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One discovery

‣ Gravitational Waves (GWs)



Two new experimental windows

‣ Into the strong-field regime of General Relativity.

‣ Into the properties of quantum matter.



For example in Neutron Star mergers:

Often intertwined

quarks + gluons + gravity.



Both SM and BSM matter

• In some cases the matter is SM matter.
‣ E.g. neutron star mergers:



• In other cases the putative matter is BSM matter.

Both SM and BSM matter

• In some cases the matter is SM matter.

‣ E.g. cosmological phase transitions:

‣ E.g. neutron star mergers:



• Maximizing the discovery potential requires a theoretical 
understanding of quantum matter coupled to dynamical gravity.

• This matter is often strongly coupled and/or out of equilibrium. 

• Holography is usually the only first-principle tool.

Golden opportunity

• Today I will give an overview. 



• New holographic framework to include dynamical gravity 

Plan

• Outlook (if time permits)

‣ Baryogenesis 
‣ Primordial black holes
‣ (P)Reheating
‣ Thermal inflation

• Cosmological phase transitions
‣ Via bubble nucleation
‣ Spinodal instability 

• Holography

Ignore the expansion of the Universe
(no dynamical gravity)



Holography
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Holography

AdS5

Classical gravity in AdS5

Mink

Mink

QFT (no gravity)

Mink4  at the boundary of AdS5



Thermal physics = Black hole physics

Black Hole

Thermal State



The power of holography

QFT out
 of

equilibrium

Time evolution in 
classical gravity

For this talk you can think of AdS5 as a computational device



Disclaimer

• We do not know a gravity dual for each QFT. 

• All statements in this talk are for QFTs with a gravity dual.

• Since this is a large class the hope is to learn about generic properties. 



Cosmological Phase Transitions:
Bubble Nucleation



• First-order phase transitions are ubiquitous in Nature.

Cosmological phase transitions

• They can proceed via the nucleation of bubbles (e.g. boiling water).



• Do they occur in particle physics?

• Exciting: The Universe would have undergone it!

• Resulting bubbles could have produced GWs detectable by e.g. LISA.

Picture from Hindmarsh, Huber, Rummukainen & Weir ‘15

Cosmological phase transitions



• They do not happen within the Standard Model: 

Aoki, Endrodi, Fodor, Katz & Szabo ‘06

Cosmological phase transitions

‣ QCD transition is a crossover.

‣ EW transition is a crossover. Kajantie, Laine, Rummukainen & Shaposhnikov ’96
Laine & Rummukainen ‘98  

Rummukainen, Tsypin, Kajantie, Laine & Shaposhnikov ‘ 98

➡ The discovery of GWs from a cosmological phase 
transition would be the discovery of physics BSM.



• In fact, the EW transition is 1-st order even in minimal extensions of 
the SM.

Carena, Quiros & Wagner ‘96 
Delepine, Gerard, Felipe & Weyers’96 

Laine & Rummukainen ‘98 
Huber & Schmidt, ‘01 

Grojean, Servant & Wells, ’04
Huber, Konstandin, Prokopec & Schmidt ’06

Profumo, Ramsey-Musolf & Shaughnessy ‘07 
Barger, Langacker, McCaskey, Ramsey-Musolf & Shaughnessy ’07 

Laine, Nardini & Rummukainen ’12
Dorsch, Huber & No ‘13  

Damgaard, Haarr, O’Connell & Tranberg ‘15 

Cosmological phase transitions

• For this reason a lot of work has been devoted to this case. 

• And the signal could be seen at LISA. 



• Today I would like to broaden the focus and keep in mind that:

Cosmological phase transitions

‣ Phase transition could take place at T ≠ TEW

‣ Phase transition could take place in a dark sector with T ≠ TSM
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Figure 1. Free energy density (top) and energy density (bottom) of the four-dimensional gauge
theory dual to (2.1)-(2.4). States on the solid, blue curves are thermodynamically stable. States
on the dashed, brown curves are metastable. States on the dashed-dotted, red curve are unstable.
The black circle with T = 0.3908⇤ indicates the initial state on which we will focus in this paper.

brown curves are not globally preferred but they are locally thermodynamically stable,

i.e. they are metastable. This follows from the convexity of the free energy, which indicates

a positive specific heat

c
v

⌘ dE
dT

. (2.10)
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First-order phase transition

Stable

Stable

Metasatble

Unstable (spinodal)

Metasatble



• In terms of an effective potential:

First-order phase transition
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• In terms of an effective potential:

First-order phase transition
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• Once bubbles are nucleated, subsequent dynamics produces GWs. 

