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Figure 2: Untwisted Action

Figure 3: Untwisted Action again

Figure 4: Twisted Action
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Figure 10.2: Integration of SA curves (in red) starting from U0 as well as from a gauge-transformed config-
uration UG

0
, both belonging to the critical manifold M0 (in black). The thimble is pictorially represented

with a bowl emanating from M0. The gauge transformation G connecting U(t) and UG(t) is shown in green.
The same gauge transformation connects U0 and UG

0
in the critical manifold M0.

the nG Takagi vectors of H(S;U0) with zero Takagi value62 and N+

U0
M0 spanned by the n+ Takagi vectors

of H(S;U0) with positive Takagi value. The number of such vectors is n+ = n� nG, with n = V d(N2 � 1)
the total number of degrees of freedom and nG = V (N2 � 1) the number of gauge degrees of freedom, which
means that n+ = V (d � 1)(N2 � 1). We can easily compute the Takagi vectors {vG(i)} spanning TUG

0
J0

given the Takagi vectors {v(i)} spanning TU0J0. Consider a couple of configurations U(t0) and UG(t0) with
|ci| ⌧ 1, so that they are close to M0, that is63
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The previous considerations lead to setting UG
µ̂ (n; t0) = G(n)Uµ̂(n; t0)G†(n+ µ̂), which imply

62Directions tangent to M0 at U0 represent infinitesimal gauge transformations around U0.
63We generically take |ci| ⌧ 1 in order not to leave TUJ0 while leaving the critical point U . This condition is automatically

ensured for directions corresponding to �i > 0: for these directions ci = nie�it0 with t0 ! �1, so that we can safely take
ni = O(1). For directions corresponding to �i = 0, however, the coefficients ci have to be taken small explicitly.
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I teach students that it is better to regard real functions as restrictions 
to the real axis of (analytic) complex functions rather than regarding 
complex functions as extensions of real functions to complex plane …

As annoyed as we can be of complex actions (and the sign problem), we 
always have to surrender to the complex plane as the real arena for the 
study of phase diagrams…

We will look at a couple of examples of interesting physics going on in the complex 
plane. 


We will be concerned with Lefschetz Thimbles (doing better that what we had been 
able to do previously) and Lattice QCD at imaginary values of the baryonic chemical 
potential. 


A unifying tool will be ( multi-point ) Padè analysis.



very general (semiclassical) arguments, this contribu-
tion is expected to be more and more enhanced in the
thermodynamic limit. At a more fundamental level, the
regularization of a field theory on the dominant thimble
defines a local quantum field theory with exactly the same
symmetries, the same number of degrees of freedom
(belonging to the same representations of the symmetry
groups) and the same local interactions as the original
theory. Moreover, the perturbative expansion on the dom-
inant thimble is exactly the same computed in standard
perturbation theory in the original formulation. Quite
interestingly, in the case of the relativistic Bose gas this
approximation proved to work very well [7]. The Bose gas
was of course only one success. Needless to say, if the
dominant thimble dominance hypothesis held true for a
wide range of theories, that would be a major success:
numerical simulations for thimble regularization would be
in the end not that difficult. The Thirring model was shown
to be a (first) counterexample: in this case the dominant
thimble does not capture the (complete) correct result [8,9].
This was a major motivation for the exploration of alter-
native formulations somehow inspired by thimbles. The
idea of deforming the original domain of integration is
indeed a very general one (from this point of view the
complexification of the degrees of freedom is quite an
obvious thing to do). Alternatives to thimble regularization
were put forward, e.g., the holomorphic flow [9] or various
definitions of sign-optimized manifolds, possibly selected
by deep-learning techniques [10–12]; for a recent, nice
review of most of these ideas see [13].
In this work we want to explore the idea of performing

Taylor expansions on Lefschetz thimbles. All in all, the
main idea is to compute Taylor expansions in different
regions of the parameter space of a given theory, namely
around points where only the dominant thimble contributes
to the result one is interested in. This could seem somehow
a lucky scenario, but we argue that this can quite often be
the case. Through multiple expansions these (different,
disjoint) regions can be bridged and in this way multi-
thimbles simulations can be circumvented. This bridging
can most effectively be obtained via Padé approximants.
The question then should be: “Can we trust this bridging?”
The answer is yes if we can prove that we are going through
a legitimate analytic continuation. Needless to say, working
with Taylor expansions we are aiming at a control on
analytic contributions to the result and we will be blind to
any nonperturbative effect in the expansion parameter.1

