
RELATIVISTIC COUPLED CLUSTER: A POWERFUL COMPUTATIONAL TOOL IN SUPPORT OF EXPERIMENTS

A. Borschevsky

 van swinderen institute for particle physics and gravity

University of Groningen

Research:

Using state of the art methods from computational chemistry to address fundamental problems in physics:

> Search for new physics with low-energy precision measurements

Violation of fundamental symmetries in atoms and in molecules

 \geq Search for variation of fundamental constants

> Highly accurate calculations of spectra and properties of heavy and superheavy atoms and highly charged ions

Most work done in collaboration with experimental groups

University of Groningen

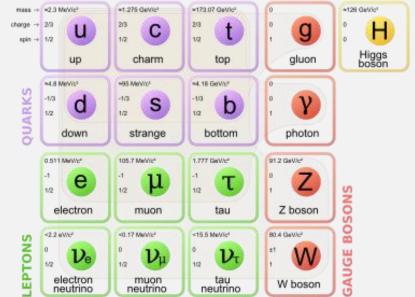
Research:

Using state of the art methods from computational chemistry to address fundamental problems in physics:

> Search for new physics with low-energy precision measurements

Violation of fundamental symmetries in atoms and in molecules

 \geq Search for variation of fundamental constants


> Highly accurate calculations of spectra and properties of heavy and superheavy atoms and highly charged ions

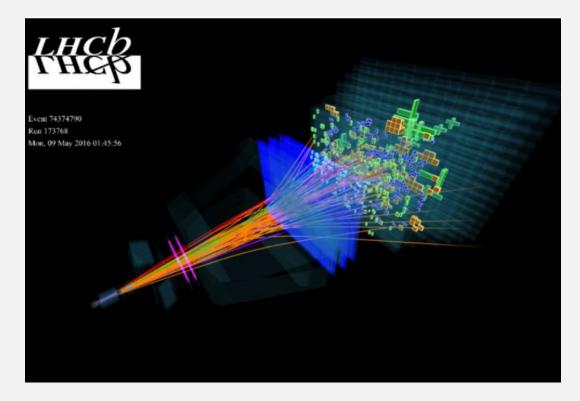
Most work done in collaboration with experimental groups

MOTIVATION

Why look for physics beyond the Standard Model (SM)?

- The SM is currently the best fitting physical description of the world around us.
- So far successfully explained the majority of observed natural phenomena and has strong predictive power (Higgs boson, top quark, tau neutrino)
- But... it is incomplete

Why look for physics beyond the Standard Model (SM)?


- Extensions to the SM attempt to fill these knowledge gaps.
 - Grand Unified Theories, String Theory, SUSY, ...
- These extensions predict new physical phenomena beyond the SM.
 - Variation of fundamental constants (VFC)
 - Violation of fundamental symmetries (CP, P, T)
- (non) discovery of these phenomena allows to discriminate between extensions or new theories.

Why look for physics beyond the SM with atoms and molecules?

- Accelerator research (LHCb, T2K, etc.)
- Table-top experiments

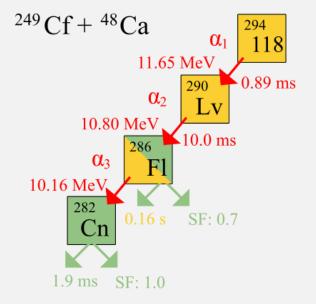
A panoramic picture of the four meter long traveling-wave decelerator that has been built in Groningen. It is in use for decelerating packets of the heavy diatomic molecule SrF, which is a prototypical system for the investigation of broken symmetries.

Why look for physics beyond the SM with atoms and molecules?

- Table-top experiments: promising alternative to high energy research
 - Versatile, sensitive to different phenomena
 - Parity violation
 - EDMs (electron, hadronic)
 - Variation of fundamental constants
 - Dark matter
 - •
 - Various enhancement effects \rightarrow high sensitivity
 - Small scale
 - (Relatively) inexpensive

Search for new physics with atoms and molecules

M.S. Safronova, D. Rudker, D. DeMille, Derek E. Jackson Kimball, A. Derevianko, and Charles W. Clark


A panoramic picture of the four meter long traveling-wave decelerator that has been built in Groningen. It is in use for decelerating packets of the heavy diatomic molecule SrF, which is a prototypical system for the investigation of broken symmetries.

Why investigate unstable and artificial elements?

- (Exotic) nuclear structure and properties
- Information about new elements, assignment in Periodic Table
- Behaviour and trends in lower part of the Periodic Table
- Benchmarks for theory (e.g. contribution of QED effects)

Challenging experiments!

- In one case, unprecedented sensitivity needed to detect the tiny effects of new physics
- In the other, dealing with small amounts of unstable, short lived elements
- Sometimes, combined challenges (e.g. precision measurements on RaF and others)!
- Alongside specially developed experimental techniques, theoretical support becomes crucial

How can (atomic and molecular) theory be of use?

- Practical parameters for experiments (predictions of transition energies, laser-cooling schemes, etc.)
- Parameters for the interpretation of the results (HFS parameters for extraction of nuclear properties, coupling parameters for new physics phenomena, etc.)
- Identification of promising candidates for precision measurements
 - High sensitivity
 - Experimental considerations (stability, laser-coolability, etc.)

How can (atomic and molecular) theory be of use?

- Practical parameters for experiments (predictions of transition energies, laser-cooling schemes, etc.)
- Parameters for the interpretation of the results (HFS parameters for extraction of nuclear properties, coupling parameters for new physics phenomena, etc.)
- Identification of promising candidates for precision measurements
 - High sensitivity
 - Experimental considerations (stability, laser-coolability, etc.)

