Localisation of Dirac eigenmodes in finite-temperature lattice gauge theory

Aula Leonardi

Eötvös Loránd University (ELTE) Budapest

Workshop on Gauge Topology, Flux Tubes and Holographic Models

ECT*, Villazzano (TN) 27 May 2022

Localisation of Dirac eigenmodes in finite-temperature lattice gauge theory

Matteo Giordano

Eötvös Loránd University (ELTE) Budapest

Workshop on Gauge Topology, Flux Tubes and Holographic Models

ECT*, Villazzano (TN) 27 May 2022

QCD at finite temperature

QCD: crossover at $T \simeq 145 - 165$ MeV, (approximate) deconfinement and chiral symmetry restoration, relation between the two still not fully clear

Renormalised Polyakov loop and chiral condensate Figures from [BW collaboration (2010)]

QCD-like gauge theories with genuine phase transitions:

- deconfinement improves chiral symmetry properties if single transition (e.g., pure gauge theory, $N_f = 3$ staggered fermions on coarse lattices)
- $T_{
 m dec} < T_{\chi}$ if two transitions are present (e.g., adjoint fermions)

Deconfinement and χSB from spontaneous SB

Deconfinement and χSB from SSB in opposite quark-mass limits

Quark mass $m \to \infty$ (pure gauge theory)

- Exact \mathbb{Z}_3 centre symmetry
- Spontaneously broken above ${\cal T}_c pprox 290 \, {
 m MeV}$ [Boyd et al. (1996)]

Quark free energy from Polyakov loop

$$\langle \operatorname{tr} P \rangle \propto e^{-F_q/T}$$

 $T < T_c: \langle \operatorname{tr} P \rangle = 0 \Rightarrow F_q = \infty$
 $T > T_c: \langle \operatorname{tr} P \rangle \neq 0 \Rightarrow F_q < \infty$
Deconfinement = PL ordering

Deconfinement and χSB from spontaneous SB

Deconfinement and χSB from SSB in opposite quark-mass limits

Quark mass $m \to \infty$ (pure gauge theory)

- Exact \mathbb{Z}_3 centre symmetry
- Spontaneously broken above ${\cal T}_c pprox 290 \, {
 m MeV}$ [Boyd et al. (1996)]

Quark free energy from Polyakov loop

$$\langle \operatorname{tr} P \rangle \propto e^{-F_q/T}$$

 $T < T_c: \langle \operatorname{tr} P \rangle = 0 \Rightarrow F_q = \infty$
 $T > T_c: \langle \operatorname{tr} P \rangle \neq 0 \Rightarrow F_q < \infty$
Deconfinement = PL ordering

Deconfinement and χSB from spontaneous SB

Deconfinement and χSB from SSB in opposite quark-mass limits

Quark mass $m \to \infty$ (pure gauge theory)

- Exact \mathbb{Z}_3 centre symmetry
- Spontaneously broken above ${\cal T}_c pprox 290 \, {
 m MeV}$ [Boyd et al. (1996)]

Quark free energy from Polyakov loop

$$\langle \operatorname{tr} P \rangle \propto e^{-F_q/T}$$

 $T < T_c: \langle \operatorname{tr} P \rangle = 0 \Rightarrow F_q = \infty$
 $T > T_c: \langle \operatorname{tr} P \rangle \neq 0 \Rightarrow F_q < \infty$
Deconfinement = PL ordering

Quark mass $m \rightarrow 0$

- Exact $SU(N_f)_L \times SU(N_f)_R$ chiral symmetry
- Spontaneously broken below $T_c(N_f=2)pprox 132\,{
 m MeV}$ [Ding et al. (2019)]

$$\begin{split} |\langle \bar{\psi}\psi\rangle| &= \int_0^\infty d\lambda \, \frac{2m\rho(\lambda)}{\lambda^2 + m^2} \mathop{\to}\limits_{m \to 0} \pi\rho(0^+) \\ \rho(\lambda) &= \lim_{V \to \infty} \frac{T}{V} \Big\langle \sum_n \delta(\lambda - \lambda_n) \Big\rangle \\ \chi \text{SB} &= \text{accumulation of Dirac modes at } \lambda = 0 \end{split}$$

Different symmetries, approximate $@m_{phys}$: how do they affect each other?

