The impact of radius data on nuclear density functional theory

P.-G. Reinhard¹

¹Institut für Theoretische Physik II, Universität Erlangen-Nürnberg

Nuclear Physics from Atomic Spectroscopy, ECT*, April 2022

Outline

Acknowledgments:

J. Friedrich	formerly University Mainz / Germany
H. Flocard	formerly IPN Orsay / France
P. Klüpfel, J. Erler	formerly Universität Erlangen / Germany
W. Nazarewicz	Michigan State University
J. Dobaczewski	University of York (GB)
exp. data	MAMI/Mainz, ISOLDE/CERN, NSCL/MSU, JLAB

1) Statistical aspects of empirical calibration of nuclear density functionals

Nuclear density functional theory (DFT)

nuclear energy-density functional: $E = E(\underline{p})[\underline{\rho(\mathbf{r}), \tau(\mathbf{r}), \mathbf{J}(\mathbf{r}), \xi(\mathbf{r})}]$

params. densities:local,kinetic,spin-orbit,pairing

4/1

eqs. of motion by variation of s.p. wavefunction & occupation amplitudes typically a dozen free model parameters $\mathbf{p} \longleftrightarrow \chi^2$ fit to empirical data

 \implies optimal **p**, uncertainties of predictions, stat. correlations between observables

Nuclear density functional theory (DFT)

nuclear energy-density functional: $E = E(\underline{p})[\underline{\rho(\mathbf{r}), \tau(\mathbf{r}), \mathbf{J}(\mathbf{r}), \xi(\mathbf{r})}]$

params. densities:local,kinetic,spin-orbit,pairing

4/1

eqs. of motion by variation of s.p. wavefunction & occupation amplitudes typically a dozen free model parameters $\mathbf{p} \longleftrightarrow \chi^2$ fit to empirical data

 \implies optimal **p**, uncertainties of predictions, stat. correlations between observables

Today: impact of radii on DFT development, statistical (χ^2) analysis as tool

Nuclear density functional theory (DFT)

nuclear energy-density functional: $E = E(\mathbf{p}) \begin{bmatrix} \rho(\mathbf{r}), \tau(\mathbf{r}), \mathbf{J}(\mathbf{r}), \xi(\mathbf{r}) \end{bmatrix}$

params. densities:local,kinetic,spin-orbit,pairing

4/1

eqs. of motion by variation of s.p. wavefunction & occupation amplitudes typically a dozen free model parameters $\mathbf{p} \longleftrightarrow \chi^2$ fit to empirical data \implies optimal \mathbf{p} , uncertainties of predictions, stat. correlations between observables

Today: impact of radii on DFT development, statistical (χ^2) analysis as tool

2 functionals: Skyrme: density dependence, kinetic, surface, I*s, pairing Fayans: " + gradient term in pairing & surface energy

Fayans pairing energy density
$$\mathcal{E} = \rho_{\text{pair}}^{2}(\mathbf{r}) \left(\underbrace{V_{\text{pair}} + V_{\text{pair}}^{\prime} \rho^{\gamma}(\mathbf{r})}_{\text{volume&surface pairing}} + \underbrace{V_{\text{pair}}^{(\nabla)} (\nabla \rho(\mathbf{r}))^{2}}_{\text{gradient term}} \right)$$

Strategy for adjusting the model parameters to phenomenological data

Strategy for adjusting the model parameters to phenomenological data

Strategy for adjusting the model parameters to phenomenological data

Probabilistic interpretation of the space of model parameters

probability distribution for model parameters p:

$$P(\mathbf{p}) \propto \exp\left(-\chi^2(\mathbf{p})\right), \ \chi^2 = \sum_{\mathcal{O} \in \{\text{obs.}\}} \frac{\left(\mathcal{O}(\mathbf{p}) - \mathcal{O}^{(\exp)}\right)^2}{\Delta \mathcal{O}^2}$$

⇒ optimal parameter set p_0 : $\chi^2(p_0) = minimal$ range of "reasonable" parameters: p such that $\chi^2(p) \le \chi^2(p_0) + 1$

Probabilistic interpretation of the space of model parameters

probability distribution for model parameters p:

$$P(\mathbf{p}) \propto \exp\left(-\chi^2(\mathbf{p})
ight), \ \chi^2 = \sum_{\mathcal{O} \in \{\text{obs.}\}} \frac{\left(\mathcal{O}(\mathbf{p}) - \mathcal{O}^{(\exp)}
ight)^2}{\Delta \mathcal{O}^2}$$

