$(g-2)_{\mu}$ from lattice QCD and experiments: 4.2 sigma, indeed?

Z. Fodor

Penn State/Wuppertal/FZ Julich/Eotvos Budapest/UC San Diego

Budapest-Marseille-Wuppertal Collaboration (BMW)

Nature 593 (2021) 7857 51

Trento, May 24, 2022

 $(g-2)_{\mu}$ from LQCD and experiments

General interest

イロト イポト イヨト イヨト

General interest

Breakthroughs of the year 2021: "On the same day experimenters released their result, one team of theorists published a calculation that, they argued, increases the standard model prediction and closes the observed gap."

Z. Fodor

 $(g-2)_{\mu}$ from LQCD and experiments

Tensions in $(g-2)_{\mu}$: take-home message

[Budapest-Marseille-Wuppertal-coll., Nature (2021)]

[Muon g-2 coll., Phys. Rev. Lett. 126, 141801 (2021)]

Z. Fodor

 $(g-2)_{\mu}$ from LQCD and experiments

Trento, May 24, 2022 3/32

◆□> ◆圖> ◆理> ◆理> 三連

-2

ヘロト ヘ団ト ヘヨト ヘヨト

2

ヘロト ヘ団ト ヘヨト ヘヨト

イロト イヨト イヨト イヨト

Experiment

Outline

2

イロト イヨト イヨト イヨト

Newly announced result at Fermilab

```
a_{\mu}(\text{FNAL}) = 11\,659\,204.0(5.4)\cdot 10^{-10} (0.46 ppm)
```

- 34

イロト イポト イヨト イヨト

Newly announced result at Fermilab

```
a_{\mu}(\text{FNAL}) = 11\,659\,204.0(5.4)\cdot 10^{-10} (0.46 ppm)
```

• Equivalent to: bathroom scale sensitive to weight of a single eyelash.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Newly announced result at Fermilab

```
a_{\mu}(\text{FNAL}) = 11\,659\,204.0(5.4)\cdot 10^{-10} (0.46 ppm)
```

• Equivalent to: bathroom scale sensitive to weight of a single eyelash.

• Fully agrees with the BNL E821 measurement

 $a_{\mu}(BNL) = 11\,659\,209.1(6.3) \cdot 10^{-10}$ (0.54 ppm) $a_{\mu}(combined) = 11\,659\,206.1(4.1) \cdot 10^{-10}$ (0.35 ppm)

Newly announced result at Fermilab

```
a_{\mu}(\text{FNAL}) = 11\,659\,204.0(5.4)\cdot 10^{-10} (0.46 ppm)
```

• Equivalent to: bathroom scale sensitive to weight of a single eyelash.

• Fully agrees with the BNL E821 measurement

 $a_{\mu}(BNL) = 11\,659\,209.1(6.3) \cdot 10^{-10}$ (0.54 ppm) $a_{\mu}(combined) = 11\,659\,206.1(4.1) \cdot 10^{-10}$ (0.35 ppm)

• Target uncertainty: (1.6)

- 3

2

イロト イヨト イヨト イヨト

• Cyclotron motion frequency: $\omega_c = \frac{eB}{m_{\mu}\gamma}$ with $\gamma = \frac{1}{\sqrt{1-v^2}}$

<ロ> <四> <四> <四> <四> <四</p>

• Pions produced at fixed target $p + p \rightarrow p + n + \pi^+$

э

イロト イヨト イヨト イヨト

- Pions produced at fixed target $p + p \rightarrow p + n + \pi^+$
- Pion decays through weak interaction → highly polarized muons

$$\pi^+ \rightarrow \mu^+ + \nu_\mu$$

イロト 不得 トイヨト イヨト 二日

- Pions produced at fixed target $p + p \rightarrow p + n + \pi^+$
- Pion decays through weak interaction → highly polarized muons

$$\pi^+ \rightarrow \mu^+ + \nu_\mu$$

• Muons decay after several circles: $\mu^+ \rightarrow e^+ + \nu_e + \bar{\nu}_{\mu}$

- Pions produced at fixed target $p + p \rightarrow p + n + \pi^+$
- Pion decays through weak interaction → highly polarized muons

$$\pi^+ \rightarrow \mu^+ + \nu_\mu$$

- Muons decay after several circles: $\mu^+ \rightarrow e^+ + \nu_e + \bar{\nu}_{\mu}$
- Strong correlation between μ⁺ spin and e⁺ momentum