For use in experiments:

- Reliable predictions based on high accuracy calculations
- Preference for *ab initio* methods (predictive power)
- Possibility of assigning uncertainties

Choice of computational method becomes important

COMPUTATIONAL METHODS

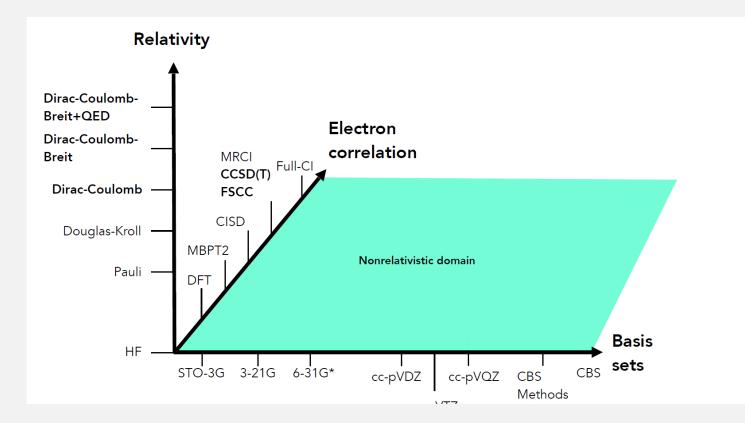
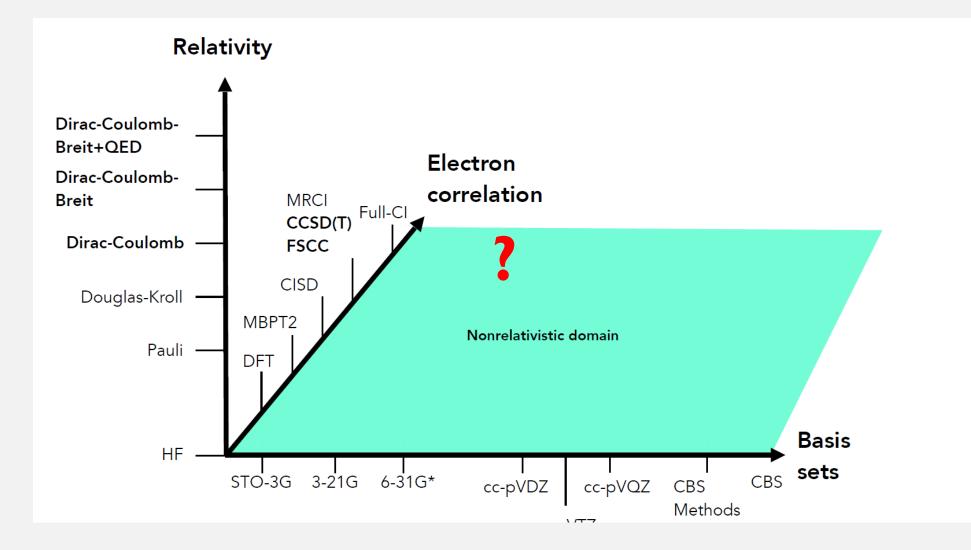



Figure courtesy of P. Schwerdtfeger

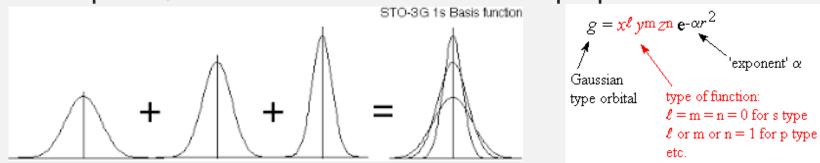
What do we need?

- Coupling parameters describing the effect of P(T)-violating phenomena (or variation of constants) on electronic structure
 - Relativistic in nature, hence relativistic methods
- Atomic and molecular parameters needed in experiments
 - (usually) heavy (radioactive) systems, hence relativistic methods
- High accuracy
 - State-of-the-art treatment of correlation, large basis sets
- Uncertainty estimates
 - Robust, transparent methods

Relativistic coupled cluster

- Based on the 4c Dirac Hamiltonian
- Accurate, size-consistent
- CCSD(T) single reference coupled cluster

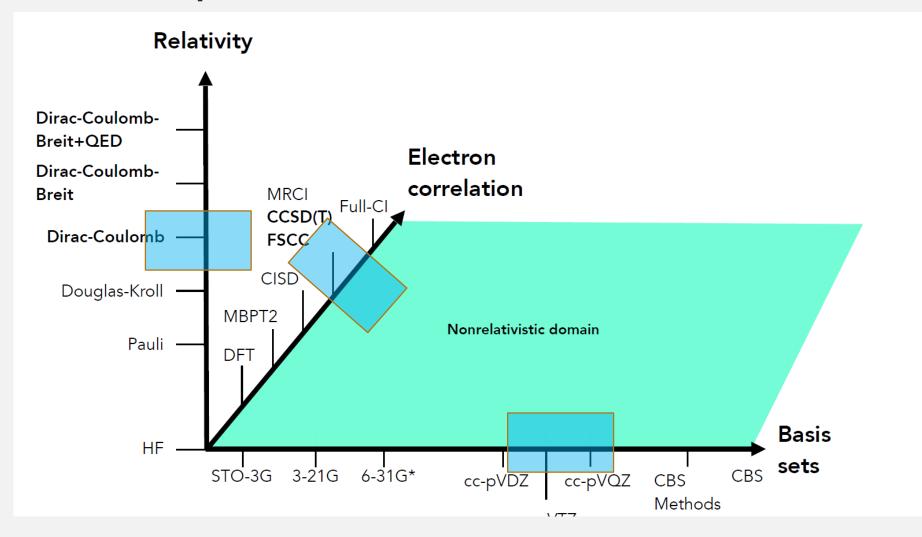
Closed shell systems/systems with one dominant configuration (good example: BaF, X $^{2}\Sigma$)


• **FSCC** – multireference Fock space coupled cluster

Open shell systems, excited states, bond dissociation (good example: ThO ${}^{3}\Delta_{1}$ or any atomic spectrum)

Use the suitable method, or both in complementary manner.