• GW spectrum is most sensitive to the bubble wall velocity.

• This parameter is also the most challenging to compute because the wall is 
out of equilibrium. Moore & Prokopec ’95

Bodeker & Moore ’17
Höche, Kozaczuk, Long, Turner & Y. Wang ‘20 

• But it can be computed in holographic models. 

Cosmological phase transitions

v



Strategy

• Set up initial conditions…

Stable phase Metastable phase



Strategy

• Set up initial conditions… and let it go.

Solve classical 
Einstein equations 

Read off boundary 
stress tensor



Bubble expansion
Bea, Casalderrey, Giannakopoulos, DM, Sanchez-Garitaonandia & Zilhao ’21

Bigazzi, Caddeo, Canneti & Cotrone ’21
Bea, Casalderrey, Giannakopoulos, Jansen, DM, Sanchez-Garitaonandia & Zilhao  ’22



Bubble wall velocity
Bea, Casalderrey, Giannakopoulos, DM, Sanchez-Garitaonandia & Zilhao ‘21

• First calculation of bubble wall at strong coupling (preliminary):

5

FIG. 6. Wall profiles for the same nucleation temper-
ature TN = TA but different initial conditions, each
shifted in z by a different amount to show that the
wall profile is independent of the initial conditions.
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FIG. 7. The points show the wall velocity for differ-
ent nucleation temperatures. The line is a fit as a
function of the ratio between the pressure difference
inside and outside the bubble and the energy density
outside the bubble.

We have explored the dependence of v

wall

on
different properties of the state A. The most sug-
gestive result is shown in Fig. 7, which seems
to imply a linear dependence on the ratio be-
tween the pressure difference inside and outside
the bubble and the energy density outside the
bubble. Heuristically, this relation seems plau-
sible given that the force trying to accelerate
the bubble increases with the pressure difference,
whereas the resisting force grows with the energy
density outside the bubble.

Changing the nucleation temperature also
changes the wall profile. However, we empiri-
cally observe that, up to a rescaling, the latter
is well approximated by the interface of a phase-

FIG. 8. Comparison between the exact wall profiles
for several nucleation temperatures with the results
of applying Eq. (4). The case TN = Tcrit corresponds
to a static, phase-separated configuration. The uni-
versal function f is shown in the inset.

separated configuration at T = T

crit

[41]. Specif-
ically, the wall profile for any T

N

is given by

E(z) = E
C

+ (E
D

� E
C

)f(⇤z) , (4)

where the energies of the C- and D-states depend
on T

N

but f is a T

N

-independent, universal func-
tion that only depends on the theory. In partic-
ular, taking T

C

= T

D

= T

crit

, this formula gives
the profile of the phase-separated configuration.
The latter is shown in Fig. 8, where we also com-
pare the exact wall profiles for several nucleation
temperatures with those predicted by Eq. (4).
Hydrodynamics. As the bubble expands the
gradients away from the wall get diluted. There-
fore the late-time state is expected to be well de-
scribed by ideal hydrodynamics everywhere ex-
cept in the region near the wall. This is confirmed
by Fig. 9, where we compare the exact result for
the longitudinal pressure with the prediction of
both ideal and first-order viscous hydrodynamics
at late times. We see that none of the hydrody-
namic curves describe the wall region correctly.
Nevertheless, at asymptotically late times the size
of the wall becomes negligible and we can use
ideal hydrodynamics to constraint the properties
of the bubble. At those times we can treat both
the wall and the interface between the D

boosted

-
and A-regions as discontinuities and assume that
the physics only depends on ⇠. Requiring that

out in

out

out



Bubble collisions and GW spectrum
Bea, Casalderrey, Giannakopoulos, Jansen, DM, Sanchez-Garitaonandia & Zilhao (in progress)

• Computing the GW spectrum requires considering collisions of bubbles.



Bubble collisions and GW spectrum
Bea, Casalderrey, Giannakopoulos, Jansen, DM, Sanchez-Garitaonandia & Zilhao (in progress)

• Computing the GW spectrum requires considering collisions of bubbles.

