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It is now well understood using lattice gauge theory techniques that
the deconfinement transition in SU(3) gauge theory is a first order
phase transition with a Td ∼ 270 MeV. [G. Boyd et. al. 96].

In QCD with 2+1 dynamical quark flavors which transforms in the
fundamental representation of SU(3), the deconfinement transition
is a smooth crossover.

In addition, the chiral symmetry is also simultaneously restored.
The crossover temperature is known to unprecedented accuracy
156.5(1.5) MeV. [HotQCD collab. 18, F. Burger et. al. 18, Budapest-Wuppertal collab. 20]

Why do deconfinement and chiral symmetry restoration occur
simultaneously?

What is its microscopic origin?
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Relation between chiral symmetry and confinement

When chiral symmetry is restored

χ〈ψ̄τ2γ5ψ〉 − χ〈ψ̄γ5ψ〉 = 2 χ5,disc = 2 χdisc .

The topological susceptibility is related to this quantity
χt = m2 χdisc . [L. Giusti, G. C. Rossi, M. Testa, 04, HotQCD 1205.3535]
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[Fig. from Petreczky, Schadler, S.S. 16].
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Characterizing, χ
1/4
t (T ) ∼ (Tc/T )b

[Petreczky, Schadler, S.S. 16].

Abrupt change in slope b=1.496(73)

b=1.85(15) Dilute instanton gas

[See also C. Bonati et. al., 15, 18, Borsanyi et. al., 18, F. Burger et. al, 18 ]
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Topology and the lattice

The analytic formula for a single Q = 1 instanton (caloron) is valid
in R4 (R3 × S1).
[A. A. Belavin, A. M. Polyakov, A. S. Schwartz and Yu. S. Tyupkin, 75, Harrington & Shepard, 78 ].

Lattice is a 4-dimensional torus. Gauge theories on a torus is
extremely rich [t’Hooft, 80]. The unstable Q = 1 self-dual solution on a
torus [Braam & van Baal, 89] goes over to the usual caloron solution when
the three space dimensions goes to infinity.

On sufficiently large volume lattices one recovers the usual caloron
solutions. [ A. Gonzalez-Arroyo & P. van Baal, 99].

Compactifying QCD on a large torus does not make the instantons
disappear. The topological fluctuations still exist and produce
instantons as the boundary effects are sub-dominant.
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Understanding the topological constituents

Instantons were shown to cause color-confinement in 2+1 D
[Polyakov, 77].

In 3+1 D the potential is not long-ranged to ensure confinement.

Interacting ensemble of instanton (liquid) explains many properties
related to chiral symmetry breaking. [Shuryak, 82, Shuryak & Schaefer 96].

At finite T , instantons characterized by the holonomy and Q.
[Gross, Pisarski, Yaffe, 83].

Immediately above Tc , a range of temperature where the Polyakov
loop (at spatial infinity) has non-trivial eigenvalues.
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Topology at finite temperature

It was proposed that instantons can dissociate into
components in a dense regime which could explain quark
confinement. [C. G. Callan, Jr., R. F. Dashen and D. J. Gross, 77].

Instantons with a non-trivial holonomy dissociate into dyons
with non-trivial color electric +magnetic charges.
[Kraan & van Baal, 98, Lee & Lu, 98].

For SU(Nc) gauge theories each instanton have Nc such dyon
constituents.

Topological charge of a dyon = 1/Nc of the instanton.

Dyons can directly interact with the holonomy potential. It
can drive towards the confining values? [Diakonov, 2006]
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Do dyons really exist? If yes, how to identify them and find its
density. [Garcia-Perez et. al., 99, Gattringer, 02, Ilgenfritz, Mueller-Preussker et. al., 13, 15].

How robust is the identification of the dyons?

Can we identify different species of dyons in the hot QCD
medium.

Can there be a semi-classical description of dyons?

How to convincingly show the connection between topological
fluctuations and confinement without relying on dyons,
vortices,...[For other approaches see talk by D. Leinweber]
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Dyon-zero modes in SU(3): A typical case

Holonomy L = 1
3Tr ei diag(µ1,µ2,µ3) → the action of the i − th dyon

action is characterized by µi+1 − µi .

