NuclearScience Computing CenteratCCNU

Chiral properties of QCD in strong magnetic fields

- Heng-Tong Ding Central China Normal University
- HTD, S.-T. Li, A. Tomiya, X.-D. Wang, Y. Zhang, Phys.Rev.D 104 (2021) 1, 014505 HTD, S.-T. Li, J.-H. Liu, X.-D. Wang, Phys.Rev.D 105 (2022) 3, 034514
 - Topology, Flux Tubes and Holographic Models May 23⁻27, 2022, ECT*

Outline

- QCD in strong magnetic fields at zero temperature HTD, S.-T. Li, A. Tomiya, X.-D. Wang, Y. Zhang, PRD 104 (2021) 014505
 - Gell-Mann-Oakes-Renner relation
 - Masses of neutral and charged pseudoscalar mesons
- QCD in strong magnetic fields at nonzero temperature
 - Intrinsic connection between (inverse) magnetic catalysis and screening masses of neutral pseudo scalar mesons via Ward-Takahashi identity

HTD, S.-T. Li, J.-H. Liu, X.-D. Wang, PRD 105 (2022)034514

2 /25

Chiral condensate always increases as eB at $T < T_{pc}$ Reduction of T_{pc} associated with inverse magnetic catalysis?

Bali et al., JHEP02(2012)044

See recent reviews e.g. G. Cao, arXiv:2103.00456 Andersen et al., Rev. Mod. Phys. 88(2016)02001

IMC and reduction of T_{pc} : Not necessarily connected

Gell-Mann-Oakes-Renner relation

M. Gell-Mann, R. J. Oakes, and B. Renner, Phys. Rev. 175, 2195 (1968), J. Gasser and H. Leutwyler, Nucl. Phys. B 250, 465 (1985)

Explicit chiral symmetry breaking $(m_u + m_d) \left(\langle \bar{\psi} \psi \rangle \right)$

Spontaneous chira

- (& point-like) pions from LO ChPT

$$\left< \begin{array}{c} \left< u + \left< \overline{\psi} \psi \right> u \right) \end{array} = 2 f_{\pi}^2 M_{\pi}^2 \left(1 - \delta_{\pi} \right)$$

At physical symmetry breaking for magnitude $\delta_{\pi} \sim 6\%$

• At T=0, in the weak magnetic field the 2-flavor GMOR relation holds true for chiral

Shushpanov and Smilga, PLB402(1997)351

• At eB = 1 = 0, additional pion decay constants appear due to a nonzero pion-tovacuum transition via the vector electroweak current Fayazbakhsh & Sadooghi, PRD 88(2013)065030 Bali et al., PRL121(2018)072001 Coppola et al., PRD.99 (2019)0540312

Lattice setup HTD et al., arXiv:2008.00493,2104.06843

- Symanzik-improved gauge action with HISQ fermions
- I = 0: mostly 32³x96 lattices, with a=0.117 fm (a⁻¹=0.17 GeV), m_I/m_s = 1/10 $(M_{\pi} = 220 \text{ MeV})$
- In our setup f_{π} = 96.93(2) MeV, f_{K} = 112.50(2) MeV, f_{K}/f_{π} = 1.1606(3)
 - Magnetic field along z direction is quantized as $eB = \frac{6\pi N_b}{N_r N_u} a^{-2}$
 - ◆ Magnetic flux: N_b=0,1,2,3,4,6,8,10,12,16,20,24,32,48 & 64
 - ◆ 0 ≤ eB ≤ 3.35 GeV² (~70 M_{π}^2)

+ T=/=0: Fixed scale approach to nonzero T up to 281 MeV

FLAG 2019: At physical mass point f_{π} = 92.1(6) MeV, f_{K} =110.1(5) MeV, f_{K}/f_{π} =1.1917(37)

6 /25

60 40 50 0 10 20 30 $M^{2}(B)-M^{2}(B=0)$ [GeV²] 0.6 0.5 LLLф 0.4 Open points: $32^3 \times 96$ ф Filled point: $40^3 \times 96$ 0.3 Ι 0.2 4 A 0.1 Ŧ 0 🖄 0.5 2.5 1.5 2 3 0 $eB[GeV^2]$

In contrast to Quenched QCD results where M increases monotonously with eB Bali et al., PRD 97, 034505 (2018) Luschevskaya et al, PLB 761 (2016) 393

Not point particles anymore at eB>0.3 GeV² ! Effects from dynamic quarks?