Localisation of Dirac eigenmodes

Low Dirac modes become localised at the QCD transition

Delocalised mode

- extends throughout system
- $\|\psi(\mathbf{x})\|^2 \sim 1/L^{\alpha}$ with $0 < \alpha \leq d$

cond-mat: delocalised if $\alpha = d$, critical if $0 < \alpha < d$

Localised mode

- confined in finite region
- $\|\psi(x)\|^2 \sim 1/L^0$ inside, negligible outside

$$\int_{0}^{\beta} dt \int d^{3}x \, \|\psi_{n}(t,\vec{x})\|^{2} = 1$$
$$\|\psi_{n}(t,\vec{x})\|^{2} \equiv \sum_{c,\eta} |\psi_{n\,c,\eta}(t,\vec{x})|^{2}$$

Anderson model for "dirty" conductors [Anderson (1958)] $H_{\vec{x},\vec{y}} = \sum_{1}^{3} (\delta_{\vec{x}+\hat{\mu},\vec{y}} + \delta_{\vec{x}-\hat{\mu},\vec{y}})$

Random potential $|\varepsilon_{\vec{x}}| \leq \frac{W}{2}$ (orthogonal AM)

- W = 0 (no disorder): delocalised modes
- $W \neq 0$: localised beyond mobility edge $E_c(W)$, $E_c \rightarrow 0$ as W increases
- All states localised for $W > W_c$: metal-insulator transition
- Second-order (<u>Anderson</u>) transition at E_c with divergent correlation length $\xi \sim |E E_c|^{-\nu}$

Anderson model for "dirty" conductors [Anderson (1958)] $H_{\vec{x},\vec{y}}^{AM} = \varepsilon_{\vec{x}}\delta_{\vec{x},\vec{y}} + \sum_{\mu=1}^{3} (\delta_{\vec{x}+\hat{\mu},\vec{y}} + \delta_{\vec{x}-\hat{\mu},\vec{y}})$

Random potential $|\varepsilon_{\vec{x}}| \leq \frac{W}{2}$ (orthogonal AM)

- W = 0 (no disorder): delocalised modes
- $W \neq 0$: localised beyond mobility edge $E_c(W)$, $E_c \rightarrow 0$ as W increases
- All states localised for $W > W_c$: metal-insulator transition
- Second-order (<u>Anderson</u>) transition at E_c with divergent correlation length $\xi \sim |E E_c|^{-\nu}$

Anderson model for "dirty" conductors [Anderson (1958)] $H_{\vec{x},\vec{y}}^{AM} = \varepsilon_{\vec{x}}\delta_{\vec{x},\vec{y}} + \sum_{\mu=1}^{3} (\delta_{\vec{x}+\hat{\mu},\vec{y}} + \delta_{\vec{x}-\hat{\mu},\vec{y}})$

Random potential $|\varepsilon_{\vec{x}}| \leq \frac{W}{2}$ (orthogonal AM)

- W = 0 (no disorder): delocalised modes
- $W \neq 0$: localised beyond mobility edge $E_c(W)$, $E_c \rightarrow 0$ as W increases
- All states localised for $W > W_c$: metal-insulator transition
- Second-order (<u>Anderson</u>) transition at E_c with divergent correlation length $\xi \sim |E E_c|^{-\nu}$

Anderson model for "dirty" conductors [Anderson (1958)] $H_{\vec{x},\vec{y}}^{AM} = \varepsilon_{\vec{x}}\delta_{\vec{x},\vec{y}} + \sum_{\mu=1}^{3} (\delta_{\vec{x}+\hat{\mu},\vec{y}} + \delta_{\vec{x}-\hat{\mu},\vec{y}})$

Random potential $|\varepsilon_{\vec{x}}| \leq \frac{W}{2}$ (orthogonal AM)

- W = 0 (no disorder): delocalised modes
- $W \neq 0$: localised beyond mobility edge $E_c(W)$, $E_c \rightarrow 0$ as W increases
- All states localised for $W > W_c$: metal-insulator transition
- Second-order (<u>Anderson</u>) transition at E_c with divergent correlation length $\xi \sim |E E_c|^{-\nu}$