• In this description all the post-nucleation dynamics is included: 

‣ Bubble expansion. 
‣ Bubble collisions. 
‣ Sound modes.
‣ Turbulence. 
‣ Etc. 

• Discovery of new effects + verification of assumptions/approximations.

• Holography allows for a complete reformulation of the problem.

• Conventional treatment includes some assumptions + approximations.



Cosmological Phase Transitions:
Spinodal Instability



• If #d.o.f. is large then nucleation is suppressed. 
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Figure 1. Free energy density (top) and energy density (bottom) of the four-dimensional gauge
theory dual to (2.1)-(2.4). States on the solid, blue curves are thermodynamically stable. States
on the dashed, brown curves are metastable. States on the dashed-dotted, red curve are unstable.
The black circle with T = 0.3908⇤ indicates the initial state on which we will focus in this paper.
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Spinodal gravitational waves
Bea, Casalderrey, Giannakopoulos, Jansen, Krippendorf, DM, Sanchez-Garitaonandia & Zilhao  ‘21



• If #d.o.f. is large then nucleation is suppressed. 

Spinodal gravitational waves
Bea, Casalderrey, Giannakopoulos, Jansen, Krippendorf, DM, Sanchez-Garitaonandia & Zilhao  ‘21

• For example, in large-N gauge theory:
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• Under these circumstances the Universe enters the spinodal region.

Spinodal gravitational waves
Bea, Casalderrey, Giannakopoulos, Jansen, Krippendorf, DM, Sanchez-Garitaonandia & Zilhao  ‘21
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• In this phase small fluctuations grow exponentially.



Spinodal gravitational waves
Bea, Casalderrey, Giannakopoulos, Jansen, Krippendorf, DM, Sanchez-Garitaonandia & Zilhao  ‘21

• Holography can compute the evolution if we ignore the expansion of the Universe:



Spinodal gravitational waves
Bea, Casalderrey, Giannakopoulos, Jansen, Krippendorf, DM, Sanchez-Garitaonandia & Zilhao  ‘21

0.38 0.387 0.394 0.401 0.408

0.4

0.8

1.2

1.6

Figure 1. Free energy density (top) and energy density (bottom) of the four-dimensional gauge
theory dual to (2.1)-(2.4). States on the solid, blue curves are thermodynamically stable. States
on the dashed, brown curves are metastable. States on the dashed-dotted, red curve are unstable.
The black circle with T = 0.3908⇤ indicates the initial state on which we will focus in this paper.

brown curves are not globally preferred but they are locally thermodynamically stable,

i.e. they are metastable. This follows from the convexity of the free energy, which indicates

a positive specific heat

c
v

⌘ dE
dT

. (2.10)

– 5 –

• Final state in fixed box with constant total energy is phase separated state 
at constant T=Tc  :



Spinodal gravitational waves
Bea, Casalderrey, Giannakopoulos, Jansen, Krippendorf, DM, Sanchez-Garitaonandia & Zilhao  ‘21

• Fast redistribution of energy produces GWs. 
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Figure 19. GW total energy density over the entire evolution.

k
low

to verify this expected behaviour. Second, in our simulation we assumed that all

modes have equal amplitudes at t = 0. In order to simulate a stochastic background,

we are running several simulations in which the amplitudes of these fluctuations follow

a normal distribution. This Gaussianity is justified by the fact that, in a large-N gauge

theory, n-point connected correlators with n > 2 are 1/N -suppressed. In addition, since

the second central moment of the random distribution is also 1/N -suppressed with respect

to the square of the mean energy density, the variance of the Gaussian distribution is also

small in the large-N limit. This motivated our choice of a small �E/E = 10�4 in the

simulation presented here. Our preliminary results indicate that the stochasticity does not

change our conclusions at the qualitative level.

In our time evolution we assumed that the boundary geometry where the gauge theory

lives is flat space. In other words, we ignored the expansion of the Universe. The growth

rate of the unstable modes in the linear regime is comparable to the Hubble rate, see

Eq. (4.1), and the subsequent non-linear dynamics is slower, but not parametrically slower.

Therefore, while it is reasonable to expect that neglecting the expansion of the Universe may

provide a good approximation at the qualitative level, it would nevertheless be interesting

to perform more sophisticated simulations including the expansion of the Universe. If the

phase transition takes place in a hidden sector that is reacting to, but not a↵ecting the,

expansion of the Universe, then this would amount to fixing the boundary metric to be time-

– 40 –
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Spinodal gravitational waves

• Time and length scales are parametrically shorter than 1/H.