Masses and decay constants of neutral pseudo scalar mesons

Mass of neutral pseudo scalar meson decreases with eB

Decay constants of neutral pseudo scalar meson increases with eB

qB scaling of up and down quark components of M_{π^0} , f_{π^0} and chiral condensates

$$q_u = \frac{2}{3}e$$

 \mathcal{O}_u and \mathcal{O}_d agree at the same value of $|qB| = |q_u B_u| = |q_d B_d|$

$$q_d = -\frac{1}{3}e$$

qB scaling of up and down quark components of M_{π^0} , f_{π^0} and chiral condensates

The qB scaling of these quantities originates from pi0 correlation function

 \mathcal{O}_{μ} and \mathcal{O}_{d} agree at the same value of $|\mathbf{q}\mathbf{B}| = |q_{\mu}B_{\mu}| = |q_{d}B_{d}|$

UV divergence of chiral condensate $(m_u + m_d) \left(\langle \bar{\psi}\psi \rangle_u + \langle \bar{\psi}\psi \rangle_d \right) = 2f_\pi^2 M_\pi^2 \left(1 - \delta_\pi\right)$

UV-divergence term dominates by the linear-in-quark-mass term

$$\langle \bar{\psi}\psi \rangle_{q,UV-div} = rac{v_f}{2} \left(rac{\pi}{a}
ight)^2 rac{1}{(2\pi)^2} m_q + rac{v_f}{2} ln(rac{am_q}{2\pi}) rac{1}{(2\pi)^2} m_q^3.$$

Commonly used methods to get rid of the UV-divergence part

Subtracted chiral condensate: $\langle \psi' \rangle$

$$\psi\rangle_{sub} = \langle \bar{\psi}\psi\rangle_l - \frac{m_l}{m_s}\langle \bar{\psi}\psi\rangle_s \quad \mathbf{X}$$

Zero T/eB subtraction: $\langle \bar{\psi}\psi \rangle_{UVfree} = \langle \bar{\psi}\psi \rangle_l (eB \neq 0) - \langle \bar{\psi}\psi \rangle_l (eB = 0)$ X

1.5 $= \int_{0}^{\infty} \frac{4m_{l}\rho}{\lambda^{2} + m_{l}^{2}} \,\mathrm{d}\lambda$

()

0.5

0

HTD, S.-T. Li, S. Mukherjee, A. Tomiya, X.-D. Wang, Y. Zhang, Phys. Rev. Lett. 126 (2021) 082001

A complete Eigenvalue spectrum

UV-free chiral condensate

$$\langle \bar{\psi}\psi\rangle_{sub} \equiv \langle \bar{\psi}\psi\rangle_l - \frac{m_l}{m_s}\langle \bar{\psi}\psi\rangle_s = \int_0^\infty \frac{2m_l\left(m_s^2 - m_l^2\right)\rho}{(\lambda^2 + m_l^2)(\lambda^2 + r_l^2)}$$

 $\lambda_{cut}^{\rm UV} \in [0.12, 0.36]$

Corrections to Gell-Mann-Oakes-Renner relation

$$4m_u \ \langle \bar{\psi}\psi \rangle_u = 2f_{\pi^0_u}^2 M_{\pi^0_u}^2 \left(1 - \delta_{\pi^0_u}\right) 4m_d \ \langle \bar{\psi}\psi \rangle_d = 2f_{\pi^0_d}^2 M_{\pi^0_d}^2 \left(1 - \delta_{\pi^0_d}\right).$$