Anderson model for "dirty" conductors [Anderson (1958)] $H_{\vec{x},\vec{y}}^{AM} = \varepsilon_{\vec{x}}\delta_{\vec{x},\vec{y}} + \sum_{\mu=1}^{3} (\delta_{\vec{x}+\hat{\mu},\vec{y}} + \delta_{\vec{x}-\hat{\mu},\vec{y}})$

Random potential $|\varepsilon_{\vec{x}}| \leq \frac{W}{2}$ (orthogonal AM)

- W = 0 (no disorder): delocalised modes
- $W \neq 0$: localised beyond mobility edge $E_c(W)$, $E_c \rightarrow 0$ as W increases
- All states localised for $W > W_c$: metal-insulator transition
- Second-order (<u>Anderson</u>) transition at E_c with divergent correlation length $\xi \sim |E E_c|^{-\nu}$

Anderson model for "dirty" conductors [Anderson (1958)] $H_{\vec{x},\vec{y}}^{AM} = \varepsilon_{\vec{x}}\delta_{\vec{x},\vec{y}} + \sum_{\mu=1}^{3} (\delta_{\vec{x}+\hat{\mu},\vec{y}} + \delta_{\vec{x}-\hat{\mu},\vec{y}})$

Random potential $|\varepsilon_{\vec{x}}| \leq \frac{W}{2}$ (orthogonal AM)

- W = 0 (no disorder): delocalised modes
- $W \neq 0$: localised beyond mobility edge $E_c(W)$, $E_c \rightarrow 0$ as W increases
- All states localised for W > W_c: metal-insulator transition
- Second-order (<u>Anderson</u>) transition at E_c with divergent correlation length $\xi \sim |E E_c|^{-\nu}$

Anderson model for "dirty" conductors [Anderson (1958)] $H^{\text{UAM}}_{\vec{x},\vec{y}} = \varepsilon_{\vec{x}} \delta_{\vec{x},\vec{y}} + \sum_{\mu=1}^{3} (\delta_{\vec{x}+\hat{\mu},\vec{y}} + \delta_{\vec{x}-\hat{\mu},\vec{y}}) e^{i\phi_{\vec{x},\vec{y}}}$

Random potential $|\varepsilon_{\vec{x}}| \leq \frac{W}{2}$ (orthogonal AM) + random phases $\phi_{\vec{y},\vec{x}} = -\phi_{\vec{x},\vec{y}}$ (unitary AM) Average over realisations of disorder

- W = 0 (no disorder): delocalised modes
- $W \neq 0$: localised beyond mobility edge $E_c(W)$, $E_c \rightarrow 0$ as W increases
- All states localised for W > W_c: metal-insulator transition
- Second-order (<u>Anderson</u>) transition at E_c with divergent correlation length $\xi \sim |E E_c|^{-\nu_U}$

Localisation of Dirac eigenmodes in QCD

Participation ratio \approx fraction of system occupied by a mode

Data for $T \simeq 2.6T_c$ from [MG et al. (2014)]

$$IPR_{n} = \int_{0}^{\frac{1}{T}} dt \int d^{d}x \|\psi_{n}(t,\vec{x})\|^{4} \sim L^{-\alpha}$$
$$\langle PR \rangle_{\lambda} = \frac{T}{L^{d}} \left\langle \sum_{n} \delta(\lambda - \lambda_{n}) IPR_{n}^{-1} \right\rangle \sim L^{-(d-\alpha)}$$

Matteo Giordano (ELTE)

Localisation of Dirac eigenmodes

Localisation and spectral statistics

Localisation of eigenmodes reflects on statistical properties of eigenvalues

- \bullet delocalised modes easily mixed by fluctuations \rightarrow RMT- type statistics
- \bullet localised modes fluctuate independently \rightarrow Poisson statistics

Universal expectations for unfolded level spacings $s_n = \frac{\lambda_{n+1} - \lambda_n}{\langle \lambda_{n+1} - \lambda_n \rangle_{\lambda}}$

 local spacing distribution p_λ(s) changes with L

$$I_{\lambda} = \int_0^{s_0} ds \, p_{\lambda}(s)$$

- $p_{\lambda} \rightarrow p_{
 m Poisson}$ (localised) or $p_{
 m RMT}$ (delocalised) as $L \rightarrow \infty$
- λ_c = scale-invariant point, critical statistics p_{crit}

Data for $T \simeq 2.6 T_c$ from [MG et al. (2014)]