Bea, Casalderrey, Giannakopoulos, Jansen, DM, Sanchez-Garitaonandia & Zilhao (in progress)



Spinodal gravitational waves
Bea, Casalderrey, Giannakopoulos, Jansen, DM, Sanchez-Garitaonandia & Zilhao (in progress)

• Time and length scales are parametrically shorter than 1/H.

• The result is a very inhomogeneous state within a Hubble patch.

• Subsequent dynamics is very long and very non-linear. 



Holography with Dynamical 
Boundary Gravity



Dynamical gravity at the boundary

• So far we have studied:

Strongly-coupled quantum matter in Minkowski space



Dynamical gravity at the boundary

• But many problems require:

Strongly-coupled quantum matter + Classical dynamical gravity

‣ Cosmological phase transitions 
‣ Cosmological defects (cosmic strings, etc)
‣ Neutron star mergers
‣ (P)reheating
‣ Primordial black holes
‣ Etc

CERN-TH-2021-137

Holographic Evolution with Dynamical Boundary Gravity

Christian Ecker,1 Wilke van der Schee,2 David Mateos,3, 4 and Jorge Casalderrey-Solana3

1Institut für Theoretische Physik, Goethe Universität,
Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany

2Theoretical Physics Department, CERN, CH-1211 Genève 23, Switzerland
3Departament de Física Quàntica i Astrofísica & Institut de Ciències del Cosmos (ICC),

Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
4Institució Catalana de Recerca i Estudis Avançats (ICREA), Lluís Companys 23, Barcelona, Spain

Holography has provided valuable insights into the time evolution of strongly coupled gauge
theories in a fixed spacetime. However, this framework is insufficient if this spacetime is dynamical.
We present a novel scheme to evolve a four-dimensional, strongly interacting gauge theory coupled
to four-dimensional dynamical gravity in the semiclassical regime. We use holography to evolve the
quantum gauge theory stress tensor. The four-dimensional metric evolves according to the four-
dimensional Einstein equations coupled to the expectation value of the stress tensor. We focus
on Friedmann-Lemaître-Robertson-Walker geometries and evolve far-from-equilibrium initial states
that lead to asymptotically expanding, flat or collapsing Universes.

Keywords: gauge/gravity duality, QFT on curved background, cosmology, hydrodynamics

1. Introduction. Holography relates the quantum-
mechanical time evolution of a strongly coupled, four-
dimensional (4D) gauge theory to that of classical gravity
in a five-dimensional (5D) asymptotically anti de Sitter
(AAdS) spacetime. The power of this correspondence is
that it allows the use of classical gravity in 5D to tackle
otherwise intractable problems on the gauge theory side.

The spacetime where the gauge theory is formulated is
identified with the boundary of AAdS. We will refer to
its 4D metric as the “boundary metric”, and to the 5D
metric in AAdS as the “bulk metric”. In many applica-
tions of holography the boundary metric is taken to be
non-dynamical. For example, this metric is flat in the
holographic description of the quark-gluon plasma [1, 2]
or in applications to condensed matter systems [3–5]. Ap-
plications with a curved metric include gauge dynamics
in black hole backgrounds [6] or in de Sitter (dS) space
[7–12]. In all these cases the boundary metric influences,
but is unaffected by, the gauge theory dynamics. In other
words, the backreaction of the gauge degrees of freedom
on the metric is not included.

Despite its successes, this framework is insufficient if
the boundary metric is dynamical. This limits potential
applications of holography to cosmological defects, phase
transitions in the early Universe, neutron star mergers,
inflation, pre- or re-heating, cosmological instabilities,
etc. The purpose of this letter is to present a scheme
capable of evolving a strongly interacting 4D gauge the-
ory coupled to 4D dynamical gravity.