- Pions produced at fixed target $p + p \rightarrow p + n + \pi^+$
- Pion decays through weak interaction → highly polarized muons

$$\pi^+ \rightarrow \mu^+ + \nu_\mu$$

- Muons decay after several circles: $\mu^+ \rightarrow e^+ + \nu_e + \bar{\nu}_{\mu}$
- Strong correlation between µ⁺ spin and e⁺ momentum
- Detect emitted e⁺

Experiment

Measurement principle

- Pions produced at fixed target $p + p \rightarrow p + n + \pi^+$
- Pion decays through weak interaction → highly polarized muons

$$\pi^+ \rightarrow \mu^+ + \nu_\mu$$

• Muons decay after several circles: $\mu^+ \rightarrow \mu^+$

$$\mu^+ \rightarrow e^+ + \nu_e + \bar{\nu}_\mu$$

- Strong correlation between µ⁺ spin and e⁺ momentum
- Detect emitted e⁺

_a_µ in S№

Outline

2

イロト イヨト イヨト イヨト

 a_{μ} in SM

Theory: Standard Model

Sum over all known physics:

э

イロト イヨト イヨト イヨト

Sum over all known physics:

quantum electrodynamics (QED): photons, leptons

< ロ > < 同 > < 回 > < 回 >

Sum over all known physics:

- quantum electrodynamics (QED): photons, leptons
- electroweak (EW): W, Z bosons, neutrinos, Higgs

Sum over all known physics:

- quantum electrodynamics (QED): photons, leptons
- electroweak (EW): W, Z bosons, neutrinos, Higgs
- strong (QCD): quarks and gluons

Sum over all known physics:

- quantum electrodynamics (QED): photons, leptons
- electroweak (EW): W, Z bosons, neutrinos, Higgs
- strong (QCD): quarks and gluons
- [2006.04822] White Paper of Muon g-2 Theory Initiative

Sum over all known physics:

- quantum electrodynamics (QED): photons, leptons
- electroweak (EW): W, Z bosons, neutrinos, Higgs
- strong (QCD): quarks and gluons
- [2006.04822] White Paper of Muon g-2 Theory Initiative

	$a_{\mu} imes$ 10 ⁻¹⁰
QED	11658471.9(0.0)
electroweak	15.4(0.1)
strong	693.7(4.3)
total	11659181.0(4.3)

Hadronic contributions

• LO hadron vacuum polarization (LO-HVP, $(\frac{\alpha}{\pi})^2$)

э

イロト イヨト イヨト イヨト

Hadronic contributions

• LO hadron vacuum polarization (LO-HVP, $(\frac{\alpha}{\pi})^2$)

• NLO hadron vacuum polarization (NLO-HVP, $(\frac{\alpha}{\pi})^3$)

Hadronic contributions

• LO hadron vacuum polarization (LO-HVP, $(\frac{\alpha}{\pi})^2$)

• NLO hadron vacuum polarization (NLO-HVP, $(\frac{\alpha}{\pi})^3$)

• Hadronic light-by-light (HLbL, $(\frac{\alpha}{\pi})^3$)

• pheno $a_{\mu}^{\text{HLbL}} = 9.2(1.9)$

[Colangelo, Hoferichter, Kubis, Stoffer et al '15-'20]

• lattice $a_{\mu}^{\text{HLbL}} = 7.9(3.1)(1.8)$ or 10.7(1.5)

[RBC/UKQCD '19 and Mainz '21]

HVP from R-ratio

Optical theorem

<ロ> <四> <四> <四> <四> <四</p>

HVP from R-ratio

Optical theorem

Use $e^+e^- \rightarrow$ had data of CMD, SND, BES, KLOE, BABAR, ... systematics limited

3

イロン イ理 とく ヨン 一

HVP from R-ratio

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))
HVP from R-ratio

 Optical theor 	rem	$\gamma \qquad \qquad$	$\gamma \qquad \Leftrightarrow \qquad \gamma \qquad \Rightarrow \qquad \gamma \qquad \gamma$	$\sigma_{\rm tot}^{\rm had}(q^2)$	2
Use $e^+e^- \rightarrow$ had d KLOE, BABAR, systematics limited $a_{\mu}^{\text{LO-HVP}} = \left(\frac{\alpha}{\pi}\right)$	hata of CM	ID, SND, BES, $\zeta_\mu(s)R(s)$		$\psi = \psi(2S)$ r $\psi = \psi(2S)$ r	2 10 ²
-	LO	[Jegerlehner '18]	688.1(4.1)	0.60%	-
	LO	[Davier et al '19]	693.9(4.0)	0.58%	
	LO	[Keshavarzi et al '19]	692.78(2.42)	0.35%	
	LO	[Hoferichter et al '19]	692.3(3.3)	0.48%	
-	NLO	[Kurz et al '14]	-9.87(0.09)		-
_	NNLO	[Kurz et al '14]	1.24(0.01)		_
-			4		-