Localisation of Dirac eigenmodes in QCD - mobility edge

Mobility edge extrapolates to 0 in the crossover region [Kovács, Pittler (2012)] No localised modes in the confined/chirally broken phase at low T

Figure from [Kovács, Pittler (2012)]

Numerical evidence from lattice [review: MG, Kovács (2021)]

- Various fermion discretisations
 - staggered [García-García, Osborn (2007), Kovács, Pittler (2012), MG et al. (2014)]
 - overlap [Kovács (2010), Dick et al. (2015)]
 - domain wall [Cossu, Hashimoto (2016)]
 - twisted mass [Holicki et al. (2018)]
- Survive continuum limit
 ⇒ not a lattice artefact

Ratio $\lambda_c/m_{\rm ud}$ expected to be RG-invariant [Kovács, Pittler (2012)] Proof in preparation [MG (202ish)]

Matteo Giordano (ELTE)

Localisation of Dirac eigenmodes

Dirac operator as a disordered Hamiltonian

disordered Hamiltonian	\longleftrightarrow	Dirac operator
random hopping, potential	\longleftrightarrow	gauge fields
ensemble average $\langle\!\langle \dots angle\! angle$	\longleftrightarrow	path integral $\langle \ldots angle$

- Same critical features as 3D UAM...
 - localisation length critical exponent [MG et al. (2014)]
 - multifractal exponents
 [Ujfalusi et al. (2015)]
 - critical statistics
 [Nishigaki *et al.* (2014)]
- ... but why localisation near λ = 0 above T_c?

Data from [MG et al. (2014), Slevin, Ohtsuki (1997), (1999), Asada et al., (2005)]

Dirac operator as a disordered Hamiltonian

disordered Hamiltonian	\longleftrightarrow	Dirac operator
random hopping, potential	\longleftrightarrow	gauge fields
ensemble average $\langle\!\langle \dots angle\! angle$	\longleftrightarrow	path integral $\langle \ldots angle$

- Same critical features as 3D UAM...
 - localisation length critical exponent [MG et al. (2014)]
 - multifractal exponents
 [Ujfalusi et al. (2015)]
 - critical statistics
 [Nishigaki *et al.* (2014)]
- ... but why localisation near λ = 0 above T_c?

Figure from [Ujfalusi et al. (2015)]

Qualitative explanation of localisation: "sea/islands" picture [Bruckmann et al. (2011); MG et al. (2015, 2016, 2017)]

Ordered phase \approx configs. fluctuate around $\vec{A} = 0$, $P(\vec{x}) = \text{diag}(e^{i\phi_a})$ Gapped spectrum $|\lambda| \ge \omega = (\pi - \phi_{\text{PL}})T$ with $\phi_{\text{PL}} = \max_{a,\phi_a \in (-\pi,\pi]} |\phi_a|$

• "Sea" of $\phi_{\rm PL}\!=\!$ 0 selected by fermions because of largest spectral gap

ullet "Islands" with $|\phi(ec{x})| < \phi_{
m PL}$ can support localised modes in the gap

Qualitative explanation of localisation: "sea/islands" picture [Bruckmann et al. (2011); MG et al. (2015, 2016, 2017)]

Ordered phase \approx configs. fluctuate around $\vec{A} = 0$, $P(\vec{x}) = \text{diag}(e^{i\phi_a})$ Gapped spectrum $|\lambda| \ge \omega = (\pi - \phi_{\text{PL}})T$ with $\phi_{\text{PL}} = \max_{a,\phi_a \in (-\pi,\pi]} |\phi_a|$

• "Sea" of $\phi_{\rm PL}\!=\!$ 0 selected by fermions because of largest spectral gap

ullet "Islands" with $|\phi(ec{x})| < \phi_{
m PL}$ can support localised modes in the gap

Qualitative explanation of localisation: "sea/islands" picture [Bruckmann et al. (2011); MG et al. (2015, 2016, 2017)]

Ordered phase \approx configs. fluctuate around $\vec{A} = 0$, $P(\vec{x}) = \text{diag}(e^{i\phi_a})$ Gapped spectrum $|\lambda| \ge \omega = (\pi - \phi_{\text{PL}})T$ with $\phi_{\text{PL}} = \max_{a,\phi_a \in (-\pi,\pi]} |\phi_a|$