⇒ optimal parameter set p_0 : $\chi^2(p_0) = minimal$ range of "reasonable" parameters: p such that $\chi^2(p) \le \chi^2(p_0) + 1$

statistical properties of the space of reasonable parameters:

average of an observable
$$A(\mathbf{p})$$
: $\overline{A} = \int d\mathbf{p} P(\mathbf{p}) A(\mathbf{p})$
variance (uncertainty of prediction): $\overline{\Delta^2 A} = \int d\mathbf{p} P(\mathbf{p}) (A(\mathbf{p}) - \overline{A})^2$.
covariance: $\overline{\Delta A \Delta B} = \int d\mathbf{p} P(\mathbf{p}) (A(\mathbf{p}) - \overline{A}) (B(\mathbf{p}) - \overline{B})$.
coefficient of determination (CoD): $r_{AB}^2 = \frac{|\overline{\Delta A \Delta B}|^2}{\overline{\Delta^2 A} \overline{\Delta^2 B}}$ (statistical correlation)
 $r_{AB}^2 = 1 \leftrightarrow \text{ correlated}, r_{AB}^2 = 0 \leftrightarrow \text{ uncorrel}.$

2) Application examples

Example 1: Impact of radii in bulk ground state properties

Distribution of errors on E_B , $r_{\rm rms,C}$, $R_{\rm box,C}$, $\sigma_{\rm surf,C}$ – fit to E_B only

r.m.s. radius $r_{\rm rms,C}$ well predicted by E_B fit

box radius $R_{\text{box,C}}$ and surface thickness $\sigma_{\text{surf,C}}$ systematically off the goal large extrapolation uncertainty for $R_{\text{box,C}}$ and $\sigma_{\text{surf,C}} \implies$ can be adjusted within model

Distribution of errors on E_B , $r_{\rm rms,C}$, $R_{\rm box,C}$, $\sigma_{\rm surf,C}$ – fit to all

include also $r_{\rm rms,C}$, $R_{\rm box,C}$, $\sigma_{\rm surf,C}$ in the fit data

 \implies accomodate box radius $R_{\text{box,C}}$ and surf. thickn. $\sigma_{\text{surf,C}}$ at only small sacrifices in E_B

Extrapolation *r*-process nuclei – neutron rich Sn chain

fit to E_B only fixed model parameters too weakly \Rightarrow lousy extrapolation errors large fit pool E_B , $r_{\text{rms,C}}$, $R_{\text{box,C}}$, $\sigma_{\text{surf,C}} \Longrightarrow$ more reliale extrapolations still demand for improvement \longleftrightarrow can more detailed radius data help?

Example 2: Kink of r.m.s. radii at ²⁰⁸Pb and spin-orbit term

Isotopic shifts $r_{\text{rms},C}^2(^{\text{A}}\text{Pb}) - r_{\text{rms},C}^2(^{208}\text{Pb})$ – problem with kink at ²⁰⁸Pb

all Skyrme models up to year 1995 failed at the kink – RMF reproduced it at once statistical analysis indicated sensitivity to pairing and spin-orbit term

Isotopic shifts $r_{\text{rms},C}^2(^{\text{A}}\text{Pb}) - r_{\text{rms},C}^2(^{208}\text{Pb}) - \text{ problem with kink at }^{208}\text{Pb}$

non-relativistic limit of RMF revealed different isospin structure of spin-orbit term extend Skyrme functional by isovector spin-orbit term \implies kink also reproduced

Example 3: Isotopic shifts and odd-even staggering in Ca isotopes

The problem: trend of charge r.m.s. radii in Ca chain

SVmin = fit of Skyrme functional with "traditional pairing" (contact force & density dep.) theory averages nicely, but fails to reproduce the trend

Statistical uncertainty \leftrightarrow explore leeway of the Skyrme functional

look at error bands to check chances for fitting the trend

extrapolation error too small \Longrightarrow enforcing isotopic shifts will destroy overall quality

Impact of collective ground-state corrrelations

g.s. vibrations from low-lying 2⁺ states contribute to radii

the effect is visible, but too small \Rightarrow the problem is the functional

Find most promising feature of functional

spin-orbit splittings:

pairing:

look at statistical correlations to find strongest lever correlation with iso.-shift $\delta r^{2}(^{44-40}Ca)$ for SV-min correlation coefficient 0.3 0.25 0.2 0.15 0.1 0.05 0 incompress sym.energy eff. masses spin-orbit pairing surface symmetry energy: fixed by polarizability \Rightarrow no!