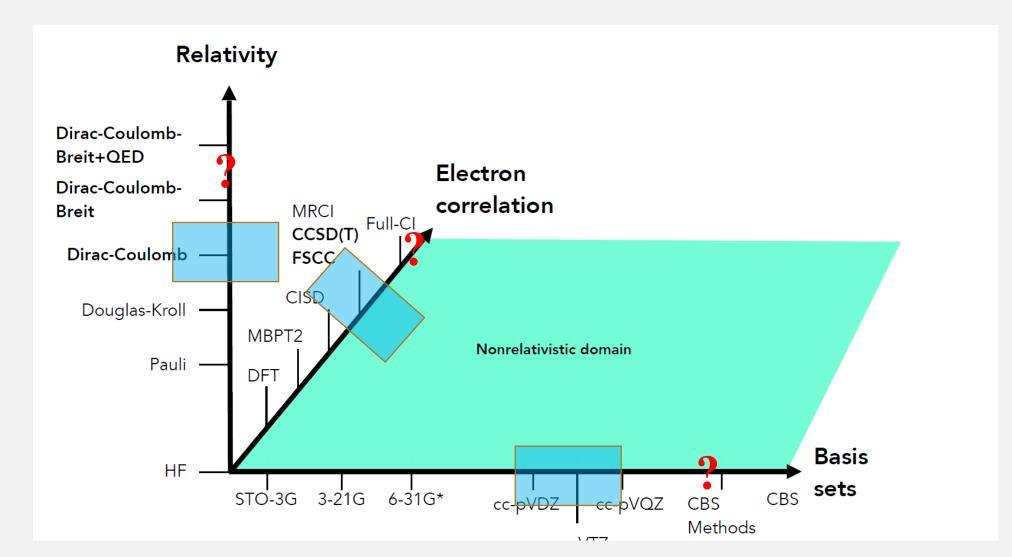
Basis sets


- Sets of (Gaussian) functions that are used to represent the electronic WF.
- Atom specific, different basis sets for different properties

• Dyall's relativistic basis sets; augmented and extended to convergence

(K.G. Dyall, Theor. Chem Acc. 2002, 2004, 2006, 2007, 2009, 2011, 2012, etc.)

Relativistic coupled cluster


What can we calculate?

- Atomic properties: energies, IPs, EAs, spectra, hyperfine structure parameters, polarisabilities
- Molecular properties: geometries, spectroscopic constants, electronic structure, Franck-Condon Factors (FCFs), transition strengths
- Specific properties:
 - W_d,W_s (eEDM experiments)
 - W_A (NSD-PV, nuclear anapole moments)
 - W_M (nuclear magnetic quadrupole moments)
 - Sensitivity to variation of α

• ...

- CCSD(T), FSCC (applicable to different systems/states)
- Expected accuracy: ~10 meV for energies, single % for properties
- Systematic investigation of effect of computational parameters and uncertainty evaluation

How do we assign uncertainties?

Software

• Tel Aviv atomic computational package (TRAFS-3C)

Tel-Aviv Relativistic Atomic Fock-Space coupled cluster code, written by E.Eliav and U.Kaldor, with contributions from Y. Ishikawa, A. Landau, A. Borschevsky and H.Yakobi.

• DIRACI8 computational package

DIRAC, a relativistic *ab initio* electronic structure program, release DIRAC18 (2018)

and:

- MRCC code of Kallay et al., <u>www.mrcc.hu</u> (higher excitations)
- CFOUR package, <u>http://www.cfour.de</u> (geometry optimisation of polyatomic molecules)

What can we calculate?

- Atomic properties: energies, IPs, EAs, spectra, hyperfine structure parameters, polarisabilities
- Molecular properties: geometries, spectroscopic constants, electronic structure, Franck-Condon Factors (FCFs), transition strengths
- Specific properties:
 - W_d,W_s (eEDM experiments)
 - W_A (NSD-PV, nuclear anapole moments)
 - W_M (nuclear magnetic quadrupole moments)
 - Sensitivity to variation of α
- CCSD(T), FSCC (applicable to different systems/states)
- Expected accuracy: ~10 meV for energies
- Systematic investigation of effect of computational parameters and uncertainty evaluation

Any drawbacks?

- × Computationally expensive
- × FSCC is limited to systems with up to two valence electrons/holes
- × Some properties not (yet) available, e.g. TDMs

What can we calculate?

- Atomic properties: energies, IPs, EAs, spectra, hyperfine structure parameters, polarisabilities
- Molecular properties: geometries, spectroscopic constants, electronic structure, Franck-Condon Factors (FCFs), transition strengths
- Specific properties:
 - W_d,W_s (eEDM experiments)
 - W_A (NSD-PV, nuclear anapole moments)
 - W_M (nuclear magnetic quadrupole moments)
 - Sensitivity to variation of α
- CCSD(T), FSCC (applicable to different systems/states)
- Expected accuracy: ~10 meV for energies
- Systematic investigation of effect of computational parameters and uncertainty evaluation

Any drawbacks?

- × Computationally expensive
- **×** FSCC is limited to systems with up
- × Some properties not (yet) available, e.g. TDMs

Towards High Performance Relativistic Electronic Structure Modelling: The EXP-T Program Package

Alexander V. Oleynichenko 🖂, Andréi Zaitsevskii & Ephraim Eliav

APPLICATIONS

- Hyperfine structure constants:
 - New implementation and test cases
 - Ge
- Nuclear-spin-dependent parity violation measurements:
 - BaF
 - Light triatomic molecules

HYPERFINE STRUCTURE CONSTANTS

New implementation: magnetic hyperfine coupling constants

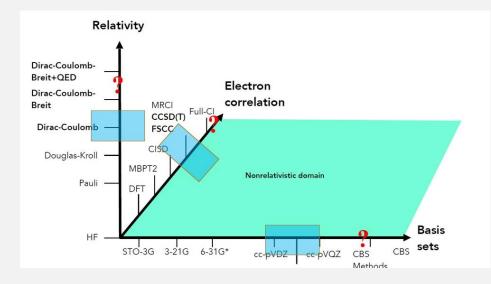
• Expectation values are difficult in CC: use finite field approach

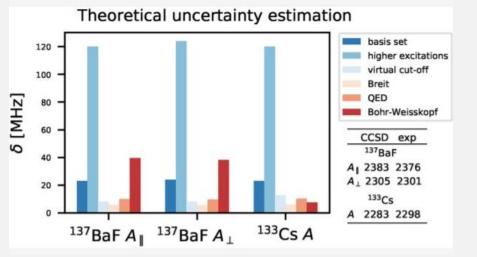
$$\hat{H} = \hat{H}^{(0)} + \lambda \hat{H}_{M,u}^{\text{HFS}} = g_M \mu_N \vec{I}^M \cdot \sum_i \frac{(\vec{r}_{iM} \times \vec{\alpha}_i)}{r_{iM}^3}$$
$$= \sum_u g_M \mu_N I_u^M \sum_i \frac{(\vec{r}_{iM} \times \vec{\alpha}_i)_u}{r_{iM}^3}$$
$$= \sum_u I_u^M \hat{H}_u^{M,\text{HFS}}.$$

