are essential. For a local functional, the corresponding relevant terms read:

$$egin{aligned} \mathcal{H}(ec{r}) &= \sum_{t=0,1} C_t^s \, ec{s}_t(ec{r}) \cdot ec{s}_t(ec{r}) \ &+ \sum_{t=0,1} C_t^ au \left(
ho_t(ec{r}) au_t(ec{r}) - ec{j}_t(ec{r}) \cdot ec{j}_t(ec{r})
ight) \ &+ \sum_{t=0,1} C_t^T \left(ec{s}_t(ec{r}) \cdot ec{T}_t(ec{r}) - \mathsf{J}_t^2
ight) \end{aligned}$$

where t = 0, 1 stands for the isoscalar and isovector terms, respectively.

In the present study, we analyse the isovector spin-spin term only and we parameterise it by the Landau parameter g'_0 as

$$g_0' = N_0 \Big(2 C_1^s + 2 C_1^T \, (3 \pi^2
ho_0/2)^{2/3} \Big),$$

where the normalization factor N_0 is the level density at the Fermi surface

$$rac{1}{N_0} = rac{\pi^2 \hbar^2}{2m^* k_{
m F}} pprox 150 \, rac{m}{m^*} \; {
m MeV} \; {
m fm}^3.$$

Jacek Dobaczewski UNIVERSITY of York

Magnetic dipole moments vs. experiment

Jacek Dobaczewski

Optimisation of the spin-spin term

Jacek Dobaczewski

UNIVERSITY of York

Effective spin g-factor?

Jacek Dobaczewski

UNIVERSITY of fork

Indium

Jacek Dobaczewski

Magnetic dipole moments in indium

UNIVERSITY of York

Jacek Dobaczewski

Electric quadrupole moments in indium

Jacek Dobaczewski

UNIVERSITY Of

Particle-core-coupling analysis

Consider three HF states:

- $1^{\circ} |\Phi_K\rangle$: the Indium self-consitent state with projection K = +9/2 of the angular momentum on the z axis,
- $2^{\circ} |\phi_{\Omega}\rangle$: the polarized $g_{9/2}$ orbital with $\Omega = -9/2$ (a hole orbital extracted from the self-consistent results for Indium),
- $3^{\circ} |\Psi\rangle$: the Tin-like polarized core state obtined by adding orbital $|\phi_{\Omega}\rangle$ to the Indium state $|\Phi_{K}\rangle$.

The particle-core model neglects the Pauli principle between the particle and the core and assumes that $|\Psi\rangle = |\Phi_K\rangle \times |\phi_\Omega\rangle$. We perform the angular-momentum restoration for the three states:

 $egin{array}{ll} 1^\circ & |\Phi_K
angle = \sum_I g_I |\Phi_{IK}
angle, \ 2^\circ & |\phi_\Omega
angle = \sum_j c_j |\phi_{j\Omega}
angle, \ 3^\circ & |\Psi
angle = \sum_J C_J |\Psi_{J0}
angle. \end{array}$

where g_I , c_j , and C_J are normalization factors. This gives:

$$\begin{split} \langle \Phi_{IK} | \hat{O}_{\lambda\mu} | \Phi_{IK} \rangle &= |g_I|^2 [I]^4 \begin{pmatrix} I & \lambda & I \\ K & \mu & -K \end{pmatrix} \\ & \times & \left\{ \sum_{J,j,J'} C_J^* C_{J'} | c_j |^2 (-1)^{J'+j-K} \begin{pmatrix} J & j & I \\ M & m & -K \end{pmatrix} \begin{pmatrix} J' & j & I \\ M & m & -K \end{pmatrix} \begin{pmatrix} I & \lambda & I \\ J & j & J' \end{pmatrix} \langle J || \hat{O}_{\lambda}^c || J' \rangle \\ & + & \sum_{J,j,j'} |C_J|^2 c_j^* c_{j'} (-1)^{J+j-K} \begin{pmatrix} J & j & I \\ M & m & -K \end{pmatrix} \begin{pmatrix} J & j' & I \\ M & m & -K \end{pmatrix} \begin{pmatrix} I & \lambda & I \\ j & J & j' \end{pmatrix} \langle j || \hat{O}_{\lambda}^{sp} || j' \rangle \right\} \end{split}$$