We are interested in the semiclassical gravity regime in
which the gauge theory is quantum mechanical but the
metric obeys the classical Einstein equations sourced by
the expectation value of the gauge theory stress tensor:

Rµ⌫ � 1

2

R gµ⌫ + ⇤ gµ⌫ = 8⇡G hTµ⌫i . (1)

All quantities in this equation, including Newton’s con-

AAdS

BoundaryHorizon

3

are given in terms of �
2

(t), a(t) and their deriva-
tives by expressions of the form

�n

⇣
M, a, ȧ, . . . , a(n),�

2

, ˙�
2

, . . . ,�
(n�2)

2

⌘
, (5a)

 n

⇣
M, a, ȧ, . . . , a(n)

⌘
. (5b)

There is a similar expression for the fall-off of
the five-dimensional bulk metric with one unde-
termined coefficient a

4

(t). The GTST depends
on the undetermined coefficients and on the scale
factor via expressions of the form [6]

E (a
4

,�
2

, a, ȧ, ä) , P (a
4

,�
2

, a, ȧ, ä) . (6)

gµ⌫(t
0

) , Tµ⌫(t
0

) (7)

We are now ready to discuss the implications
of the corner conditions, namely the fact that the
initial data in the bulk and at the boundary can-
not be specified independently. From the bulk
viewpoint, the function �(r, t

0

) and the coeffi-
cient a

4

(t
0

) at an initial time t
0

are free data.
Moreover, if this data and a(t

0

) are known, then
integration of the constraints coming from the
Einstein-scalar equations in the bulk determines
the rest of the five-dimensional fields on the ini-
tial time slice. Knowledge of �(r, t

0

) determines
the scale factor and all its derivatives at t

0

. This
follows from (5) together with the fall-off coeffi-
cients of other fields that we have not displayed.

derivatives of order n � 2 of the scale fac-
tor at t

0

in terms of M, a(t
0

) and ȧ(t
0

). Note
that this follows form the coefficients  n(t

0

) of
the logarithmic terms. In the absence of these
terms, the constraints imposed by the �n(t

0

) co-
efficients could be interpreted as constraints on
the derivatives of �

2

(t) at t
0

, leaving the scale
factor unconstrained.

However, the requirement that the boundary
metric obeys the Friedman equations (2) and the
continuity equation (3) with the stress tensor (??)
constraints the bulk initial data. The reason is
that these equations, together with the knowl-
edge of the �n(t) coefficients, determine all the
derivatives of the scale factor at any given time
t in terms of a(t), a

4

(t) and �
2

(t), and this then
fixes all the logarithmic terms in (4). To see how
these constraints arise, consider

For dynamical gravity there are a few technical
challenges.

We first show a sample evolution starting with
flat space initial conditions with a

4

= �100 with
several different values of ⇤. These lead to a late

time de Sitter state, a big crunch and an asymp-
totically Minkowski solution (Fig. 2). We also
show the temperatures, where it can be seen that
the temperature extracted from the horizons lag
behind by the temperature extracted from the en-
ergy density by a time of about 1/4T . This shift
in time is a feature of our particular (Eddington-
Finkelstein) time slicing in the bulk.

Secondly, we take the ⇤ = 0 solution (labelled
IC 1) and change the initial conditions to IC 2 and
IC 3 respectively by shifting ˜�

0

(z) by a constant
of +2 and -2.5. These values were maximised to
obtain a regular bulk solution as indicated by a
stable evolution with small constraint violation.
Indeed these two initial conditions initially show
far-from-equilibrium dynamics, with large pres-
sure anisotropies (see Fig. 4 middle). The zoom
of the late time dynamics shows that within a
time of approximately 1/T the solutions are well
described by viscous hydrodynamics, with an im-
portant contribution from the bulk viscosity.

DISCUSSION
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, a, ȧ, ä) , P (a
4

,�
2
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Secondly, we take the ⇤ = 0 solution (labelled
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(z) by a constant
of +2 and -2.5. These values were maximised to
obtain a regular bulk solution as indicated by a
stable evolution with small constraint violation.
Indeed these two initial conditions initially show
far-from-equilibrium dynamics, with large pres-
sure anisotropies (see Fig. 4 middle). The zoom
of the late time dynamics shows that within a
time of approximately 1/T the solutions are well
described by viscous hydrodynamics, with an im-
portant contribution from the bulk viscosity.
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FIG. 1. Penrose diagram of our evolution scheme. The di-
agonal blue lines are four-dimensional null slices in the bulk.
Each point on the vertical black line is a three-dimensional
spatial slice of the boundary spacetime.

stant G and a possible cosmological constant ⇤, refer
to the 4D boundary theory. Hereafter we will refer to
the gauge theory stress tensor simply as “the stress ten-
sor”. Since this is O(N2

) in the large-N limit, we as-
sume that G is O(N�2

) in order to have a finite back-
reaction. In the following we work with N -independent
quantities defined via the rescalings Tµ⌫ ! �

2⇡2/N2

�
Tµ⌫

and G ! �
N2/2⇡2

�
G.