Most noticeably, in the simple examples we preliminarily
discuss in this work, we show that we can have a very good
control on the analytic structure (and singularities) of the
results. We stress that this good control is coming from

multiple Taylor expansions at different points (in the end,
different values for the chemical potential) and Padé
approximants. While all this is discussed in the framework
of (and motivated by) thimble regularization, it is important
to recognize in what we do an overall strategy that does not
apply only to this regularization. This is in a sense a
strategy which can go well beyond thimbles.
The paper is organized in a such a way that a minimal

prior knowledge of the subject is assumed. In Sec. II we
collect the basics of thimble regularization; in particular, we
define what a thimble decomposition is and we mention a
couple of approaches to multiple thimbles simulations
we have been testing in the last few years; the main
content of the section is the focus on Stokes phenomena.
Section III contains the basic description of the computa-
tional method we propose together with a discussion of
preliminary results for a couple of theories, which (while
admittedly simple) are supposed to be valuable prototypes.
Conclusions IV are meant to recognize to which extent
the strategy we discuss can go beyond the application to
thimble regularization.

II. THIMBLE DECOMPOSITION AND STOKES
PHENOMENA: A STORY OF CONTINUITY

AND DISCONTINUITIES

A. Basics of thimble decomposition
and basic multiple thimbles computations

Let us summarize the general problem by writing

hOi ¼ Z−1
Z

dxe−SðxÞOðxÞ ð1aÞ

¼
P

σnσe
−iSIðpσÞ

R
J σ

dze−SRðzÞOðzÞeiωðzÞ
P

σnσe
−iSIðpσÞ

R
J σ

dze−SRðzÞeiωðzÞ
ð1bÞ

¼
P

σnσe
−iSIðpσÞZσhOeiωiσP

σnσe
−iSIðpσÞZσheiωiσ

ð1cÞ

It is assumed that SðxÞ ¼ SRðxÞ þ iSIðxÞ. x stands collec-
tively for the real degrees of freedom of our original
problem and z for the degrees of freedom that are the
complexification of the latter. (1) is the original formulation
of the problem, while (1b) is the thimble decomposition as
expected from Lefschetz/Picard theory. pσ are critical
points where ∂zS ¼ 0. The thimbles J σ attached to each
critical point are the union of all the steepest ascent paths
(SA) which are the solutions of

d
dt

zi ¼
∂S̄
∂z̄i

stemming from a given critical point (initial condition).
Both numerator and denominator (i.e., the partition func-
tion) of (1a) are rewritten as a linear combination of

1We stress that the nonperturbative effects we are talking about
are not the ones in the coupling constant, i.e., the ones we are
most often concerned with.
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The question then should be: “Can we trust this bridging?”
The answer is yes if we can prove that we are going through
a legitimate analytic continuation. Needless to say, working
with Taylor expansions we are aiming at a control on
analytic contributions to the result and we will be blind to
any nonperturbative effect in the expansion parameter.1

Most noticeably, in the simple examples we preliminarily
discuss in this work, we show that we can have a very good
control on the analytic structure (and singularities) of the
results. We stress that this good control is coming from

multiple Taylor expansions at different points (in the end,
different values for the chemical potential) and Padé
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tional method we propose together with a discussion of
preliminary results for a couple of theories, which (while
admittedly simple) are supposed to be valuable prototypes.
Conclusions IV are meant to recognize to which extent
the strategy we discuss can go beyond the application to
thimble regularization.
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A. Basics of thimble decomposition
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It is assumed that SðxÞ ¼ SRðxÞ þ iSIðxÞ. x stands collec-
tively for the real degrees of freedom of our original
problem and z for the degrees of freedom that are the
complexification of the latter. (1) is the original formulation
of the problem, while (1b) is the thimble decomposition as
expected from Lefschetz/Picard theory. pσ are critical
points where ∂zS ¼ 0. The thimbles J σ attached to each
critical point are the union of all the steepest ascent paths
(SA) which are the solutions of
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stemming from a given critical point (initial condition).
Both numerator and denominator (i.e., the partition func-
tion) of (1a) are rewritten as a linear combination of