 $(m_u + m_d) \left(\langle \bar{\psi}\psi \rangle_u + \langle \bar{\psi}\psi \rangle_d \right) = 2f_\pi^2 M_\pi^2 \left(1 - \delta_\pi\right)$

$|\delta_i|$ is less than 6%

Summary for T=0 results

(Inverse) magnetic catalysis at $T \neq 0$

 $\Delta \Sigma_{ud}(B,T) = \frac{m_u + m_d}{2M_\pi^2 f_\pi^2} \sum_{f=u,d} \left(\langle \bar{\psi}\psi \rangle_f(B,T) - \langle \bar{\psi}\psi \rangle_f(0,T) \right) \qquad \Delta \Sigma_s(B,T) = \frac{m_d + m_s}{2M_\nu^2 f_\nu^2} \left(\langle \bar{\psi}\psi \rangle_s(B,T) - \langle \bar{\psi}\psi \rangle_s(0,T) \right)$

Both IMC and MC are observed in $\Delta \Sigma_{ud}$ See similar results of $\Delta \Sigma_{ud}$ in e.g. Bali et al., PRD86(2012)071502

HTD, S.-T. Li, J.-H. Liu, X.-D. Wang, Phys.Rev.D 105 (2022) 3, 034514

Only MC is observed in $\Delta \Sigma_s$

 $\Delta \Sigma_{ud}(B,T) = \frac{m_u + m_d}{2M_\pi^2 f_\pi^2} \sum_{f=u,d} \left(\langle \bar{\psi}\psi \rangle_f(B,T) - \langle \bar{\psi}\psi \rangle_f(0,T) \right)$

The transition temperature T_{pc} always decreases as eB increases

T_{pc} determined from inflection points of $\Delta \Sigma_{ud}$ and $\Delta \Sigma_{s}$

$$\Delta \Sigma_s(B,T) = \frac{m_d + m_s}{2M_K^2 f_K^2} (\langle \bar{\psi}\psi \rangle_s(B,T) - \langle \bar{\psi}\psi \rangle_s(0,$$

Chiral condensates v.s. screening masses of neutral PS mesons

Ward Identity:
$$\left\langle O \frac{\delta S_{\text{QCD}}}{\delta \alpha^j(x)} \right\rangle = \left\langle \frac{\delta O}{\delta \alpha^j(x)} \right\rangle$$

At nonzero magnetic field: $D_{\mu} \rightarrow \tilde{D}_{\mu} =$

Consider Ø as a pseudoscalar operator, and integrate the WI over space-time:

Hadron susceptibility: Integral of spatial correlation function

Screening mass M_H :

$$\left| \frac{1}{c} \right\rangle$$

$$= \partial_{\mu} - igG_{\mu} - ieA_{\mu}Q^{3}, \quad Q^{3} = \frac{1}{6}\sigma^{0} + \frac{1}{2}\sigma^{3} = \frac{1}{6}\mathbf{1} + t$$

$$\left(\overline{\langle \bar{\psi}\psi \rangle}_{u} + \langle \bar{\psi}\psi \rangle_{d} = (m_{u} + m_{d})\chi_{\pi^{0}} \\ \langle \bar{\psi}\psi \rangle_{d} + \langle \bar{\psi}\psi \rangle_{s} = (m_{d} + m_{s})\chi_{K^{0}} \\ \langle \bar{\psi}\psi \rangle_{s} = m_{s}\chi_{\eta^{0}_{s\bar{s}}} \right)^{\text{HTD et}}_{\text{PRD 2022}}$$
See also cases
$$\langle \bar{\psi}\psi \rangle_{s} = m_{s}\chi_{\eta^{0}_{s\bar{s}}}$$

$$\chi_H = \int \mathrm{d}z \, G_H(z)$$

 $\lim_{z \to \infty} G_H(z) = A_H e^{-M_H z}$

Numerical demonstration of the integrated Ward Identities

HTD, S.-T. Li, A. Tomiya, X.-D. Wang, Y. Zhang, Phys.Rev.D 104 (2021) 1, 014505 HTD, S.-T. Li, J.-H. Liu, X.-D. Wang, Phys.Rev.D 105 (2022) 3, 034514