Jacek Dobaczewski

Particle-core-coupling analysis

Jacek Dobaczewski

Magnetic octupole moments

Jacek Dobaczewski

Visualisation of the magnetic multipole moments in axial symmetry

λ=1 λ=2 λ=3

Axial solid harmonics:

$\lambda \mu$	$Q_{\lambda\mu}$	$ abla_z Q_{\lambda\mu}$	
00	$\sqrt{\frac{1}{4\pi}}$	0	
10	$\sqrt{rac{3}{4\pi}}z$	$\sqrt{\frac{3}{4\pi}}$	$=\sqrt{3}Q_{00}$
20	$\sqrt{rac{5}{16\pi}}\left(2z^2-x^2-y^2 ight)$	$\sqrt{\frac{5}{\pi}z}$	$=\sqrt{rac{20}{3}}Q_{10}$
30	$\sqrt{rac{7}{16\pi}}\left(2z^3-3x^2z-3y^2z ight)$	$\sqrt{rac{7}{16\pi}}3\left(2z^2-x^2-y^2 ight)$	$=\sqrt{rac{63}{5}}Q_{20}$

Axial electric and magnetic-moment densities:

 $egin{aligned} q_{\lambda 0}(r, heta) &= e
ho(r, heta)Q_{\lambda 0}(r, heta), \ m_{\lambda 0}(r, heta) &= \mu_N \Big[g_s s_z(r, heta) + rac{2}{\lambda+1}g_lig(ec{r} imesec{j}ig)_z(r, heta)\Big]\cdot
abla_z Q_{\lambda 0}(r, heta), \ \mathbf{or} \ m_{\lambda 0}(r, heta) &= \mu_N \Big[g_s s_z(r, heta) + rac{2}{\lambda+1}g_l I_z(r, heta)\Big]C_\lambda Q_{(\lambda-1)0}(r, heta), \end{aligned}$

Jacek Dobaczewski

Magnetic octupole moments in indium

Jacek Dobaczewski

Bohr-Weisskopf correction

Jacek Dobaczewski

Moments of magnetization in silver

Jacek Dobaczewski UNIVERSITY of York

Antimony

Jacek Dobaczewski

Magnetic dipole moments in antimony

Electric quadrupole moments in antimony

Jacek Dobaczewski UNIVERSITY of York

Tin

Jacek Dobaczewski

Magnetic dipole moments in tin

Jacek Dobaczewski

Schiff moment in ²²⁵Ra

Jacek Dobaczewski

²²⁵Ra Schiff moment vs. ²²⁴Ra octupole moment

 $S = a_0 g \bar{g}_0 + a_1 g \bar{g}_1 + a_2 g \bar{g}_2 + b_1 \bar{c}_1 + b_2 \bar{c}_2.$

Jacek Dobaczewski UNIVERSITY of York

Conclusions

- 1. Nuclear DFT:
 - An approach of choice to calculate electromagnetic moments in nuclei.
 - Takes into account polarization effects by odd particles to infinite order in full single-particle space.
 - Allows for analysing physical effects.
 - Unified approach with no limits on mass.
- 2. Symmetry restoration is essential.
- **3.** Effective charges and effective g-factors not needed.
- 4. Future systematic applications to semi-magic nuclei, excited states, open-shell systems.
- 5. Future applications to exotic moments: Schiff, anapole, weak...
- 6. Links to particle, atomic, and molecular physics.
- 7. Adjustments of the nuclear DFT coupling constants to data should take the magnetic moments into account.

