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MOTIVATION



Why look for physics beyond the Standard Model (SM)?

• The SM  is currently the best fitting physical description of 

the world around us.

• So far successfully explained the majority of observed 

natural phenomena and  has strong predictive power 

(Higgs boson, top quark, tau neutrino)

• But… it is incomplete



Why look for physics beyond the Standard Model 
(SM)?

• Extensions to the SM attempt to fill these knowledge gaps.

• Grand Unified Theories, String Theory, SUSY, …

• These extensions predict new physical phenomena beyond
the SM.

• Variation of fundamental constants (VFC)

• Violation of fundamental symmetries (CP, P,T)

• (non) discovery of these phenomena allows to discriminate
between extensions or new theories.



Why look for physics beyond the SM with atoms and molecules?

• Accelerator research (LHCb, T2K, etc.)

• Table-top experiments



Why look for physics beyond the SM with atoms and molecules?

• Table-top experiments: promising alternative to high energy research

• Versatile, sensitive to different phenomena

• Parity violation

• EDMs (electron, hadronic)

• Variation of fundamental constants

• Dark matter

• ..

• Various enhancement effects→ high sensitivity

• Small scale

• (Relatively) inexpensive



Why investigate unstable and artificial elements?

• (Exotic) nuclear structure and properties

• Information  about new elements, assignment in Periodic Table

• Behaviour and trends in lower part of the Periodic Table

• Benchmarks for theory (e.g. contribution of QED effects)

•



Challenging experiments!

• In one case, unprecedented sensitivity needed to detect the tiny effects of new physics

• In the other, dealing with small amounts of unstable, short lived elements

• Sometimes, combined challenges (e.g. precision measurements on RaF and others)!

• Alongside specially developed experimental techniques, theoretical support becomes crucial



How can (atomic and molecular) theory be of use?

• Practical parameters for experiments (predictions of transition energies, laser-cooling

schemes, etc.)

• Parameters for the interpretation of the results (HFS parameters for extraction of

nuclear properties, coupling parameters for new physics phenomena, etc.)

• Identification of promising candidates for precision measurements

• High sensitivity

• Experimental considerations (stability, laser-coolability, etc.)
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For use in experiments:
• Reliable predictions based on high accuracy calculations

• Preference for ab initio methods (predictive power)

• Possibility of assigning uncertainties

Choice of computational method becomes important



COMPUTATIONAL METHODS

Figure courtesy of P. Schwerdtfeger
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What do we need?

• Coupling parameters describing the effect of P(T)-violating phenomena (or 

variation of constants) on electronic structure

• Relativistic in nature, hence relativistic methods

• Atomic and molecular parameters needed in experiments

• (usually) heavy (radioactive) systems, hence relativistic methods

• High accuracy

• State-of-the-art treatment of correlation, large basis sets

• Uncertainty estimates

• Robust, transparent methods



Relativistic coupled cluster

• Based on the 4c Dirac Hamiltonian

• Accurate, size-consistent

• CCSD(T) - single reference coupled cluster 

Closed shell systems/systems with one dominant configuration (good example: BaF, X
2Σ)

• FSCC – multireference Fock space coupled cluster

Open shell systems, excited states, bond dissociation (good example: ThO 3Δ1 or any 
atomic spectrum)

Use the suitable method, or both in complementary manner.



Basis sets

• Sets of (Gaussian) functions that are used to represent the electronic WF. 

• Atom specific, different basis sets for different properties

• Dyall’s relativistic basis sets; augmented and extended to convergence

(K.G. Dyall, Theor. Chem Acc. 2002, 2004, 2006, 2007, 2009, 2011,2012,  etc.)



Relativistic coupled cluster



What can we calculate?

• Atomic properties: energies, IPs, EAs, spectra, hyperfine structure parameters, polarisabilities

• Molecular properties: geometries, spectroscopic constants, electronic structure, Franck-

Condon Factors (FCFs), transition strengths

• Specific properties:

• Wd, Ws (eEDM experiments)

• WA (NSD-PV, nuclear anapole moments)

• WM (nuclear magnetic quadrupole moments)

• Sensitivity to variation of α

• ...

• CCSD(T), FSCC (applicable to different systems/states)

• Expected accuracy: ~10 meV for energies, single % for properties

• Systematic investigation of effect of computational parameters and uncertainty evaluation



How do we assign uncertainties?

?

?

?



Software

• Tel Aviv atomic computational package (TRAFS-3C)

Tel-Aviv Relativistic Atomic Fock-Space coupled cluster code, written by E.Eliav and 

U.Kaldor, with contributions from Y. Ishikawa, A. Landau, A. Borschevsky and H. Yakobi.