- Complementary with already existing implementation for electric quadrupole HFS constants
- Both single reference CCSD(T) and FSCC

• Applicable to atoms and molecules, ground and excited states

Ground states: Cs and BaF


- CCSD/CCSD(T) level of theory
- Uncertainty evaluation:


Table 7. Summary of the Sources of Uncertainty (MHz) of the Calculated A_{\parallel} , A_{\perp} , and A Constants (MHz) of ¹³⁷Ba in BaF and ¹³³Cs

source	137]	BaF	¹³³ Cs
	δA	δA_{\perp}	δΑ
basis set			
quality	20.00	20.00	19.0
tight functions	3.00	3.00	4.00
diffuse functions	0.00	1.00	0.00
correlation			
higher order	-120.00	-124.00	-120.00
virtual cutoff	8.18	8.18 ^c	12.78
relativistic effects			
Breit	5.72ª	5.53ª	6.00 ^b
QED ^{VP+SE}	-10.01^{a}	-9.68 ^a	-10.30^{b}
Bohr–Weisskopf	-39.56^{a}	-38.26^{a}	-7.60^{b}
quadratic sum	128.74	132.07	123.05
%	5.40	5.73	5.28

^{*a*}Based on ¹³⁵Ba⁺ results from ref 85. ^{*b*}Taken directly from ref 85. ^{*c*}Used A_{\parallel} results.

How do we assign uncertainties?

Ground states: Cs and BaF

Table 9. A of Cs in MHz^a

method	¹³³ Cs	%(exp)
$MBPT^{b}+B^{7}$	2291.00	-0.31
SDpT+B ⁸	2278.5	-0.85
$MBPT^{b7}+B^{10}$	2295.87	-0.10
MBPT ^b +OE+G ⁹	2302	0.17
CCSDvT ¹¹ +B ¹⁰ +QED ^{VP+SE 87}	2306.6	0.36
CCSD (ECC) ²⁶	2179.1	-5.18
CCSD (Z-vector) ²⁷	2218.4	-3.47
MBPT ^b +B+QED ^{VP+SE 85}	2294.4	-0.16
CCSD (LCCSD) ⁸¹	2345.9	2.08
CCSD (finite field, this work)	2283(123)	-0.66
exp ⁷⁸	2298.16	

Table 8. A_{\parallel} and A_{\perp} of ¹³⁷Ba in BaF (MHz)

	¹³⁷ BaF					
method	A	%(exp)	A_{\perp}	%(exp)		
GRECP SCF-EO ⁹⁰	2264	-4.71	2186	-5.00		
GRECP RASSCF-EO ⁹⁰	2272	-4.38	2200	-4.39		
DF RASCI ⁹¹	2240	-5.72	2144	-6.82		
DF MBPT ⁹¹	2314	-2.61	2254	-2.04		
DC CCSD (this work)	2383(129)	0.29	2305(132)	0.17		
exp ⁷⁷	2376(12)		2301(9)			

Ground states: Cs and BaF

method	¹³³ Cs	%(exp)
$MBPT^{b}+B^{7}$	2291.00	-0.31
SDpT+B ⁸	2278.5	-0.85
MBPT ^{b7} +B ¹⁰	2295.87	-0.10
MBPT ^b +OE+G ⁹	2302	0.17
CCSDvT ¹¹ +B ¹⁰ +QED ^{VP+SE 87}	2306.6	0.36
CCSD (ECC) ²⁶	2179.1	-5.18
CCSD (Z-vector) ²⁷	2218.4	-3.47

Pi Haase

THE JOURNAL OF CHEMISTRY A		ACS AUTHORCHOICE			
ubs.acs.org/JPCA		Article in I	BaF (MH	Iz)	
lyperfine Structure Constants on the even with Associated Uncertainties		ister	¹³⁷ I	·	
i A. B. Haase,* Ephraim Eliav, Miroslav Iliaš, and An	nastasia Borschevsky		%(exp)	A_{\perp}	%(exp)
🕜 Cite This: J. Phys. Chem. A 2020, 124, 3157–3169	Read Online		-4.71	2186	-5.00
			-4.38	2200	-4.39
	DF RASCI ⁹¹	2240	-5.72	2144	-6.82
	DF MBPT ⁹¹	2314	-2.61	2254	-2.04
	DC CCSD (this work)	2383(129)	0.29	2305(132)	0.17
	exp ⁷⁷	2376(12)		2301(9)	

Predictive power

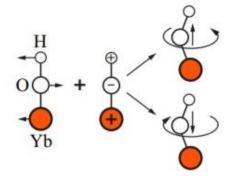

• YbOH: promising candidate for search for eEDM and other P,Tviolating effects.

TABLE VII. The A_{\parallel} constants of the heavy nucleus calculated using the model
optimized for W_M given in (MHz) and comparison with the available experimental
data.

System	Calculated A	Expt. A	Δ (%)
¹³⁷ BaOH	2194.6	2200.2 ⁴²	0.3
¹⁷¹ YbF	7579.0	7429.1 ⁴³	2
¹⁷³ YbF	-2087.6	-2060.0^{44}	1.3
¹⁷¹ YbOH	7174.9		
¹⁷³ YbOH	-1976.3		

Enhanced \mathcal{P}, \mathcal{T} -violating nuclear magnetic quadrupole moment effects in laser-coolable molecules

Cite as: J. Chem. Phys. **152**, 084303 (2020); https://doi.org/10.1063/1.5141065 Submitted: 03 December 2019 . Accepted: 06 February 2020 . Published Online: 25 February 2020

^(D) Malika Denis, ^(D) Yongliang Hao, Ephraim Eliav, ^(D) Nicholas R. Hutzler, Malaya K. Nayak, Rob G. E. Timmermans, and ^(D) Anastasia Borschesvky

Fine and hyperfine interactions in ¹⁷¹YbOH and ¹⁷³YbOH

J. Chem. Phys. 154, 244309 (2021); https://doi.org/10.1063/5.0055293

Dickolas H. Pilgram¹, D Arian Jadbabaie¹, D Yi Zeng¹, Nicholas R. Hutzler¹, and D Timothy C. Steimle^{2,a}