• "Sea" of $\phi_{\rm PL}\!=\!$ 0 selected by fermions because of largest spectral gap

ullet "Islands" with $|\phi(ec{x})| < \phi_{
m PL}$ can support localised modes in the gap

Qualitative explanation of localisation: "sea/islands" picture [Bruckmann et al. (2011); MG et al. (2015, 2016, 2017)]

Ordered phase \approx configs. fluctuate around $\vec{A} = 0$, $P(\vec{x}) = \text{diag}(e^{i\phi_a})$ Gapped spectrum $|\lambda| \ge \omega = (\pi - \phi_{\text{PL}})T$ with $\phi_{\text{PL}} = \max_{a,\phi_a \in (-\pi,\pi]} |\phi_a|$

 $\bullet\,$ "Sea" of $\phi_{\rm PL}\!=\!0$ selected by fermions because of largest spectral gap

ullet "Islands" with $|\phi(ec{x})| < \phi_{
m PL}$ can support localised modes in the gap

Localisation and deconfinement - pure gauge theory

Localisation observed in the deconfined phase in many pure gauge systems

• SU(3) in 3+1D [Kovács, Vig (2018, 2020)] and 2+1D [MG (2019)]

- ▶ first order (3+1D)/second order (2+1D) thermal phase transition
- λ_c vanishes at T_c (actually jumping in 3+1D [Kovács (2021)])
- Anderson transition is second order (3+1D)/BKT (2+1D)

Localisation and deconfinement - pure gauge theory

Localisation observed in the deconfined phase in many pure gauge systems

• SU(3) + trace deformation [Bonati et al. (2021)]

$$S_{\mathrm{td}} = S_{\mathrm{SU}(3)} + h \sum_{\vec{x}} |\mathrm{tr} P(\vec{x})|^2$$

- ▶ first order "reconfining" transition at fixed T > T_c as deformation parameter h increased
- λ_c vanishes at $h_c \simeq 0.1$

Localisation and deconfinement - pure gauge theory

Localisation observed in the deconfined phase in many pure gauge systems

- \mathbb{Z}_2 in 2+1D [Baranka, MG (2021)]
 - simplest gauge theory with deconfinement transition
 - lowest modes "critical" in the confined phase, at β_c become
 - \rightarrow localised in the "physical" sector $\langle P \rangle > 0$
 - \rightarrow more delocalised in the "unphysical" sector $\langle P \rangle < 0$

Localisation and deconfinement - fermions

Localisation in systems with fermions displaying genuine phase transition

- SU(3) + $N_f = 3$ unimproved rooted staggered fermions on coarse $(N_t = 4)$ lattices [MG *et al.* (2017)]
 - first-order, (partially) deconfining and chirally restoring transition on the lattice [De Forcrand, Philipsen (2003)], does not survive continuum limit
 - localised modes appear at the transition

Localisation and deconfinement - fermions

Localisation in systems with fermions displaying genuine phase transition

• SU(3) + imaginary baryochemical potential $\hat{\mu}_{B,I}$ [Cardinali et al. (2022)]

- periodic partition function $Z(\hat{\mu}_{B,l} \pm 2\pi) = Z(\hat{\mu}_{B,l})$ [Roberge, Weiss (1986)]
- First-order lines above second-order Ising point at the Roberge-Weiss points T_{RW} = 208(5) MeV, μ̂_{B,I} = π mod 2π [Bonati et al. (2016)]
- λ_c vanishes at $T_{\rm RW}$

Localisation and deconfinement - fermions

Localisation in systems with fermions displaying genuine phase transition

• SU(3) + imaginary baryochemical potential $\hat{\mu}_{B,I}$ [Cardinali et al. (2022)]

- periodic partition function $Z(\hat{\mu}_{B,I} \pm 2\pi) = Z(\hat{\mu}_{B,I})$ [Roberge, Weiss (1986)]
- First-order lines above second-order Ising point at the Roberge-Weiss points T_{RW} = 208(5) MeV, μ̂_{B,I} = π mod 2π [Bonati et al. (2016)]
- λ_c vanishes at $T_{\rm RW}$

Relation with topological objects not fully understood, very partial picture <u>Instantons</u>:

- disordered medium scenario of QCD: localised modes from mixing of localised zero modes sitting on calorons (see [García-García, Osborn (2007)])
- localised near-zero topological modes [Dick et al. (2015)]
- low modes like (anti)selfdual sites and Polyakov loop phases $\phi \sim (\pi, \pi, 0)$: *L*-type monopoles? [Cossu, Hashimoto (2016)]

see also talk by S. Sharma

Topology and localisation

. . . but:

 not all localised modes are topological – at most 50% in pure gauge SU(3) [Kovács, Vig (2018)]

Figure from [Kovács, Vig (2018)]

- topology and P-loop fluctuations anticorrelated [Larsen *et al.* (2022)], not really alternative to sea/islands picture
- localisation also in models without instantons

Near-zero modes: see talks by T.G. Kovács, A. Alexandru, and I. Horváth

Matteo Giordano (ELTE)	Localisation of Dirac eigenmodes	ECT
------------------------	----------------------------------	-----

Topology and localisation

Thermal monopoles: ???

<u>Centre vortices</u>: strong correlation with localised modes...in $2+1D \mathbb{Z}_2$ pure gauge theory – not much else in the theory [work in progress]

Localisation and Goldstone modes

At m = 0 chiral symmetry broken if density of near-zero modes is finite... $\Sigma = -\langle \bar{\psi}\psi \rangle = \pi \rho(0^+) \neq 0 \implies \text{massless pions}$

... but if near-zero modes are localised up to $\lambda_c(m)$ [MG (2020)]

massless pions
$$\iff \pi \rho(0^+)(1-\xi) \neq 0$$
, $\xi = \lim_{m \to 0} \frac{2}{\pi} \arctan \frac{\lambda_c}{m}$

localisation alternative to Goldstone's theorem [McKane, Stone (1981), Golterman, Shamir (2003)] see also [Greensite *et al.* (2005,2006)]

Coordinate-space Ward identity:

$$\partial_{\mu} \langle \mathcal{A}^{a}_{\mu}(x) \mathcal{P}^{b}(0) \rangle = \delta^{(4)}(x) \delta^{ab} \Sigma + 2m \langle \mathcal{P}^{a}(x) \mathcal{P}^{b}(0) \rangle$$

 $\mathcal{A}^{a}_{\mu} = \bar{\psi}\gamma_{5}\gamma_{\mu}t^{a}\psi$: non-singlet axial-vector currents $\mathcal{P}^{a} = \bar{\psi}\gamma_{5}t^{a}\psi$: non-singlet pseudoscalar densities

Localisation and Goldstone modes

Explicit breaking:

$$2m\langle \mathcal{P}^{a}(x)\mathcal{P}^{a}(0)
angle\sim\int d\lambda\,rac{2m}{\lambda^{2}+m^{2}}\Big\langle\sum_{n}\delta(\lambda-\lambda_{n})\mathcal{O}_{n}(x)\mathcal{O}_{n}(0)\Big
angle$$
 $\mathcal{O}_{n}(x)=(\psi_{n}(x),\gamma^{5}\psi_{n}(x))$

$$\left|\left\langle\sum_{n}\delta(\lambda-\lambda_{n})\mathcal{O}_{n}(x)\mathcal{O}_{n}(0)\right\rangle\right|\leq\frac{T}{V}\left\langle\sum_{n}\delta(\lambda-\lambda_{n})\mathrm{IPR}_{n}\right\rangle\sim\rho(\lambda)V^{-\alpha(\lambda)}$$

Nonvanishing if $\alpha = 0$, $\frac{2m}{\lambda^2 + m^2} \to \pi \delta(\lambda) \Longrightarrow$ "anomalous remnant" in the chiral limit if nonzero density of localised near-zero modes is present

Momentum-space Ward identity:

$$-ik_{\mu}\mathcal{G}_{AP}(k) = \Sigma + 2m\mathcal{G}_{PP}(k) \underset{k \to 0}{=} \pi\rho(0^{+}) - \pi\rho_{\rm loc}(0^{+})\xi$$

Massless pole disappears if $\xi = 1 - \text{e.g.}$, $\lambda_c(m=0)$ finite \implies pions "melt" without chiral restoration?