1We stress that the nonperturbative effects we are talking about
are not the ones in the coupling constant, i.e., the ones we are
most often concerned with.
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very general (semiclassical) arguments, this contribu-
tion is expected to be more and more enhanced in the
thermodynamic limit. At a more fundamental level, the
regularization of a field theory on the dominant thimble
defines a local quantum field theory with exactly the same
symmetries, the same number of degrees of freedom
(belonging to the same representations of the symmetry
groups) and the same local interactions as the original
theory. Moreover, the perturbative expansion on the dom-
inant thimble is exactly the same computed in standard
perturbation theory in the original formulation. Quite
interestingly, in the case of the relativistic Bose gas this
approximation proved to work very well [7]. The Bose gas
was of course only one success. Needless to say, if the
dominant thimble dominance hypothesis held true for a
wide range of theories, that would be a major success:
numerical simulations for thimble regularization would be
in the end not that difficult. The Thirring model was shown
to be a (first) counterexample: in this case the dominant
thimble does not capture the (complete) correct result [8,9].
This was a major motivation for the exploration of alter-
native formulations somehow inspired by thimbles. The
idea of deforming the original domain of integration is
indeed a very general one (from this point of view the
complexification of the degrees of freedom is quite an
obvious thing to do). Alternatives to thimble regularization
were put forward, e.g., the holomorphic flow [9] or various
definitions of sign-optimized manifolds, possibly selected
by deep-learning techniques [10–12]; for a recent, nice
review of most of these ideas see [13].
In this work we want to explore the idea of performing

Taylor expansions on Lefschetz thimbles. All in all, the
main idea is to compute Taylor expansions in different
regions of the parameter space of a given theory, namely
around points where only the dominant thimble contributes
to the result one is interested in. This could seem somehow
a lucky scenario, but we argue that this can quite often be
the case. Through multiple expansions these (different,
disjoint) regions can be bridged and in this way multi-
thimbles simulations can be circumvented. This bridging
can most effectively be obtained via Padé approximants.
The question then should be: “Can we trust this bridging?”
The answer is yes if we can prove that we are going through
a legitimate analytic continuation. Needless to say, working
with Taylor expansions we are aiming at a control on
analytic contributions to the result and we will be blind to
any nonperturbative effect in the expansion parameter.1

Most noticeably, in the simple examples we preliminarily
discuss in this work, we show that we can have a very good
control on the analytic structure (and singularities) of the
results. We stress that this good control is coming from

multiple Taylor expansions at different points (in the end,
different values for the chemical potential) and Padé
approximants. While all this is discussed in the framework
of (and motivated by) thimble regularization, it is important
to recognize in what we do an overall strategy that does not
apply only to this regularization. This is in a sense a
strategy which can go well beyond thimbles.
The paper is organized in a such a way that a minimal

prior knowledge of the subject is assumed. In Sec. II we
collect the basics of thimble regularization; in particular, we
define what a thimble decomposition is and we mention a
couple of approaches to multiple thimbles simulations
we have been testing in the last few years; the main
content of the section is the focus on Stokes phenomena.
Section III contains the basic description of the computa-
tional method we propose together with a discussion of
preliminary results for a couple of theories, which (while
admittedly simple) are supposed to be valuable prototypes.
Conclusions IV are meant to recognize to which extent
the strategy we discuss can go beyond the application to
thimble regularization.
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It is assumed that SðxÞ ¼ SRðxÞ þ iSIðxÞ. x stands collec-
tively for the real degrees of freedom of our original
problem and z for the degrees of freedom that are the
complexification of the latter. (1) is the original formulation
of the problem, while (1b) is the thimble decomposition as
expected from Lefschetz/Picard theory. pσ are critical
points where ∂zS ¼ 0. The thimbles J σ attached to each
critical point are the union of all the steepest ascent paths
(SA) which are the solutions of
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dt
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∂S̄
∂z̄i

stemming from a given critical point (initial condition).
Both numerator and denominator (i.e., the partition func-
tion) of (1a) are rewritten as a linear combination of

1We stress that the nonperturbative effects we are talking about
are not the ones in the coupling constant, i.e., the ones we are
most often concerned with.
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very general (semiclassical) arguments, this contribu-
tion is expected to be more and more enhanced in the
thermodynamic limit. At a more fundamental level, the
regularization of a field theory on the dominant thimble
defines a local quantum field theory with exactly the same
symmetries, the same number of degrees of freedom
(belonging to the same representations of the symmetry
groups) and the same local interactions as the original
theory. Moreover, the perturbative expansion on the dom-
inant thimble is exactly the same computed in standard
perturbation theory in the original formulation. Quite
interestingly, in the case of the relativistic Bose gas this
approximation proved to work very well [7]. The Bose gas
was of course only one success. Needless to say, if the
dominant thimble dominance hypothesis held true for a
wide range of theories, that would be a major success:
numerical simulations for thimble regularization would be
in the end not that difficult. The Thirring model was shown
to be a (first) counterexample: in this case the dominant
thimble does not capture the (complete) correct result [8,9].
This was a major motivation for the exploration of alter-
native formulations somehow inspired by thimbles. The
idea of deforming the original domain of integration is
indeed a very general one (from this point of view the
complexification of the degrees of freedom is quite an
obvious thing to do). Alternatives to thimble regularization
were put forward, e.g., the holomorphic flow [9] or various
definitions of sign-optimized manifolds, possibly selected
by deep-learning techniques [10–12]; for a recent, nice
review of most of these ideas see [13].
In this work we want to explore the idea of performing
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main idea is to compute Taylor expansions in different
regions of the parameter space of a given theory, namely
around points where only the dominant thimble contributes
to the result one is interested in. This could seem somehow
a lucky scenario, but we argue that this can quite often be
the case. Through multiple expansions these (different,
disjoint) regions can be bridged and in this way multi-
thimbles simulations can be circumvented. This bridging
can most effectively be obtained via Padé approximants.
The question then should be: “Can we trust this bridging?”
The answer is yes if we can prove that we are going through
a legitimate analytic continuation. Needless to say, working
with Taylor expansions we are aiming at a control on
analytic contributions to the result and we will be blind to
any nonperturbative effect in the expansion parameter.1