Z. Fodor

-2

Outline

Trento, May 24, 2022

イロト イヨト イヨト イヨト

э

a^{LO}-HVP from lattice QCD Nature 593 (2021) 7857, 51

Compute electromagnetic current-current correlator

3

イロト イポト イヨト イヨト

a^{LO}-HVP from lattice QCD Nature 593 (2021) 7857, 51

Compute electromagnetic current-current correlator

 $C(t) = \langle J_{\mu}(t) J_{\nu}(0) \rangle$

3

イロト イポト イヨト イヨト

HVP from lattice

$a_{\mu}^{\text{LO-HVP}}$ from lattice QCD Nature 593 (2021) 7857, 51

Compute electromagnetic current-current correlator

$$C(t) = \langle J_{\mu}(t) J_{\nu}(0) \rangle$$

$$a_{\mu}^{\text{LO-HVP}} = \alpha^{2} \int_{0}^{\infty} dt K(t) C(t)$$

$$a_{\mu}^{\text{LO-HVP}} = \alpha^{2} \int_{0}^{\infty} dt K(t) C(t)$$

K(t) describes the leptonic part of diagram

Ц

3 > 4 3

da^µ/dt [BMWc'17] da^µ/dt [BMWc'20]

3

2

Image: A matrix

t [fm]

-

Z. Fodor

2

イロト イヨト イヨト イヨト

• 6 lattice spacings: $0.13 \text{ fm} - 0.064 \text{ fm} \longrightarrow \text{controlled continuum limit}$

<ロ> <四> <四> <四> <四> <四</p>

- 6 lattice spacings: 0.13 fm 0.064 fm → controlled continuum limit
- Box size: $L \sim 6 \text{ fm}$

- 6 lattice spacings: $0.13 \, \text{fm} 0.064 \, \text{fm} \longrightarrow \text{controlled continuum limit}$
- Box size: L ~ 6 fm
 - $L \sim 11 \text{ fm}$ at one lattice spacing \longrightarrow FV effects

- 6 lattice spacings: $0.13 \, \text{fm} 0.064 \, \text{fm} \longrightarrow \text{controlled continuum limit}$
- Box size: L ~ 6 fm
 - $L \sim 11 \text{ fm}$ at one lattice spacing \longrightarrow FV effects

 $1 \text{ fm} = 10^{-15} \text{ m} \sim \text{size of proton}$

- 6 lattice spacings: 0.13 fm 0.064 fm → controlled continuum limit
- Box size: L ~ 6 fm
 - $L \sim 11 \text{ fm}$ at one lattice spacing \longrightarrow FV effects
 - $1\,\text{fm} = 10^{-15}\,\text{m} \sim \text{size of proton}$
- Quark masses bracketing their physical values

- 6 lattice spacings: 0.13 fm 0.064 fm → controlled continuum limit
- Box size: L ~ 6 fm
 - $L \sim 11 \text{ fm}$ at one lattice spacing \longrightarrow FV effects

 $1\,\text{fm} = 10^{-15}\,\text{m} \sim \text{size of proton}$

Quark masses bracketing their physical values

a[fm]	$L \times T$	#conf
0.1315	48×64	904
0.1191	56×96	2072
0.1116	56 × 84	1907
0.0952	64×96	3139
0.0787	80×128	4296
0.0640	96 imes 144	6980
	a[fm] 0.1315 0.1191 0.1116 0.0952 0.0787 0.0640	$a[fm]$ $L \times T$ 0.1315 48×64 0.1191 56×96 0.1116 56×84 0.0952 64×96 0.0787 80×128 0.0640 96×144

Trento, May 24, 2022

15/32

Depending on the action: topology is frozen for a<0.05 fm

э

イロト イポト イヨト イヨト

Depending on the action: topology is frozen for a<0.05 fm \implies open boundary condition (CLS lattice group)

3

A D > A B > A B > A B >

Depending on the action: topology is frozen for a<0.05 fm \implies open boundary condition (CLS lattice group) Take the smallest lattice spacing of us of 0.064 fm

Depending on the action: topology is frozen for a<0.05 fm \implies open boundary condition (CLS lattice group) Take the smallest lattice spacing of us of 0.064 fm Topological charge at a Wilson-flow time of $\sqrt{8t} \approx 0.6$ fm

イロト 不得 トイヨト イヨト 二日

Depending on the action: topology is frozen for a<0.05 fm \implies open boundary condition (CLS lattice group) Take the smallest lattice spacing of us of 0.064 fm Topological charge at a Wilson-flow time of $\sqrt{8t} \approx 0.6$ fm

Trento, May 24, 2022

Depending on the action: topology is frozen for a<0.05 fm \implies open boundary condition (CLS lattice group) Take the smallest lattice spacing of us of 0.064 fm Topological charge at a Wilson-flow time of $\sqrt{8t} \approx 0.6$ fm

The integrated autocorrelation time of Q is 19(2) trajectories.

