Intro	H versus μ H	He versus μ He	Li	Plans

Nuclear structure effects in light atomic systems

Krzysztof Pachucki & QED Theory Group

University of Warsaw

Nuclear physics from atomic spectroscopy Online, April 11, 2022

•00	000		000	0
Nuclear	structure effects i	n atomic spectra		

Simple picture:

- *ρ*_E(r) and *ρ*_M(r): the charge and the magnetic moment distribution within the
 nucleus.
- $G_E(q^2)$, $G_M(q^2)$: corresponding Fourier transform,
- one solves Dirac equation in the modified Coulomb potential $G_E(q^2)/q^2$ and observes energy shift due to finite nuclear size δE

•
$$\delta E_{\rm fs} = \delta E^{(4)} + \delta E^{(5)} + \delta E^{(6)}$$

•
$$\delta E^{(4)} = \frac{2 \pi}{3} (Z \alpha) \phi^2(0) r_N^2$$
, where $r_N^2 = \int d^3 r r^2 \rho_C(r)$

•
$$\delta E^{(5)} = -\frac{\pi}{3} \phi^2(0) (Z \alpha)^2 m r_Z^3$$
, where $r_Z^3 = \int d^3 r_1 d^3 r_2 \rho(r_1) \rho(r_2) |\vec{r_1} - \vec{r_2}|^3$

• $\delta E^{(6)} = \dots$ three-photon exchange

Intro	H versus μ H	He versus μ He	Li	Plans
000				
Nuclear	structure effects i	n atomic spectra		

More accurate picture:

• $\delta E^{(5)} = \delta E^{(5)}_{\rm pol} + \delta E^{(5)}_{\rm nucleons} \rightarrow$ two-photon exchange

•
$$\delta E_{\text{nucleons}}^{(5)} = -\frac{\pi}{3} \alpha^2 \phi^2(0) m_{\theta} \left[Z R_{\rho F}^3 + (A - Z) R_{n F}^3 + \sum_{i,j=1}^Z \langle \phi_N || \vec{R}_i - \vec{R}_j |^3 |\phi_N \rangle \right]$$

• Friar radii:
$$R_{pF} = 1.947(75)$$
 fm, $R_{nF} = 1.43(16)$ fm

•
$$E_{\text{pol}}^{(5)} = -\alpha^2 \phi^2(0) \frac{2}{3} m_e \left\langle \phi_N \right| \vec{d} \frac{1}{H_N - E_N} \left[\frac{19}{6} + 5 \ln \frac{2(H_N - E_N)}{m} \right] \vec{d} \left| \phi_N \right\rangle$$
 (electronic)

•
$$E_{\text{pol}}^{(5)} = -\frac{4 \pi \alpha^2}{3} \phi^2(0) \left\langle \phi_N \middle| \vec{d} \sqrt{\frac{2 m}{H_N - E_N}} \vec{d} \middle| \phi_N \right\rangle + \dots$$
 (muonic)

• $\delta E^{(6)}$ not yet calculated, only the elastic part

• Measurements of atomic levels can be very accurate, Garching (2010)

$$-\nu(1S-2S)_{\rm H} = 2466\,061\,413\,187\,035(10)$$
 Hz,

$$-\delta\nu = \frac{7}{6} \operatorname{Ry} c (Z \alpha)^4 \frac{r_p^2}{\chi^2} - 95.5 \operatorname{Hz}[\sim \alpha] - 929 \operatorname{Hz}[\sim \alpha^2]$$

- the ultimate theoretical predictions are limited by the proton polarizabilities
- Hydrogen ground state hfs $\delta E_{hfs}(H) = 1420405.751768(1) \text{ kHz}$,
 - hadronic contribution 33ppm,
 - agreement with $\delta E_{\rm hfs}(\bar{H})$ up to $3 \cdot 10^{-9}$ ASACUSA (2017)
 - comparison to μH hfs ? (Antognini, PSI+ETH)
- Accurate calculations for determination of the nuclear charge radius is possible only for the hydrogenic system
- For other light systems like: He, Li, Be, B only the charge radii differences between isotopes

- Measurements of transition frequencies can be very accurate, Garching 2010: $\nu(1S 2S)_{\rm H} = 2466\,061\,413\,187\,035(10)$ Hz
- but we need two transitions to determine two unknowns: R_{∞} and r_p
- other transitions measured in hydrogen: 2S 2P, 2S 3S, 2S 4P
- hydrogenic systems can be calculated very precisely
 - · Dirac equation and finite nuclear mass effects
 - QED radiative corrections
 - nuclear polarizability: limits theory for μH

up to the finite nuclear size correction: $\delta E = \frac{2\pi}{3} (Z \alpha) \phi^2(0) \langle r_p^2 \rangle$

• for example:

$$r_D^2(\mu D) - r_p^2(\mu H) = 3.81747(346) \text{ fm}^2$$
 (Kalinowski 2019)
 $r_D^2(eD) - r_p^2(eH) = 3.82070(31) \text{ fm}^2$

$$E_{hfs}(exp) = 6.2747(70)_{stat}(20)_{syst}$$
 meV
 $E_{hfs}(point) = 6.17815(20)$ meV
 $\delta E_{nucl} = E_{hfs}(exp) - E_{hfs}(point) = 0.0966(73)$ meV

 The Bohr-Weisskopf effect, charge and magnetic moment distribution within nucleus gives a correction with an opposite sign