Isotopologue	Parameter	Measured (MHz)	Theory Ref. 16	Theory Ref. 51 cGHF(MHz)	Theory Ref. 51 cGKS(MHz)	Theory Ref.52 (MHz)
171YbOH	A_{\parallel}^{a}	6979 (35)	(MHz) 7174.9	conr(MHz)	CORS(MHZ)	(MHZ)
171YbOH	A b	6745(15)	/1/4.9			
173YbOH	<u>A</u>	-1929(11)	-1976.3	-1600	-1300	
173YbOH	4	-1856 (5)	1770.5	-1600	-1500	
173YbOH	$e^2 Q q_0$	-3319 (48)	-3502			-3492

¹⁷³YbOH —1976.3

Enhanced \mathcal{P}, \mathcal{T} -violating nuclear magnetic quadrupole moment effects in laser-coolable molecules

Cite as: J. Chem. Phys. **152**, 084303 (2020); https://doi.org/10.1063/1.5141065 Submitted: 03 December 2019 . Accepted: 06 February 2020 . Published Online: 25 February 2020

Malika Denis, ^(D) Yongliang Hao, Ephraim Eliav, ^(D) Nicholas R. Hutzler, Malaya K. Nayak, Rob G. E. Timmermans, and ^(D) Anastasia Borschesvky

Excited states: Ge

- Collinear laser spectroscopy performed at ISOLDE-CERN
- HFS of the $4s^24p^2 {}^3P_1 \rightarrow 4s^24p5p {}^3P_1^{o}$ transition
- ^{69,71,73}Ge
- Atomic calculations of A_0 and q (EFG) parameters used for analysis
- FSCC approach, uncertainty estimation

Configuration	Term	J	Level (cm ⁻¹)	Ref.
$4s^24p^2$	ЗP	0	0.0000	SM93b
		1	557.1341	SM93b
	2	2	1409.9609	SM93b
$4s^24p^2$	1 _D	2	7125.2989	SM93b
$4s^24p^2$	¹ S	0	16367.3332	SM93b
$4s^24p5s$	³ P°	0	37451.6893	SM93b
0.00		1	37702.3054	SM93b
		2	39117.9021	SM93b

Excited states: Ge

- Collinear laser spectroscopy performed at ISOLDE-CERN
- HFS of the $4s^24p^2 {}^3P_1 \rightarrow 4s^24p5p {}^3P_1^{o}$ transition

• ^{69,71,73}Ge

• Atomic calculations of A_0 and q (EFG) parameters used for analysis

Germanium

A

• FSCC approach, uncertainty estimation

Electric field gradient uncertainties

2 20	$4p^{2} {}^{3}P_{1}$	$4p^{2} {}^{3}P_{2}$	4p5s ³ P ₁
Basis set	0.0043	0.0078	0.0488
Model space	0.0007	0.0016	0.0103
Virtual space	0.0003	0.0004	0.0001
Triples+higher	0.0353	0.0720	0.0266
Gaunt	0.0001	0.0051	0.0016
Total uncertainty	3.0 %	3.0 %	6.4 %
<i>qth</i> (a.u.)	1.178(36)	-2.399(73)	-0.885(56)

Table: Sources of uncertainty and final values of the calculated q^{th} (a.u.).

Configuration	Term	J	Level (cm ⁻¹)	Ref.
$4s^24p^2$	З _Р	0	0.0000	SM93b
		1	557.1341	SM93b
		2	1409.9609	SM93b
$4s^24p^2$	1 _D	2	7125.2989	SM93b
$4s^24p^2$	1 _S	0	16367.3332	SM93b
4 <i>s</i> ² 4 <i>p</i> 5 <i>s</i>	³ P°	0	37451.6893	SM93b
070		1	37702.3054	SM93b
		2	39117.9021	SM93b

uncerta	inties				Germani
		$4p^{2} {}^{3}P_{1}$	4p ^{2 3} P ₂	4p5s ³ P ₁	
	Basis set	2.5	4.3	18.1	
	Model space	1.7	2.7	9.0	
	Virtual space	4.2	3.1	4.6	
	Triple+higher	2.2	9.6	39.4	
	Gaunt	1.4	0.4	2.7	
	Total uncertainty	7.8 %	3.5 %	3.4 %	
	A th ₀ (MHz)	-74(6)	321(11)	1314(45)	
_	0			· · · · · · · · · · · · · · · · · · ·	wee an

Table: Sources of uncertainty and final values of the calculated A_0^{th} (MHz).

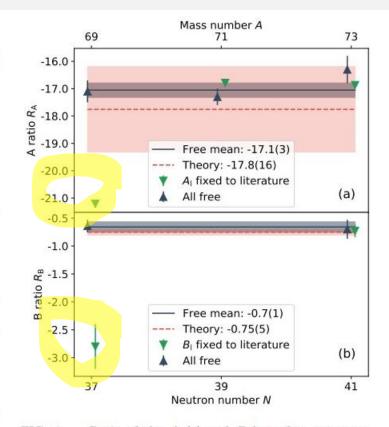
Excited states: Ge (uncertainties)