Matteo Giordano (ELTE)

Summary and outlook

Low Dirac modes in gauge theories localised in high-T deconfined/chirally restored phase, delocalised in low-T confined/chirally broken phase

- Strong connection with deconfinement: localised low modes appear at the transition when genuine
- Polyakov loop ordering & fluctuations responsible for localisation (possibly connected to topology)
- In the chiral limit it can affect (even kill) Goldstone excitations

Open issues:

- Physical meaning of localisation still unclear
- Something is still missing in connecting localisation and deconfinement
 - systems without centre symmetry?
 - systems with separate deconfining and chiral transitions?
- Is low-mode localisation how deconfinement improves chiral symmetry properties?

References

- S. Borsányi et al., JHEP 09 (2010) 073
- G. Boyd et al., Nucl. Phys. B 469 (1996) 419
- H.T. Ding et al., Phys. Rev. Lett. 123 (2019) 062002
- L. Ujfalusi, M. Giordano, F. Pittler, T.G. Kovács and I. Varga, <u>Phys. Rev. D</u> 92 (2015) 094513
- P.W. Anderson, Phys. Rev. 109 (1958) 1492
- M. Giordano, T.G. Kovács and F. Pittler, Phys. Rev. Lett. 112 (2014) 102002
- T.G. Kovács and F. Pittler, Phys. Rev. D 86 (2012) 114515
- M. Giordano and T.G. Kovács, Universe 7 (2021) 194
- A.M. García-García and J.C. Osborn, Phys. Rev. D 75 (2007) 034503
- T.G. Kovács, Phys. Rev. Lett. 104 (2010) 031601
- V. Dick, F. Karsch, E. Laermann, S. Mukherjee and S. Sharma, Phys. Rev. D 91 (2015) 094504
- G. Cossu and S. Hashimoto, JHEP 06 (2016) 056
- L. Holicki, E.M. Ilgenfritz and L. von Smekal, PoS LATTICE2018 (2018) 180
- S.M. Nishigaki, M. Giordano, T.G. Kovacs and F. Pittler, <u>PoS</u> LATTICE2013 (2014) 018
- K. Slevin and T. Ohtsuki, Phys. Rev. Lett. 78 (1997) 4083; Phys. Rev. Lett. 82 (1999) 382; Y. Asada, K. Slevin and T. Ohtsuki, J. Phys. Soc. Jpn. 74 supplement (2005) 258
- F. Bruckmann, T.G. Kovács and S. Schierenberg, Phys. Rev. D 84 (2011) 034505
- M. Giordano, T.G. Kovács and F. Pittler, JHEP 04 (2015) 112

- M. Giordano, T.G. Kovács and F. Pittler, <u>JHEP</u> 06 (2016) 007
- M. Giordano, T.G. Kovács and F. Pittler, Phys. Rev. D 95 (2017) 074503
- T.G. Kovács and R.Á. Vig, Phys. Rev. D 97 (2018) 014502
- R.Á. Vig and T.G. Kovács, <u>Phys. Rev. D</u> 101 (2020) 094511
- M. Giordano, <u>JHEP</u> 05 (2019) 204
- T.G. Kovács, arXiv:2112.05454 [hep-lat]
- C. Bonati, M. Cardinali, M. D'Elia, M. Giordano and F. Mazziotti, Phys. Rev. D 103 (2021) 034506
- G. Baranka and M. Giordano, Phys. Rev. D 104 (2021) 054513
- M. Giordano, S.D. Katz, T.G. Kovács and F. Pittler, JHEP 02 (2017) 055
- P. de Forcrand and O. Philipsen, <u>Nucl. Phys. B</u> 673 (2003) 170
- M. Cardinali, M. D'Elia, F. Garosi and M. Giordano, Phys. Rev. D 105 (2022) 014506
- A. Roberge and N. Weiss, <u>Nucl. Phys. B</u> 275 (1986) 734
- C. Bonati et al., Phys. Rev. D 93 (2016) 074504
- C. Bonati et al., Phys. Rev. D 99 (2019) 014502
- R. N. Larsen, S. Sharma and E. Shuryak, <u>Phys. Rev. D</u> 105 (2022) L071501
- M. Giordano, <u>J. Phys. A</u> 54 (2021) 37
- A. McKane and M. Stone, <u>Ann. Phys.</u> 131 (1981) 36
- M. Golterman and Y. Shamir, <u>Phys. Rev. D</u> 68 (2003) 074501
- J. Greensite *et al.*, Phys. Rev. D 71 (2005) 114507; Phys. Rev. D 74 (2006) 094507