• DIRAC18 computational package

DIRAC, a relativistic ab initio electronic structure program, release DIRAC18 (2018)

and:

• MRCC code of Kallay et al., www.mrcc.hu (higher excitations)

• CFOUR package, http://www.cfour.de (geometry optimisation of polyatomic 

molecules)

http://www.mrcc.hu/
http://www.cfour.de/


What can we calculate?

• Atomic properties: energies, IPs, EAs, spectra, hyperfine structure parameters, polarisabilities

• Molecular properties: geometries, spectroscopic constants, electronic structure, Franck-Condon Factors (FCFs), transition strengths

• Specific properties:

• Wd, Ws (eEDM experiments)

• WA (NSD-PV, nuclear anapole moments)

• WM (nuclear magnetic quadrupole moments)

• Sensitivity to variation of α

• CCSD(T), FSCC (applicable to different systems/states)

• Expected accuracy: ~10 meV for energies

• Systematic investigation of effect of computational parameters and uncertainty evaluation

Any drawbacks?

Computationally expensive

FSCC is limited to systems with up to two valence electrons/holes

Some properties not (yet) available, e.g. TDMs
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APPLICATIONS

• Hyperfine structure constants:

• New implementation and test cases

• Ge

• Nuclear-spin-dependent parity violation measurements:

• BaF

• Light triatomic molecules



HYPERFINE STRUCTURE CONSTANTS



• Expectation values are difficult in CC: use finite field approach

•

• Complementary with already existing implementation for electric 
quadrupole HFS constants

• Both single reference CCSD(T) and FSCC

• Applicable to atoms and molecules, ground and excited states

New implementation: magnetic hyperfine coupling constants



Ground states: Cs and BaF

 CCSD/CCSD(T) level of theory

 Uncertainty evaluation:





Ground states: Cs and BaF



Pi Haase

Ground states: Cs and BaF



• YbOH: promising candidate for search for eEDM and other P,T-

violating effects.

Predictive power

Malika Denis
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• Collinear laser spectroscopy performed at ISOLDE-CERN

• HFS of the 4s24p2 3P1→ 4s24p5p 3P1
o transition

• 69,71,73Ge

• Atomic calculations of A0 and q (EFG) parameters used for analysis

• FSCC approach, uncertainty estimation

Excited states: Ge
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•

Excited states: Ge (uncertainties)

• Uncertainties should be evaluated separately

for different states and properties. 



•

Ge moments
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Ge moments

Martijn Reitsma



NUCLEAR SPIN DEPENDENT PV EFFECTS



• NSD PV effects in atoms/molecules:

• Nuclear anapole moment is the dominant NSD-PV effect in heavy systems

• Measurement can provide stringent test of SM and nuclear theory

• Planned measurement on BaF*

• WA coefficient can be used to extract anapole from measurements

Anapole moment measurement in BaF

*E. Altuntas et al., PRL 120, 142501 (2018)



•

Anapole moment measurement in BaF

Method WA (Hz) Ref.

CCSD(T)+Gaunt 147.7±2 Present

RECP+SCF+EO 181 Kozlov et al., PRA 56 R3326 (1997)

Semiempirical 164 DeMille et al., PRL 100, 023003 (2008)

4c-RASCI 160 Nayak and Das, PRA 79, 060502 (2009)

Scaled ZORA-HF 190 Isaev & Berger, PRA 86, 062515 (2012)

DHF/DFT+CP 146 Borschevsky et al., PRA 88, 022125 (2013)
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Yongliang Hao



• NSD PV effects in atoms/molecules:

• In light systems these contributions are similar in size

• Measurement can provide stringent tests of SM, nuclear theory, probe the Z-boson
exchange between the electrons and the nuclei, and offer the possibility to search
for new particles, such as the Z’ boson

• Measurements planned on BeNC, BeCN, MgNC, and MgCN

• Presence of different atoms: possibility to disentangle the

contributions

NSD-PV effects in light polyatomic molecules



• In light system accurate nuclear theory predictions tangible:

• Together with predicted molecular enhancement factors can be

used to estimate the expected measurable effect.

NSD-PV effects in light polyatomic molecules
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CONCLUSIONS

• State of the art high accuracy computational approach

• Versatile method: many possible applications 

• Reliable predictions, uncertainty estimates possible

• Close collaborations with experimental groups

• These are very exciting times!



Ephraim Eliav Miroslav Ilias

Peter Schwerdtfeger

Victor Flambaum

Lukas Pasteka



• Based on the 4c Dirac Hamiltonian

• Exponential wave operator:

• S is the excitation operator:

• CC energy equations: 

• Accurate, all-order in PT, size-extensive, and size-consistent

RELATIVISTIC COUPLED CLUSTER



Reaching meV accuracy 

Complete basis set limit extrapolation

V. Vasilyev, http://sf.anu.edu.au/∼vvv900/cbs