Z. Fodor

New challenges

Z. Fodor

э

Lattice spacing *a* enters into a_{μ} determination:

<ロ> <四> <四> <四> <四> <四</p>

Lattice spacing *a* enters into a_{μ} determination:

- physical value of m_µ
- physical values of m_{π}, m_K

3

イロト イポト イヨト イヨト

Lattice spacing *a* enters into a_{μ} determination:

- physical value of m_µ
- physical values of m_π, m_K
- $\longrightarrow \Delta_{\text{scale}} a_{\mu} \sim 2 \cdot \Delta(\text{scale})$

3

Lattice spacing *a* enters into a_{μ} determination:

- physical value of m_µ
- physical values of m_{π}, m_K
- $\longrightarrow \Delta_{\text{scale}} a_{\mu} \sim 2 \cdot \Delta(\text{scale})$
 - For final results: M_{Ω} scale setting $\longrightarrow a = (aM_{\Omega})^{\text{lat}}/M_{\Omega}^{\text{exp}}$
 - Experimentally well known: 1672.45(29) MeV [PDG 2018]
 - Moderate *m_q* dependence
 - Can be precisely determined on the lattice

Lattice spacing *a* enters into a_{μ} determination:

- physical value of m_µ
- physical values of m_{π}, m_K
- $\longrightarrow \Delta_{\text{scale}} a_{\mu} \sim 2 \cdot \Delta(\text{scale})$
 - **1** For final results: M_{Ω} scale setting $\longrightarrow a = (aM_{\Omega})^{\text{lat}}/M_{\Omega}^{\text{exp}}$
 - Experimentally well known: 1672.45(29) MeV [PDG 2018]
 - Moderate *m_q* dependence
 - Can be precisely determined on the lattice

For separation of isospin breaking effects: w₀ scale setting

- Moderate *m_q* dependence
- Can be precisely determined on the lattice
- No experimental value

 \longrightarrow Determine value of w_0 from $M_\Omega \cdot w_0$

 $w_0 = 0.17236(29)(63)[70]$ fm

Noise reduction

• noise/signal in $C(t) = \langle J(t)J(0) \rangle$ grows for large distances

э.

Noise reduction

• noise/signal in $C(t) = \langle J(t)J(0) \rangle$ grows for large distances

- Low Mode Averaging: use exact (all2all) quark propagator in IR and stochastic in UV
- decrease noise by replacing C(t) by upper/lower bounds above t_c

$$0 \leq C(t) \leq C(t_c) e^{-E_{2\pi}(t-t_c)}$$

Noise reduction

• noise/signal in $C(t) = \langle J(t)J(0) \rangle$ grows for large distances

- Low Mode Averaging: use exact (all2all) quark propagator in IR and stochastic in UV
- decrease noise by replacing C(t) by upper/lower bounds above t_c

$$0 \leq C(t) \leq C(t_c) e^{-E_{2\pi}(t-t_c)}$$

→ few permil level accuracy on each ensemble

• Typical lattice runs use L < 6 fm, earlier model estimates gave O(2)% FV effect.

3

イロト イヨト イヨト イヨト

• Typical lattice runs use L < 6 fm, earlier model estimates gave O(2)% FV effect.

 $L_{\rm ref}=6.272\,{
m fm}$

$$L_{\rm big} = 10.752\,{\rm fm}$$

3

イロト イポト イヨト イヨト

• Typical lattice runs use L < 6 fm, earlier model estimates gave O(2)% FV effect.

 $L_{\rm ref}=6.272\,{
m fm}$

$$L_{\rm big} = 10.752\,{\rm fm}$$

- 1. $a_{\mu}(big) a_{\mu}(ref)$
 - perform numerical simulations in $L_{\text{big}} = 10.752 \,\text{fm}$
 - perform analytical computations to check models

< ロ > < 同 > < 回 > < 回 >

• Typical lattice runs use L < 6 fm, earlier model estimates gave O(2)% FV effect.