 $\delta E_{\text{nucl,BW}} = -0.1177(3) \text{ meV}$

Nuclear polarizability effects are very important

 $\delta E_{\text{nucl,theo}} = 0.0383(86) \text{ meV}$

in 5 σ disagreement with the experimental value

lack of good understanding of nuclear structure effects to hfs in muonic atoms

Intro	H versus μH	He versus µHe	Li	Plans
000		●○○	000	O
u ⁴ He de	termination of α_{-1}	narticle charge radi	iue	

Nature **589**, 527 (2021): $r_{\alpha} = 1.67824(13)_{exp}(82)_{theo}$ fm in agreement with elastic electron scattering $r_{\alpha} = 1.681(4)$ fm

4Ho aton	at theory versue (vnorimonto		
000	000	000	000	
Intro	H versus μ H	He versus μ He	Li	Plans

Very recent measurement of 2^3S_1 ionization energy by F. Merkt *et al.* 2021, and very recent theory V. Patkos *et al.*, Phys. Rev. A 2021.

Table III. Comparison of experimental and theoretical values [12, 47] of the ionization energies of the 2 $^{3}S_{1}$, 2 ^{3}P (centroid), 3 $^{3}D_{1}$ and 3 $^{3}D_{2}$ states in ⁴He (in MHz) obtained by combining the 2 $^{1}S_{0}$ ionization energy with the transition frequencies from Refs. [13, 15, 16, 25, 30, 31].

	Experiment	Reference	Theory	Reference	$\Delta E_{I, exp calc.}$
$2^{3}S_{1}$	1152842742.637(32)	[13]	1152842742.231(52)	[12]	0.406(61)
$2^{3}P$	876 106 247.017(32)	[13, 15, 30, 31]	876 106 246.611(16)	[12]	0.406(36)
$3 {}^{3}D_{1}$	366 018 892.635(65)	[13, 25]	366 018 892.691(23)	[47]	-0.056(69)
$3^{1}D_{2}$	365 917 748.688(34)	[16]	365 917 748.661(19)	[47]	0.027(38)

but a very good agreement with $2^3S_1 - 2^3P$ transition frequency with the charge radius from μ He Lamb shift

$$E(2^{3}S - 2^{3}P)_{\text{theo}} = 276\,736\,495.620\,(54)\,\text{MHz}$$

 $E(2^{3}S - 2^{3}P)_{exp} = 276736495.6000(14)$ MHz, Zheng *et al* 2017.

picture by Youri van der Werf

Intro	H versus μΗ	He versus μ He	Li	Plans
000	οοο		●00	O
⁶ Li- ⁷ Li isotop	e shift and the ch	arge radii diff.		

$$\delta_{\rm fs} E = rac{2 \, \pi \, Z \, lpha}{3} \left\langle \sum_{a} \delta^3(r_a) \right\rangle \, \langle r^2
angle$$

$$\delta r^{2} = r^{2}(^{6}\text{Li}) - r^{2}(^{7}\text{Li}) = \begin{cases} 0.705(3) \text{ fm}^{2} \\ 2P_{1/2} - 2S_{1/2}, \text{ NIST (2013)} \\ 0.700(9) \text{ fm}^{2} \\ 2P_{3/2} - 2S_{1/2}, \text{ NIST (2013)} \\ 0.731(22) \text{ fm}^{2} \\ 3S_{1/2} - 2S_{1/2}, \text{ Nörtershäuser et al (2011)} \end{cases}$$

Li: ground state hyperfine structure					
			000		
Intro	H versus μ H	He versus μ He	Li	Plans	

Fermi contact interaction

$$H_{\rm hfs} = \frac{2 g_N Z \alpha}{3 m M} \sum_a \vec{l} \cdot \vec{\sigma}_a \pi \, \delta^3(r_a) \, .$$

Finite nuclear size effect:

$$H_{\rm size} = -H_{\rm hfs} \, 2 \, Z \, \alpha \, m \, r_Z$$

where

$$r_{Z} = \int d^{3}r \, d^{3}r' \, \rho_{E}(r) \, \rho_{M}(r') \, |\vec{r} - \vec{r}'|$$

Intro	H versus μΗ	He versus μ He	Li	Plans
000	οοο		oo●	○
Li: hyperfine	structure			

$$A = A^{(4)} + \alpha A^{(5)} + \alpha^2 A^{(6)} + \alpha^3 A^{(7)} + \dots$$

	⁷ Li[MHz]	⁶ Li[MHz]
A ⁽⁴⁾	401.654 08(21)	152.08369(11)
$A_{\rm rec}^{(5)}$	-0.00414	-0.00180
A ⁽⁶⁾	0.260 08(2)	0.09848(1)
A ⁽⁷⁾	-0.0102(13)	-0.0039(5)
A _{the} (point nucleus) A _{exp}	401.8998(13) 401.7520433(5)	152.1765(5) 152.136839(2)
$(A_{exp} - A_{the})/A_{exp}$ r_Z	-368(3) ppm 3.25(3) fm 2.390(30) fm	-261(3) ppm 2.30(3) fm 2.540(28) fm

significant dependence of r_Z on the isotope, confirmed by measurements in Li⁺

Intro	H versus μ H	He versus μ He	Li	Plans
				•
Expecte	d and planned me	asurements		

- μ ³He Lamb shift, PSI
- He⁺(1S 2S) Garching and Amsterdam
- µH ground state hyperfine splitting, ETH
- μ⁺ e[−] ETH
- μp scattering with high sensitivity to r_p , AMBER collaboration at CERN, Na66
- e − p versus µ − p scattering, MUSE collaboration at PSI