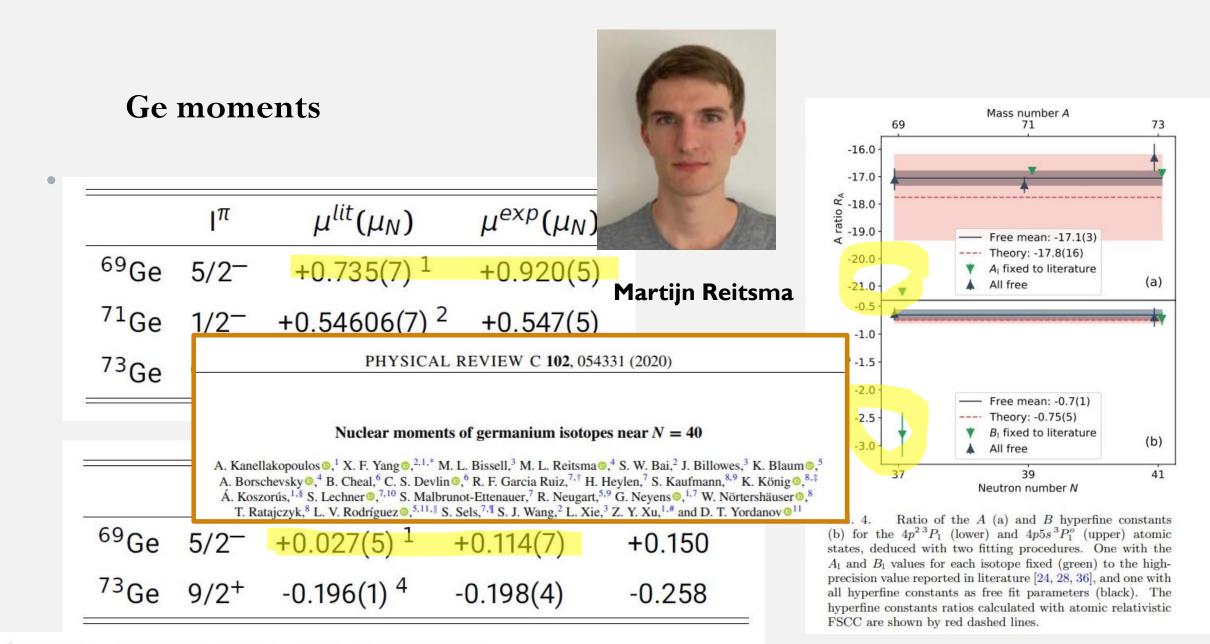
• Uncertainties should be evaluated separately for different states and properties.

Ge moments

2		1:+	
22	\mathbf{I}^{π}	$\mu^{llt}(\mu_N)$	$\mu^{exp}(\mu_N)$
⁶⁹ Ge	5/2-	+0.735(7) 1	+0.920(5)
⁷¹ Ge	1/2-	+0.54606(7) ²	+0.547(5)
⁷³ Ge	9/2+	-0.87824(5) ³	-0.904(21)

	Iπ	$Q_s^{lit}(b)$	$Q_s^{exp}(b)$	$Q_s^{JUN45}(b)$
⁶⁹ Ge	5/2-	+0.027(5) ¹	+0.114(7)	+0.150
⁷³ Ge	9/2+	-0.196(1) ⁴	-0.198(4)	-0.258




FIG. 4. Ratio of the A (a) and B hyperfine constants (b) for the $4p^{2} {}^{3}P_{1}$ (lower) and $4p5s {}^{3}P_{1}^{o}$ (upper) atomic states, deduced with two fitting procedures. One with the A_{1} and B_{1} values for each isotope fixed (green) to the highprecision value reported in literature [24, 28, 36], and one with all hyperfine constants as free fit parameters (black). The hyperfine constants ratios calculated with atomic relativistic FSCC are shown by red dashed lines.

¹ A. F. Oluwole, S. G. Schmelling, and H. A. Shugart, Phys. Rev. C 2, 228 (1970).

² W. J. Childs and L. S. Goodman, Phys. Rev. 141, 15 (1966).

³ W. Makulski, K. Jackowski, A. Antušek, and M. Jaszunski, J. Phys. Chem. A 110, 11462 (2006).

⁴ V. Kellö and A. Sadlej, Mol. Phys. 96, 275 (1999).

¹ A. F. Oluwole, S. G. Schmelling, and H. A. Shugart, Phys. Rev. C 2, 228 (1970).

² W. J. Childs and L. S. Goodman, Phys. Rev. 141, 15 (1966).

³ W. Makulski, K. Jackowski, A. Antušek, and M. Jaszunski, J. Phys. Chem. A 110, 11462 (2006).

⁴ V. Kellö and A. Sadlej, Mol. Phys. 96, 275 (1999).

NUCLEAR SPIN DEPENDENT PV EFFECTS

Search for new physics with atoms and molecules

M. S. Safronova, D. Budker, D. DeMille, Derek F. Jackson Kimball, A. Derevianko, and Charles W. Clark Rev. Mod. Phys. **90**, 025008 – Published 29 June 2018

Anapole moment measurement in BaF

• NSD PV effects in atoms/molecules:

$$H_{\rm NSD} = \frac{G_F}{\sqrt{2}I} \sum_i (\kappa_A + \kappa_{\rm ax} + \kappa_{\rm hfs}) (\boldsymbol{\alpha}_i \cdot \boldsymbol{I}) \rho(\boldsymbol{r}_i)$$

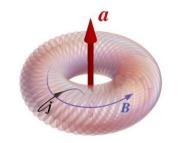


FIG. 7 (Color online) The toroidal component of current density j produces an apole moment a, with magnetic field B that is entirely confined inside the "doughnut". The azimuthal component of current density generates magnetic dipole moment aligned with a, with its associated conventional dipolar magnetic field not shown.

- Nuclear anapole moment is the dominant NSD-PV effect in heavy systems
- Measurement can provide stringent test of SM and nuclear theory
- Planned measurement on BaF*
- W_A coefficient can be used to extract anapole from measurements

$$W_{A} = \frac{G_{F}}{\sqrt{2}} \left\langle +\frac{1}{2} \right| \sum_{i} \rho(\mathbf{r}_{i})\alpha_{+} \left| -\frac{1}{2} \right\rangle.$$
$$\alpha_{+} = \alpha_{x} + i\alpha_{y} = \begin{pmatrix} 0 & \sigma_{x} \\ \sigma_{x} & 0 \end{pmatrix} + i \begin{pmatrix} 0 & \sigma_{y} \\ \sigma_{y} & 0 \end{pmatrix}$$

*E.Altuntas et al., PRL **120**, 142501 (2018)

Anapole moment measurement in BaF

•	Method	W _A (Hz)	Ref.
	CCSD(T)+Gaunt	147.7±2	Present
	RECP+SCF+EO	181	Kozlov et al., PRA 56 R3326 (1997)
	Semiempirical	164	DeMille et al., PRL 100, 023003 (2008)
	4c-RASCI	160	Nayak and Das, PRA 79 , 060502 (2009)
	Scaled ZORA-HF	190	Isaev & Berger, PRA 86, 062515 (2012)
	DHF/DFT+CP	146	Borschevsky et al., PRA 88 , 022125 (2013)