The key point in the semicalssical regime is to deter-
mine the quantum-mechanical evolution of the stress ten-
sor, which must be done self-consistently in the presence
of the dynamical metric gµ⌫ . We use holography to deter-
mine this evolution (see Fig. 1). The initial state at time
t
0

is defined by the 5D fields on a bulk null slice, together
with the 4D metric on a boundary spatial slice. These
two sets of initial data must satisfy non-trivial “corner”
consistency conditions that we will analyse below (see
[13–16] for related discussions). For the moment, it suf-
fices to say that the leading term in the near-boundary
fall-off of the bulk metric must coincide with the bound-
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Holography has provided valuable insights into the time evolution of strongly coupled gauge
theories in a fixed spacetime. However, this framework is insufficient if this spacetime is dynamical.
We present a novel scheme to evolve a four-dimensional, strongly interacting gauge theory coupled
to four-dimensional dynamical gravity in the semiclassical regime. We use holography to evolve the
quantum gauge theory stress tensor. The four-dimensional metric evolves according to the four-
dimensional Einstein equations coupled to the expectation value of the stress tensor. We focus
on Friedmann-Lemaître-Robertson-Walker geometries and evolve far-from-equilibrium initial states
that lead to asymptotically expanding, flat or collapsing Universes.

Keywords: gauge/gravity duality, QFT on curved background, cosmology, hydrodynamics

1. Introduction. Holography relates the quantum-
mechanical time evolution of a strongly coupled, four-
dimensional (4D) gauge theory to that of classical gravity
in a five-dimensional (5D) asymptotically anti de Sitter
(AAdS) spacetime. The power of this correspondence is
that it allows the use of classical gravity in 5D to tackle
otherwise intractable problems on the gauge theory side.

The spacetime where the gauge theory is formulated is
identified with the boundary of AAdS. We will refer to
its 4D metric as the “boundary metric”, and to the 5D
metric in AAdS as the “bulk metric”. In many applica-
tions of holography the boundary metric is taken to be
non-dynamical. For example, this metric is flat in the
holographic description of the quark-gluon plasma [1, 2]
or in applications to condensed matter systems [3–5]. Ap-
plications with a curved metric include gauge dynamics
in black hole backgrounds [6] or in de Sitter (dS) space
[7–12]. In all these cases the boundary metric influences,
but is unaffected by, the gauge theory dynamics. In other
words, the backreaction of the gauge degrees of freedom
on the metric is not included.

Despite its successes, this framework is insufficient if
the boundary metric is dynamical. This limits potential
applications of holography to cosmological defects, phase
transitions in the early Universe, neutron star mergers,
inflation, pre- or re-heating, cosmological instabilities,
etc. The purpose of this letter is to present a scheme
capable of evolving a strongly interacting 4D gauge the-
ory coupled to 4D dynamical gravity.

We are interested in the semiclassical gravity regime in
which the gauge theory is quantum mechanical but the
metric obeys the classical Einstein equations sourced by
the expectation value of the gauge theory stress tensor:

Rµ⌫ � 1

2

R gµ⌫ + ⇤ gµ⌫ = 8⇡G hTµ⌫i . (1)

All quantities in this equation, including Newton’s con-
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There is a similar expression for the fall-off of
the five-dimensional bulk metric with one unde-
termined coefficient a

4

(t). The GTST depends
on the undetermined coefficients and on the scale
factor via expressions of the form [6]
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We are now ready to discuss the implications
of the corner conditions, namely the fact that the
initial data in the bulk and at the boundary can-
not be specified independently. From the bulk
viewpoint, the function �(r, t

0

) and the coeffi-
cient a

4

(t
0

) at an initial time t
0

are free data.
Moreover, if this data and a(t

0

) are known, then
integration of the constraints coming from the
Einstein-scalar equations in the bulk determines
the rest of the five-dimensional fields on the ini-
tial time slice. Knowledge of �(r, t

0

) determines
the scale factor and all its derivatives at t

0

. This
follows from (5) together with the fall-off coeffi-
cients of other fields that we have not displayed.

derivatives of order n � 2 of the scale fac-
tor at t

0

in terms of M, a(t
0

) and ȧ(t
0

). Note
that this follows form the coefficients  n(t

0

) of
the logarithmic terms. In the absence of these
terms, the constraints imposed by the �n(t

0

) co-
efficients could be interpreted as constraints on
the derivatives of �

2

(t) at t
0

, leaving the scale
factor unconstrained.