Thank you

Jacek Dobaczewski

"Spin" magnetic dipole moment

In this study we use the single-particle magnetic-dipole-moment operator for neutron and proton bare orbital and spin gyroscopic factors,

$$g_{\ell}^{p} = \mu_{N}, \ g_{s}^{n} = -3.826 \,\mu_{N}, \ g_{s}^{p} = +5.586 \,\mu_{N},$$

which reads

$$\hat{\mu} = g_\ell^p \hat{L}_p + g_s^n \hat{S}_n, + g_s^p \hat{S}_p,$$

where \hat{L}_{ν} and \hat{S}_{ν} for $\nu = n, p$ are the operators of orbital and spin angular momenta, respectively. Since the total angular momentum $\hat{J} = \sum_{\nu=n,p} (\hat{L}_{\nu} + \hat{S}_{\nu})$ is conserved, it is convenient to subtract its eigenvalue from the spectroscopic magnetic moments of odd-Z nuclei and to define "spin" magnetic moments $\mu^{\mathbf{S}}$ as

$$\begin{split} \mu^{\mathbf{S}} &= \mu = g_{\ell}^{p} \langle \hat{L}_{p} \rangle + g_{s}^{n} \langle \hat{S}_{n} \rangle + g_{s}^{p} \langle \hat{S}_{p} \rangle \quad \text{for } Z \text{ even,} \\ \mu^{\mathbf{S}} &= \mu - J \, \mu_{N} \\ &= g_{\ell}^{\prime n} \langle \hat{L}_{n} \rangle + g_{s}^{\prime n} \langle \hat{S}_{n} \rangle + g_{s}^{\prime p} \langle \hat{S}_{p} \rangle \quad \text{for } Z \text{ odd.} \end{split}$$

with

$$g_{\ell}^{\prime n} = -\mu_N, \ g_s^{\prime n} = -4.826 \ \mu_N, \ g_s^{\prime p} = +4.586 \ \mu_N.$$

Jacek Dobaczewski

Spin magnetic dipole moments

Spin magnetic dipole moments

Jacek Dobaczewski

HF+AMP, deformation energies in ⁴⁵Sc

HF + angular momentum projection (AMP)

The Hartree-Fock (HF) spin and current intrinsic densities read:

$$ec{s}(ec{r}) = \sum_{\sigma\sigma'} ec{\sigma}_{\sigma'\sigma}
ho(ec{r}\sigma, ec{r}\sigma'), \quad ec{j}(ec{r}) = rac{1}{2i} \sum_{\sigma} (ec{
abla} - ec{
abla}')
ho(ec{r}\sigma, ec{r}'\sigma),$$

where the one-body density matrix $\rho(\vec{r}\sigma, \vec{r}'\sigma')$ can be split into the core and oddparticle contributions:

$$\rho(\vec{r}\sigma,\vec{r}'\sigma') = \sum_{i=1}^{A-1} \psi_i(\vec{r}\sigma)\psi_i^*(\vec{r}'\sigma') + \psi_{\rm odd}(\vec{r}\sigma)\psi_{\rm odd}^*(\vec{r}'\sigma'),$$

and where $\psi(\vec{r}\sigma)$ are the self-consistent single-particle wave functions of occupied states. The HF wave function of an odd system $|\Phi\rangle = |\Phi^{\text{core}}\rangle \otimes |\psi^{\text{odd}}\rangle = \sum_{I} |\Psi_{I}\rangle$ has the conserved-angular-momentum components:

$$|\Psi_I
angle = \sum_{J=0,2,4,...} ~~ \sum_{j=K,K+2,K+4,...} \left[|\Psi_J^{
m core}
angle|\psi_j^{
m odd}
angle
ight]_I,$$

In ${}^{45}Sc$, the angular-momentum projected ground state can be presented as:

$$\begin{split} |\Psi_{7/2}\rangle &= \left[|\Psi_0^{\text{core}}\rangle|\psi_{7/2}^{\text{odd}}\rangle\right]_{7/2} + \left[|\Psi_2^{\text{core}}\rangle|\psi_{7/2}^{\text{odd}}\rangle\right]_{7/2} \\ &+ \left[|\Psi_2^{\text{core}}\rangle|\psi_{11/2}^{\text{odd}}\rangle\right]_{7/2} + \left[|\Psi_4^{\text{core}}\rangle|\psi_{7/2}^{\text{odd}}\rangle\right]_{7/2} + \dots \end{split}$$

The first term represents a spherical core coupled to the spherical j = 7/2 wave function of the odd particle. The second term represents the lowest-order coupling of the odd-particle to the lowest J = 2 state of the core.

Jacek Dobaczewski UNIVERSITY of York