Connection between screening masses and chiral condensates

$$\lim_{z \to \infty} G_{\pi^0}(z) = A_{\pi^0} e^{-M_{\pi^0} z}, \quad \langle \bar{\psi} \psi \rangle_u +$$

Complex non-monotonous behavior consistent with chiral condensates

 $\langle \bar{\psi}\psi \rangle_d = (m_u + m_d) \chi_{\pi^0}, \quad \chi_{\pi^0} = \int \mathrm{d}z \, G_{\pi^0}(z)$

Heavier mesons less affected by eB

Screening masses of neutral pseudoscalar mesons

Sea and valence contributions to correlation functions

$$G_H(B,T,z) = \frac{\int_0^{1/T} \mathrm{d}\tau \int \mathrm{d}y \int \mathrm{d}x}{Z(B,T)} \int \mathcal{D}U \, e^{-S_g} \times \prod_{f=u,d,s} \det M(U,q_f B,m_f) \, \mathcal{G}_{f_1 f_2}(B,\mathbf{x}),$$

Valence effects to the correlation function:

$$G_{H}^{\text{val}}(B,T,z) = \frac{\int_{0}^{1/T} \mathrm{d}\tau \int \mathrm{d}y \int \mathrm{d}x}{Z(B=0,T)} \int \mathcal{D}U \, e^{-S_{g}} \times \prod_{f=u,d,s} \det M(U,q_{f}B=0,m_{f}) \, \mathcal{G}_{f_{1}f_{2}}(B,z)$$

effects to the correlation function:
$$\overset{\text{ea}}{H}(B,T,z) = \frac{\int_{0}^{1/T} \mathrm{d}\tau \int \mathrm{d}y \int \mathrm{d}x}{Z(B,T)} \int \mathcal{D}U \, e^{-S_{g}} \times \prod_{f=u,d,s} \det M(U,q_{f}B,m_{f}) \, \mathcal{G}_{f_{1}f_{2}}(B=0,\mathbf{x})$$

Se Se

$$G_{H}^{\text{val}}(B,T,z) = \frac{\int_{0}^{1/T} d\tau \int dy \int dx}{Z(B=0,T)} \int \mathcal{D}U \, e^{-S_{g}} \times \prod_{f=u,d,s} \det M(U,q_{f}B=0,m_{f}) \, \mathcal{G}_{f_{1}f_{2}}(B,\mathbf{x})$$
ea effects to the correlation function:

$$G_{H}^{\text{sea}}(B,T,z) = \frac{\int_{0}^{1/T} d\tau \int dy \int dx}{Z(B,T)} \int \mathcal{D}U \, e^{-S_{g}} \times \prod_{f=u,d,s} \det M(U,q_{f}B,m_{f}) \, \mathcal{G}_{f_{1}f_{2}}(B=0,\mathbf{x})$$

Inspired by the techniques applied to chiral condensates: D'Elia PRD83(2011)114028, Bruckmann et al., JHEP 04(2013)112

Valence and sea contributions to screening masses

IMC or MC: competition between sea and valence effects

Valence effects: $M_{src} \downarrow MC$; Sea effects: $M_{src} \uparrow IMC$

Valence and sea contributions to screening masses

As long as sea effects exits, T_{pc} deceases as eB grows

Only sea effects affect T_{pc}

Summary for T≠0 results

Thanks for your attention!

Volume dependence at T=0

HTD, S.-T. Li, A. Tomiya, X.-D. Wang, Y. Zhang, Phys.Rev.D 104 (2021) 1, 014505

Contributions to pressure and energy density from individual hadrons in Hadron resonance gas model

HTD, S.-T. Li, Q. Shi, A. Tomiya, X.-D. Wang, Y. Zhang, arXiv: 2011.04870