However, the requirement that the boundary
metric obeys the Friedman equations (2) and the
continuity equation (3) with the stress tensor (??)
constraints the bulk initial data. The reason is
that these equations, together with the knowl-
edge of the �n(t) coefficients, determine all the
derivatives of the scale factor at any given time
t in terms of a(t), a

4

(t) and �
2

(t), and this then
fixes all the logarithmic terms in (4). To see how
these constraints arise, consider

For dynamical gravity there are a few technical
challenges.

We first show a sample evolution starting with
flat space initial conditions with a

4

= �100 with
several different values of ⇤. These lead to a late

time de Sitter state, a big crunch and an asymp-
totically Minkowski solution (Fig. 2). We also
show the temperatures, where it can be seen that
the temperature extracted from the horizons lag
behind by the temperature extracted from the en-
ergy density by a time of about 1/4T . This shift
in time is a feature of our particular (Eddington-
Finkelstein) time slicing in the bulk.

Secondly, we take the ⇤ = 0 solution (labelled
IC 1) and change the initial conditions to IC 2 and
IC 3 respectively by shifting ˜�

0

(z) by a constant
of +2 and -2.5. These values were maximised to
obtain a regular bulk solution as indicated by a
stable evolution with small constraint violation.
Indeed these two initial conditions initially show
far-from-equilibrium dynamics, with large pres-
sure anisotropies (see Fig. 4 middle). The zoom
of the late time dynamics shows that within a
time of approximately 1/T the solutions are well
described by viscous hydrodynamics, with an im-
portant contribution from the bulk viscosity.
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M, a, ȧ, . . . , a(n)

⌘
. (5b)

There is a similar expression for the fall-off of
the five-dimensional bulk metric with one unde-
termined coefficient a

4

(t). The GTST depends
on the undetermined coefficients and on the scale
factor via expressions of the form [6]

E (a
4

,�
2
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ergy density by a time of about 1/4T . This shift
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of +2 and -2.5. These values were maximised to
obtain a regular bulk solution as indicated by a
stable evolution with small constraint violation.
Indeed these two initial conditions initially show
far-from-equilibrium dynamics, with large pres-
sure anisotropies (see Fig. 4 middle). The zoom
of the late time dynamics shows that within a
time of approximately 1/T the solutions are well
described by viscous hydrodynamics, with an im-
portant contribution from the bulk viscosity.
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The key point in the semicalssical regime is to deter-
mine the quantum-mechanical evolution of the stress ten-
sor, which must be done self-consistently in the presence
of the dynamical metric gµ⌫ . We use holography to deter-
mine this evolution (see Fig. 1). The initial state at time
t
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is defined by the 5D fields on a bulk null slice, together
with the 4D metric on a boundary spatial slice. These
two sets of initial data must satisfy non-trivial “corner”
consistency conditions that we will analyse below (see
[13–16] for related discussions). For the moment, it suf-
fices to say that the leading term in the near-boundary
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Example: Far-from-equilibrium FLRW Cosmology
Casalderrey, Ecker, DM & van der Schee ‘21
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Figure 3. Comparison between the holographic result for the pressure/energy ratio (blue) and
the ideal (red) and viscous (green) hydrodynamic approximations, for G = 1/750, Λ = 0 and three
different initial conditions.

respectively +2 and −1.5 to the subtracted φ(r, 0) of IC1. This leads to evolutions that
are just about numerically stable and hence as far from equilibrium as our code allows.
The blue curves are the holographic results. The difference with the viscous hydrodynamic
approximation [14] (green curves) at early times shows that the initial dynamics is far from
equilibrium. After ∆t ≈ 2 the evolution becomes well described by viscous hydrodynamics,
consistently with a hydrodynamization time of O(1/T ) [44, 45]. The comparison to ideal
hydrodynamics in the right panel of figure 3 shows that viscous corrections can be sizable
even at late times.