 $L_{\rm ref}=6.272\,{
m fm}$

$$L_{\rm big}=10.752\,{\rm fm}$$

- 1. $a_{\mu}(big) a_{\mu}(ref)$
 - perform numerical simulations in $L_{\text{big}} = 10.752 \,\text{fm}$
 - perform analytical computations to check models

lattice	NLO XPT	NNLO XPT	MLLGS	HP	RHO
$18.1(2.0)_{stat}(1.4)_{cont}$	11.6	15.7	17.8	16.7	15.2

• Typical lattice runs use L < 6 fm, earlier model estimates gave O(2)% FV effect.

 $L_{\rm ref}=6.272\,{
m fm}$

$$L_{\rm big} = 10.752\,{\rm fm}$$

- 1. $a_{\mu}(big) a_{\mu}(ref)$
 - perform numerical simulations in $L_{\text{big}} = 10.752 \,\text{fm}$
 - perform analytical computations to check models

lattice	NLO XPT	NNLO XPT	MLLGS	HP	RHO
$18.1(2.0)_{stat}(1.4)_{cont}$	11.6	15.7	17.8	16.7	15.2

- 2. $a_{\mu}(\infty) a_{\mu}(big)$
 - use models for remnant finite-size effect of "big" $\sim 0.1\%$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Isospin breaking effects

• Include leading order IB effects: $O(e^2)$, $O(\delta m)$

Z. Fodor

Final result

2

イロト イヨト イヨト イヨト

Final result

• $a_u^{\text{LO-HVP}} = 707.5(2.3)(5.0)[5.5]$ with 0.8% accuracy

э

・ロト ・ 四ト ・ ヨト ・ ヨト

Final result

- $a_{\mu}^{\text{LO-HVP}} = 707.5(2.3)(5.0)[5.5]$ with 0.8% accuracy
- consistent with new FNAL experiment

э

イロト イヨト イヨト イヨト
Final result

- $a_{\mu}^{\text{LO-HVP}} = 707.5(2.3)(5.0)[5.5]$ with 0.8% accuracy
- consistent with new FNAL experiment
- 2.0 σ larger than [DHMZ'19], 2.5 σ than [KNT'19]

Z. Fodor

Trento, May 24, 2022 22/32

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Window observable

• Restrict correlator to window between $t_1 = 0.4$ fm and $t_2 = 1.0$ fm

[RBC/UKQCD'18]

3

Window observable

• Restrict correlator to window between $t_1 = 0.4$ fm and $t_2 = 1.0$ fm

- [RBC/UKQCD'18]
- Less challenging than full a_{μ}

3

Window observable

• Restrict correlator to window between $t_1 = 0.4$ fm and $t_2 = 1.0$ fm

- [RBC/UKQCD'18]
- Less challenging than full a_{μ}
 - signal/noise
 - finite size effects
 - lattice artefacts (short & long)

Window observable

• Restrict correlator to window between $t_1 = 0.4$ fm and $t_2 = 1.0$ fm

- [RBC/UKQCD'18]
- Less challenging than full a_{μ}
 - signal/noise
 - finite size effects
 - lattice artefacts (short & long)

イロト イヨト イヨト イヨト

Z. Fodor

 $(g-2)_{\mu}$ from LQCD and experiments

Window observable

• Restrict correlator to window between $t_1 = 0.4$ fm and $t_2 = 1.0$ fm

- [RBC/UKQCD'18]
- Less challenging than full a_{μ}
 - signal/noise
 - finite size effects
 - lattice artefacts (short & long)

Z. Fodor

 $(g-2)_{\mu}$ from LQCD and experiments

Trento, May 24, 2022 23/32

Window observable

• Restrict correlator to window between $t_1 = 0.4$ fm and $t_2 = 1.0$ fm

 $(144 \times 96^3, a \sim 0.064 \text{ fm}, M_{\pi} \sim 135 \text{ MeV})$

- [RBC/UKQCD'18]
- Less challenging than full a_u
 - signal/noise
 - finite size effects
 - lattice artefacts (short & long)

 $(g-2)_{\mu}$ from LQCD and experiments

Crosscheck - overlap

э

Crosscheck – overlap

- compute $a_{\mu,\text{win}}$ with overlap valence
- local current instead of conserved \rightarrow had to compute Z_V
- cont. limit in L = 3 fm box consistent with staggered valence

2

2

イロト イヨト イヨト イヨト

イロト イヨト イヨト イヨト

Trento, May 24, 2022 28/32

ヘロト 人間 とくほとくほど

Trento, May 24, 2022 29/32

æ

Summar

Outline

5. Summary

Z. Fodor

2

Final result

Trento, May 24, 2022 31/32

Tensions: take-home message

Trento, May 24, 2022

・ロト ・ 四ト ・ ヨト ・ ヨト

32/32

э