 \Rightarrow unlikely! \Rightarrow try that!

least well known, least well fixed

conceivable but limited changeability

Find most promising feature of functional

look at statistical correlations to find strongest lever correlation with iso.-shift $\delta r^{2}(^{44-40}Ca)$ for SV-min correlation coefficient 0.3 0.25 0.2 0.15 0.1 0.05 0 incompress sym.energy eff. masses spin-orbit pairing surface symmetry energy: fixed by polarizability \Rightarrow no! spin-orbit splittings: conceivable but limited changeability \Rightarrow unlikely! pairing: least well known, least well fixed \Rightarrow try that!

Fit isotopic trend with Fayans functional: $Fy(\Delta r, HFB)$ the solution

 \implies Fy(Δr ,HFB) reproduces trend for Ca isotopes almost perfectly other isotopic chains? \longrightarrow to be checked

Example 4: Isotopic shifts and odd-even staggering in Sn & Pb isotopes

The problem: trends in Sn & Pb isotopes, odd-even staggerings

Fy(Δr ,HFB) fails in: staggering $\Delta_r^{(3)}$, kinks at ¹³²Sn & ²⁰⁸Pb, isot. trends Ca & Pb statistical analysis: all these observables \leftrightarrow pairing yet missing in Fayans functional: isovector pairing (IVP) \Longrightarrow try!

The problem: trends in Sn & Pb isotopes, odd-even staggerings

fit functional with IVP adding data on $\Delta_r^{(3)}(Ca)$ and isot.trends Ca&Pb \implies Fy(IVP) Fy(IVP): solves nearly all problems, still slightly to large $\Delta_r^{(3)}(Sn)$

Extrapolation *r*-process nuclei – neutron rich Sn chain

data on isotopic shifts & odd-even staggerings + extended model (Fayans) \implies somewhat more reduction of errors

r-process \equiv neutron rich nuclei \implies better information from neutron radius r_n ?

Example 5: Neutron radii and Pb Radius EXperiment (PREX)

Measuring the neutron radius

PREX = Pb Radius EXperiment:

scattering of high-energy polarized electrons (beam energy $E_{in} = 953 \text{ MeV}$)

⇒ Parity-Violating Asymmetry $A_{\rm PV}(q) \propto (\sigma_{\uparrow} - \sigma_{\downarrow})/\sigma_{\rm total}$ at transfered momentum q = 0.39/fm

isovector dipole polarizability α_D :

from photo-absorption strength σ_{γ} as $\alpha_{D} = \int_{0}^{\infty(E_{\text{max}})} dE E^{-2} \sigma_{\gamma}(E)$

correlations α_D , A_{PV} , neutron radius r_{neut} :

		$A_{\rm PV}$	α_D	r _{neut}
Coefficient of Determination (CoD):	$A_{\rm PV}$	1	0.99	0.99
Coefficient of Determination (COD).	α_D	0.99	1	0.98
	<i>r</i> _{neut}	0.99	0.98	1

 \implies $A_{\rm PV}$ & α_D equivalent, model assisted measurement of $r_{\rm neut}$

Fy(IVP) and extrapolation uncertainty to neutron matter

collection of Skrme and RMF parametrizations line up to a linear trend the trend avoids the matching point in plane of α_D and A_{PV}

Fy(IVP) and extrapolation uncertainty to neutron matter

the (1 σ) uncertainty ellipsoids also follow the linear trends incompatible data: either A_{PV} or α_D can be tuned in the given models \implies put the data point on hold, work on resolving the dilemma

Conclusions

radii from exotic nuclei are crucial for nuclear DFT development:

- 1. deliver valuable data for better confining models
- 2. challenge models by revealing missing features

Conclusions

radii from exotic nuclei are crucial for nuclear DFT development:

- 1. deliver valuable data for better confining models
- 2. challenge models by revealing missing features
- 3. more info from exotic nuclei needed to improve extrapolations
- 4. info on neutron radius highly desirable, still an enigma