The initial far-from-equilibrium period leaves an imprint on the scale factor. This is
illustrated in figure 4, which shows the Hubble rate for the three evolutions of figure 3 as a
function of the redshift z(t) = a(tobs)/a(t) − 1. The time tobs is defined for each curve by the
physical condition that E reaches some late-time value, in this case E(tobs) = 0.02. At small
redshift the evolutions are equivalent as a consequence of the applicability of hydrodynamics
at late times shown in figure 3. In contrast, at large redshift the far-from-equilibrium
dynamics at early times leads to significantly different Hubble rates.

In figure 5 we show the analogous results for Λ = −0.5. The dashed, grey line marks
the time where E reaches a minimum and H = 0. The entire evolution is well described by
viscous hydrodynamics. As above, viscous corrections are non-negligible at late times.

Figure 6 illustrates the asymtotically dS case. At late times the backreaction is
dominated by the cosmological constant, which here includes a Casimir contribution that we
subtract in the plot. Once the expansion has diluted the energy density so that E−EdS ! H4,
the system is driven out of equilibrium and the hydrodynamic approximation ceases to be
valid, as expected from the non-backreacted analysis [14].

– 11 –



Outlook



Baryogenesis
Bea, Casalderrey, Giannakopoulos, Jansen, DM, Sanchez-Garitaonandia & Zilhao (in progress)

• Generating matter-antimatter asymmetry requires Sakharov’s 
conditions, which include departure from thermal equilibrium.



Baryogenesis
Bea, Casalderrey, Giannakopoulos, Jansen, DM, Sanchez-Garitaonandia & Zilhao (in progress)

• Generating matter-antimatter asymmetry requires Sakharov’s 
conditions, which include departure from thermal equilibrium.

• Bubble wall provides one mechanism.

• Holography allows us to study this non-perturbatively. 



Baryogenesis
Bea, Casalderrey, Giannakopoulos, Jansen, DM, Sanchez-Garitaonandia & Zilhao (in progress)

• Generating matter-antimatter asymmetry requires Sakharov’s 
conditions, which include departure from thermal equilibrium.

• Holography allows us to study this non-perturbatively. 

• The spinodal instability provides a new mechanism. 

• Bubble wall provides one mechanism.



Primordial black holes

• PBHs are natural dark matter candidates.

• Formation requires large density fluctuation.

• This is a hallmark of the spinodal dynamics:



(P)Reheating

• Involves out-of-equilibrium physics. 



(P)Reheating

• Involves out-of-equilibrium physics. 

• Can be modelled as: 

Strongly-coupled quantum matter + dynamical gravity + dynamical inflaton



Thermal inflation

• As the Universe rolls down the metastable branch, E+3P can become 
negative   ➞   accelerated expansion.

• If in addition P/E reaches -1  ➞  expansion is exponential. 

0.38 0.387 0.394 0.401 0.408

0.4

0.8

1.2

1.6

Figure 1. Free energy density (top) and energy density (bottom) of the four-dimensional gauge
theory dual to (2.1)-(2.4). States on the solid, blue curves are thermodynamically stable. States
on the dashed, brown curves are metastable. States on the dashed-dotted, red curve are unstable.
The black circle with T = 0.3908⇤ indicates the initial state on which we will focus in this paper.

brown curves are not globally preferred but they are locally thermodynamically stable,

i.e. they are metastable. This follows from the convexity of the free energy, which indicates

a positive specific heat

c
v

⌘ dE
dT

. (2.10)
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• In our model this does or does not happen depending on the parameters.
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Figure 6. E (top), E + 3P (middle) and P/E (bottom) for the four-dimensional gauge theory
dual to (2.1)-(2.3) with the choice of parameters �

M

= 0.8,�
Q

= 10. (Plots reproduced from [42].)
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Figure 7. E (top), E + 3P (middle) and P/E (bottom) for the four-dimensional gauge theory
dual to (2.1)-(2.3) with the choice of parameters �

M

= 0.64,�
Q

= 10. Note that the region close to
T
s

is smooth, not a cusp, as shown by the insets. (Plots reproduced from [42].)
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Figure 8. E (top), E + 3P (middle) and P/E (bottom) for the four-dimensional gauge theory
dual to (2.1)-(2.3) with the choice of parameters �

M

= 0.5797,�
Q

= 10. (Plots reproduced from
[42].)
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Thank you!