Anapole moment measurement in BaF

Method	W _A (Hz)	Ref.
CCSD(T)+Gaunt	147.7±2	Present
RECP+SCF+EO	181	Kozlov et al., PRA 56 R3326 (1997)
Semiempirical	164	DeMille et al., PRL 100, 023003 (2008)
4c-RASCI	160	Nayak and Das, PRA 79 , 060502 (2009)
Scaled ZORA-HF	190	Isaev & Berger, PRA 86, 062515 (2012)
DHF/DFT+CP	146	Borschevsky et al., PRA 88, 022125 (2013)

• Quick sanity check:

Table 8. A_{\parallel} and A_{\perp} of ¹³⁷Ba in BaF (MHz)

		¹³⁷ I	BaF	
method	A _{ll}	%(exp)	A_{\perp}	%(exp)
GRECP SCF-EO ⁹⁰	2264	-4.71	2186	-5.00
GRECP RASSCF-EO ⁹⁰	2272	-4.38	2200	-4.39
DF RASCI ⁹¹	2240	-5.72	2144	-6.82
DF MBPT ⁹¹	2314	-2.61	2254	-2.04
DC CCSD (this work)	2383(129)	0.29	2305(132)	0.17
exp ⁷⁷	2376(12)		2301(9)	

Anapole moment measurement in BaF

Method	W _A (Hz)	Ref.
CCSD(T)+Gaunt	147.7±2	Present
RECP+SCF+EO	181	Kozlov et al., PRA 56 R3326 (1997)
Semiempirical	164	DeMille et al., PRL 100 , 023003 (2008)
4c-RASCI	160	Nayak and Das, PRA 79 , 060502 (2009)
Scal		
DH	PH	HYSICAL REVIEW A 98 , 032510 (2018)
QU Nuclea	ar anapole mom	ent interaction in BaF from relativistic coupled-cluster theory
Yongliang Hao, ¹ M	Airoslav Iliaš, ² Ephra	aim Eliav, ³ Peter Schwerdtfeger, ^{4,5} Victor V. Flambaum, ^{6,7} and Anastasia Borschevsky
	GR	RECP SCF-EO ⁹⁰ 2264 -4.71 2186 -5.00
	GR	RECP RASSCF-EO ⁹⁰ 2272 -4.38 2200 -4.39
		F RASCI ⁹¹ 2240 -5.72 2144 -6.82
	DF	F MBPT ⁹¹ 2314 -2.61 2254 -2.04

DC CCSD (this work)

exp⁷⁷

2383(129)

2376(12)

2305(132)

2301(9)

0.29

0.17

Yongliang Hao

NSD-PV effects in light polyatomic molecules

• NSD PV effects in atoms/molecules:

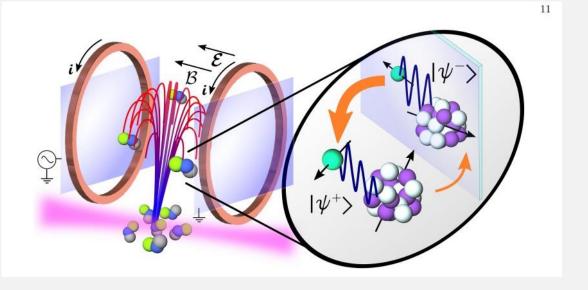
$$H_{\rm NSD} = \frac{G_F}{\sqrt{2}I} \sum_i (\kappa_A + \kappa_{\rm ax} + \kappa_{\rm hfs}) (\boldsymbol{\alpha}_i \cdot \boldsymbol{I}) \rho(\boldsymbol{r}_i)$$

- In <u>light systems</u> these contributions are <u>similar in size</u>
- Measurement can provide stringent tests of SM, nuclear theory, probe the Z-boson exchange between the electrons and the nuclei, and offer the possibility to search for new particles, such as the Z' boson
- Measurements planned on BeNC, BeCN, MgNC, and MgCN
- Presence of different atoms: possibility to disentangle the contributions

COMMUNICATIONS **PHYSICS**

ARTICLE

ttps://doi.org/10.1038/s42005-019-0181-1


Nuclear-spin dependent parity violation in optically trapped polyatomic molecules

E.B. Norrgard ¹, D.S. Barker¹, S. Eckel¹, J.A. Fedchak ¹, N.N. Klimov¹ & J. Scherschligt ¹

NSD-PV effects in light polyatomic molecules

• In light system accurate nuclear theory predictions tangible:

• Together with predicted molecular enhancement factors can be used to estimate the expected measurable effect.

TABLE I: Magnetic moments (in units of nuclear magneton) [28, 61–65], an apole-moment coupling constants, spin operator matrix elements, and $\kappa_{\rm ax}$ coupling constants for ⁹Be, $^{13}{\rm C}, ^{14,15}{\rm N}$ and $^{25}{\rm Mg}$ obtained within NCSM. The results obtained using the single-particle model are also shown, along with the valence particle (V.p.) and the valence orbital (V.o) for each nucleus.

	⁹ Be	¹³ C	^{14}N	¹⁵ N	^{25}Mg
I^{π}	$3/2^{-}$	$1/2^{-}$	1+	$1/2^{-}$	$5/2^{+}$
$\mu^{\text{exp.}}$	-1.177^{a}	0.702^{b}	0.404^{c}	-0.283^{d}	-0.855
		NC	SM calcula	tions	
μ	-1.05	0.44	0.37	-0.25	-0.50
κ _A	0.016	-0.028	0.036	0.088	0.035
$\langle s_{p,z} \rangle$	0.009	-0.049	-0.183	-0.148	0.06
$\langle s_{n,z} \rangle$	0.360	-0.141	-0.1815	0.004	0.30
Kax	0.035	-0.019	0.0002	0.015	0.024
к	0.050	-0.046	0.037	0.103	0.057
	5	Single-part	icle model	calculation	5
V. p.	n	n	n, p	p	n
V. o.	$p_{3/2}$	$p_{1/2}$	$p_{1/2}$	$p_{1/2}$	$d_{5/2}$
K	-2	1	1	1	-3
κA	0.007	-0.007	0.035	0.044	0.014
$\kappa_{\rm ax}$	0.050	-0.017	0.0	0.017	0.050
$\kappa_{\rm hfs}$	-0.001	0.001	0.0006	-0.0004	-0.002
κ	0.056	-0.023	0.036	0.060	0.062

TABLE V: Recommended values of the W_{PV} parameters (Hz) with corresponding uncertainties.