The zero mode of Dirac operator with b.c ψ(t + β) = eiφψ(t) have
a normalizable solution for ith-dyon background if φ ε [µi+1 − µi ]
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Dyon zero modes in SU(3)

The density at any spacetime point x is:

ρ(x) = − 1

4π2
∂2
µfx(φ, φ) ,

where[(
1

i
∂φ − τ

)2

+ r2(x , φ) +
3∑

m=1

δ(φ− µm)
|xm − xm+1|

2π

]
fx = δ(φ−φ′) .

distances between center of the m-th and (m + 1)-th dyon given as
xm − xm+1 where m = 1, 2, 3.

r2(x , φ) = r2
m(x), φ ∈ [µm, µm+1] is the distance between the

observation point x and the center of the m-th dyon.
[A. Gonzalez-Arroyo et. al. Phys.Rev. D60 (1999) 031901]
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Numerical set-up

We use 2+1 flavor Möbius domain wall fermion configurations
with physical quark mass+ Iwasaki gauge action [HotQCD collab. 14].

Chiral pseudo-critical Tc = 155± 9 MeV.

Lattice size 323 × 8 which implies spatial volumes 4/mπ.

Use overlap fermions to detect the zero-modes due to an
exact index theorem.

The GW relation and the matrix-sign function achieved with a
precision 10−10.

Configurations are smooth enough → the topological charge
measured using fermion and bosonic definitions
match [V. Dick et. al. 16].

For simplicity we focus on |Q| = 1 configurations.
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Snapshot of QCD vacuum at ∼ 1.1Tc

Angle=π

Angle=−π/3

Angle=+π/3

Peak position shifts → Instanton-dyons?

R. Larsen, S.S., E. Shuryak, Phys. Lett. B. 794, 2019.
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Snapshot of QCD vacuum at ∼ 1.1Tc

Angle=−π/3,−π/3, π

The fermion zero modes insensitive to temporal periodicity phase
→ Instanton-dyon or caloron?
R. Larsen, S.S., E. Shuryak, Phys. Lett. B. 794, 2019, PRD, 2020.
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Comparing with the semi-classical theory

Analytic solutions of the instanton-dyons are known
[Kraan & van Baal, Lee and Lu, 98].

Choose an initial trial value of Polyakov loop → Fit it to analytic
profiles assuming a weakly interacting ensemble of dyons
[ R. Larsen, S.S., E. Shuryak, 20 ]
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What do Dirac near-zero modes tell us?

L-dyon-pairs are rarer and only those which are near-by appear
at high T as expected.

R. Larsen, S.S., E. Shuryak, PRD 2020.
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What do Dirac near-zero modes tell us?

M-dyons appear for all separations!

R. Larsen, S.S., E. Shuryak, PRD 2020.
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What do Dirac near-zero modes tell us?
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Characterizing the instanton-dyons
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R. Larsen, S.S., E. Shuryak, PRD 2020.
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Understanding the nature of dyon-interactions at 1.2 Tc

For non-interacting dyons

P(~xi ) = diag
[
ei2πµi−1 , eiπ(µi+µi+1), eiπ(µi+µi+1)

]

〈Re[Tr[P(|x-x 0|)]]〉/3

〈Im[Tr[P(|x-x 0|)]]〉/3

0.0 0.5 1.0 1.5 2.0
-0.4

-0.2

0.0

0.2

0.4

T|x-x 0|

Non-interacting L-dyons 1
Nc
〈Re TrP〉 = −1

3 , Im TrP = 0

R. Larsen, S.S., E. Shuryak, PRD(L) 2022.
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Understanding the nature of dyon-interactions at 1.2 Tc

The M-dyons are strongly interacting. Do not follow the
usual non-interacting expectations
1
Nc
〈Re TrP〉 = 1

6 ,
1
Nc
〈Im TrP〉 = ± 1√

12
.

〈Re[Tr[P(|x-x 0|)]]〉/3

〈Im[Tr[P(|x-x 0|)]]〉/3

0.0 0.5 1.0 1.5 2.0
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-0.2

0.0
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0.4

T|x-x 0|

R. Larsen, S.S., E. Shuryak, PRD(L) 2022.
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Correlation between topological & Polyakov loop
fluctuations at 1.1 Tc

P(~x) ρ(~x)
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Correlation between topological & Polyakov loop
fluctuations at 1.1 Tc

The most localized flutuation of the P. loop coincides with zero mode

R. Larsen, S.S., E. Shuryak, PRD(L) 2022.
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Correlation between topological & Polyakov loop
fluctuations
C (∆P , ρ) = 1

3

∫
d3~x ρ(~x)

[
TrP(~x)− 〈TrP(~x)〉

]
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Summary

Lattice techniques which are essential for obtaining bulk
thermodynamic properties of gauge theories are now giving us
more insights about its microscopic constituents.

In QCD with physical quark masses just above Tc , the
topological fluctuations repel strongly the short-distance
fluctuations of the Polyakov loop.

There are tantalizing hints that instanton-dyons may play a
role → now it is possible to identify the different species, their
separation and interactions.
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