Topology and the Dirac spectrum in the high temperature phase of QCD

Tamás G. Kovács

Eötvös University, Budapest and Institute for Nuclear Research, Debrecen

Trento, May 27, 2022

The Dirac spectrum across the transition

Standard lore

Below T_c

- Chiral symmetry broken
- Order parameter: ρ(0) ≠ 0 (spectral density at zero)

The Dirac spectrum across the transition Standard lore

Below T_c

- Chiral symmetry broken
- Order parameter: ρ(0) ≠ 0 (spectral density at zero)

eigenvalue

Above T_c

- Chiral symmetry restored
- Order parameter $\rho(0) = 0$

The Dirac spectral density across the transition Lattice (quenched, $N_t = 8$, $T = T_c$)

Volume dependence of the spectral density Lattice $N_t = 8$, $T = 1.045 T_c$

• Spectral peak first noticed Edwards et al. 2000

- Spectral peak is not a quenched artifact Alexandru & Horvath 2015 Kaczmarek, Mazur, Sharma 2021
- Spectral density at λ = 0 nonzero
 ⇒ chiral symmetry not restored
- Possible consequences for U(1)_A breaking
- Strong volume dependence of the spectral density peak

Zooming in on the spectral peak The distribution of $log(\lambda)$

If $\rho(\lambda) \propto \lambda^{\alpha}$, then $\tilde{\rho}(y) \propto e^{(\alpha+1)y}$ $(y = \log \lambda)$

Integrated spectral density Lattice $N_t = 8$, $T = 1.045 T_c$

Integrated spectral density including zero modes Lattice $N_t = 8$, $T = 1.045 T_c$

Possible explanation of volume dependence

- Above T_c dilute instanton gas (weakly interacting lumps of charge ±1)
- Density of topological objects $\propto V^0$
- Corresponding would be zero modes will mix to become:
 - Exact topological zero modes; density $\propto V^{-1/2}$
 - Non-chiral near zero modes; density increases with V
- Spectral peak = mixing zero modes (ZMZ)?

Compare distribution of number of modes in the ZMZ

with the one expected from a non-interacting instanton gas.

How to count modes in the ZMZ?

- Assume that $|\lambda| < \lambda_{\text{ZMZ}}$ are the topology-related ev.-s
- Total number (incl. 0-modes): n₊ + n₋ (number of instntons plus antiinstantons)
- Can all be counted if we know λ_{ZMZ}

• $\chi \implies \lambda_{\rm ZMZ}$

• Assume ideal gas: $\Rightarrow \chi V = \langle Q^2 \rangle = \langle n_+ + n_- \rangle \Rightarrow \lambda_{z_{MZ}}$

The zero mode zone obtained from $\langle Q^2 \rangle = \langle n_+ + n_- \rangle$

The distribution of $n_+ + n_$ lattice: quenched, $N_t = 8$, $T = 1.04T_c$ vs. ideal gas

- $\bullet\,$ Distribution of number of $|\lambda| < \lambda_{\mbox{\tiny zmz}}$ eigenvalues Poisson
- Is this only true for λ_{zmz} obtained from $\langle Q^2 \rangle$?

λ_{zmz} is indeed special

Fit distribution of the number of $|\lambda| < \lambda_{cut}$ eigenvalues with Poisson

Conclusions

- Above T_c lowest part of the Dirac spectrum \implies mixing would be zero modes (ZMZ)
- Quenched: consistent with ideal instanton gas
- Spectral peak at zero generic feature, not a quenched artifact
- $\chi_{top} \neq 0 \implies$ nonzero spectral density in ZMZ
- Chiral symmetry restoration is not trivial depends on the scales m_{q} and λ_{ZMZ}

Questions, speculations

 Are there instanton interactions in the presence of dynamical quarks?

• Finite density: most dangerous eigenvalues in the ZMZ

- What is the connection bewteen
 - deconfinement
 - topological chatrge fluctuations
 - chiral symmetry restoration
 - Iocalization

Backup slides

Spectral density at $T = T_c$ (density of $log\lambda$)

Spectral density at $T = 1.045 T_c$ (density of $log\lambda$)

Spectral density at $T = 1.11 T_c$ (density of $log\lambda$)

Spectral density at at different temperatures above T_C (density of $log\lambda$)