Atom	Ato	m 1	Atom 2	Atom 3
Mol.	Be	Mg		
BeNC	0.50	-	0.34	0.004
BeCN	0.54	_	0.28	0.030
MgNC		5.3	0.45	0.014
$MgNC^{\dagger}$	-	5.3	0.47	0.014
MgCN	—	5.4	0.37	0.064
Uncertainty (%)	6.3	4.9	7.6	8.2

TABLE I: Magnetic moments (in units of nuclear magneton) [28, 61–65], an apole-moment coupling constants, spin operator matrix elements, and $\kappa_{\rm ax}$ coupling constants for ⁹Be, $^{13}{\rm C}, ^{14,15}{\rm N}$ and $^{25}{\rm Mg}$ obtained within NCSM. The results obtained using the single-particle model are also shown, along with the valence particle (V.p.) and the valence orbital (V.o) for each nucleus.

		⁹ Be	¹³ C	^{14}N	¹⁵ N	^{25}Mg
	I^{π}	$3/2^{-}$	$1/2^{-}$	1+	$1/2^{-}$	$5/2^{+}$
	$\mu^{\text{exp.}}$	-1.177^{a}	0.702^{b}	0.404^{c}	-0.283^{d}	-0.855^{e}
			NC	SM calcula		
	μ	-1.05	0.44	0.37	-0.25	-0.50
	KA	0.016	-0.028	0.036	0.088	0.035
	$\langle s_{p,z} \rangle$	0.009	-0.049	-0.183	-0.148	0.06
-		0.000	~ * * * *	15	0.004	0.30
				02	0.015	0.024
				7	0.103	0.057
				del	calculations	5
				p	p	n
	and the second			2	$p_{1/2}$	$d_{5/2}$
Ť	poly	ato	mic		1	-3
L	pory	ator	TH C	5	0.044	0.014
					0.017	0.050
				06	-0.0004	-0.002
				6	0.060	0.062
ne	ermans.	Victo	r V.			
n	ermans,	, Victo	r V.		lues of the ling uncert	WPV
n	A	Victo		one om 1	lues of the	WPV
n	Mol.			one	lues of the ling uncert	$W_{\rm PV}$ tainties.
n	A		Ato	one om 1	lues of the ling uncert	$W_{\rm PV}$ tainties.
n	Mol.		Ato Be	one om 1	lues of the ling uncert Atom 2	$W_{\rm PV}$ cainties. Atom (
n	Mol. BeNC		Ato Be 0.50	one om 1	lues of the ling uncert Atom 2 0.34	$W_{\rm PV}$ cainties. Atom : 0.004

0.37

7.6

5.4

4.9

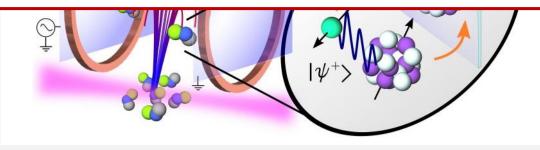
6.3

0.064

8.2

MgCN

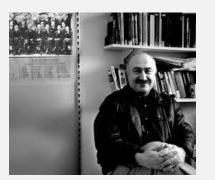
Uncertainty (%


NSD-PV effects in light polyatomic molecules

• In light system accurate nuclear theory predictions tangible:

Editors' Suggestion

Nuclear spin-dependent parity-violating effects in light polyatomic molecules

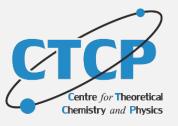

Yongliang Hao, Petr Navrátil, Eric B. Norrgard, Miroslav Iliaš, Ephraim Eliav, Rob G. E. Timmermans, Victor V Flambaum, and Anastasia Borschevsky Phys. Rev. A **102**, 052828 – Published 25 November 2020

CONCLUSIONS

- State of the art high accuracy computational approach
- Versatile method: many possible applications
- Reliable predictions, uncertainty estimates possible
- Close collaborations with experimental groups
- These are very exciting times!

Ephraim Eliav

Miroslav Ilias


Lukas Pasteka

Victor Flambaum

Peter Schwerdtfeger

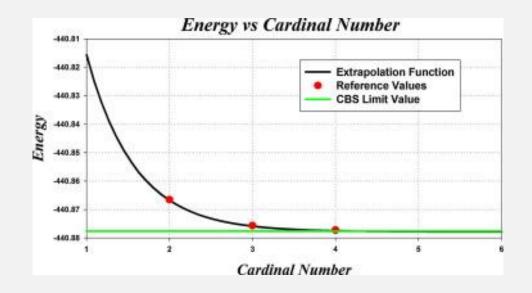
RELATIVISTIC COUPLED CLUSTER

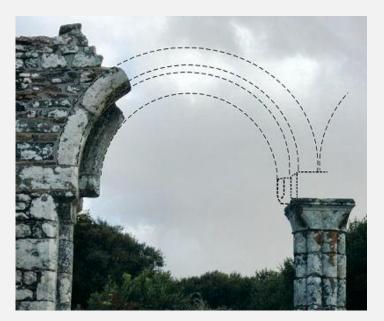
- Based on the 4c Dirac Hamiltonian
- Exponential wave operator:

$$\Psi = \exp(S)\Psi_0 = \left(1 + S + \frac{S^2}{2!} + \cdots\right)\Psi_0$$

• S is the excitation operator:

$$S = S_1 + S_2 + \dots + S_N; \ S_1 = \sum_{ia} s_i^a a_a^{\dagger} a_i; \ S_2 = \sum_{ijab} s_{ij}^{ab} a_a^{\dagger} a_b^{\dagger} a_j a_i$$


• CC energy equations:


$$\langle \Phi_0 | (H - E_{\text{CCSD}}) \exp(S_1 + S_2) | \Phi_0 \rangle = 0$$

• Accurate, all-order in PT, size-extensive, and size-consistent

Reaching meV accuracy

Complete basis set limit extrapolation

V.Vasilyev, http://sf.anu.edu.au/~vvv900/cbs