Most noticeably, in the simple examples we preliminarily
discuss in this work, we show that we can have a very good
control on the analytic structure (and singularities) of the
results. We stress that this good control is coming from

multiple Taylor expansions at different points (in the end,
different values for the chemical potential) and Padé
approximants. While all this is discussed in the framework
of (and motivated by) thimble regularization, it is important
to recognize in what we do an overall strategy that does not
apply only to this regularization. This is in a sense a
strategy which can go well beyond thimbles.
The paper is organized in a such a way that a minimal

prior knowledge of the subject is assumed. In Sec. II we
collect the basics of thimble regularization; in particular, we
define what a thimble decomposition is and we mention a
couple of approaches to multiple thimbles simulations
we have been testing in the last few years; the main
content of the section is the focus on Stokes phenomena.
Section III contains the basic description of the computa-
tional method we propose together with a discussion of
preliminary results for a couple of theories, which (while
admittedly simple) are supposed to be valuable prototypes.
Conclusions IV are meant to recognize to which extent
the strategy we discuss can go beyond the application to
thimble regularization.
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It is assumed that SðxÞ ¼ SRðxÞ þ iSIðxÞ. x stands collec-
tively for the real degrees of freedom of our original
problem and z for the degrees of freedom that are the
complexification of the latter. (1) is the original formulation
of the problem, while (1b) is the thimble decomposition as
expected from Lefschetz/Picard theory. pσ are critical
points where ∂zS ¼ 0. The thimbles J σ attached to each
critical point are the union of all the steepest ascent paths
(SA) which are the solutions of
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stemming from a given critical point (initial condition).
Both numerator and denominator (i.e., the partition func-
tion) of (1a) are rewritten as a linear combination of
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very general (semiclassical) arguments, this contribu-
tion is expected to be more and more enhanced in the
thermodynamic limit. At a more fundamental level, the
regularization of a field theory on the dominant thimble
defines a local quantum field theory with exactly the same
symmetries, the same number of degrees of freedom
(belonging to the same representations of the symmetry
groups) and the same local interactions as the original
theory. Moreover, the perturbative expansion on the dom-
inant thimble is exactly the same computed in standard
perturbation theory in the original formulation. Quite
interestingly, in the case of the relativistic Bose gas this
approximation proved to work very well [7]. The Bose gas
was of course only one success. Needless to say, if the
dominant thimble dominance hypothesis held true for a
wide range of theories, that would be a major success:
numerical simulations for thimble regularization would be
in the end not that difficult. The Thirring model was shown
to be a (first) counterexample: in this case the dominant
thimble does not capture the (complete) correct result [8,9].
This was a major motivation for the exploration of alter-
native formulations somehow inspired by thimbles. The
idea of deforming the original domain of integration is
indeed a very general one (from this point of view the
complexification of the degrees of freedom is quite an
obvious thing to do). Alternatives to thimble regularization
were put forward, e.g., the holomorphic flow [9] or various
definitions of sign-optimized manifolds, possibly selected
by deep-learning techniques [10–12]; for a recent, nice
review of most of these ideas see [13].
In this work we want to explore the idea of performing

Taylor expansions on Lefschetz thimbles. All in all, the
main idea is to compute Taylor expansions in different
regions of the parameter space of a given theory, namely
around points where only the dominant thimble contributes
to the result one is interested in. This could seem somehow
a lucky scenario, but we argue that this can quite often be
the case. Through multiple expansions these (different,
disjoint) regions can be bridged and in this way multi-
thimbles simulations can be circumvented. This bridging
can most effectively be obtained via Padé approximants.
The question then should be: “Can we trust this bridging?”
The answer is yes if we can prove that we are going through
a legitimate analytic continuation. Needless to say, working
with Taylor expansions we are aiming at a control on
analytic contributions to the result and we will be blind to
any nonperturbative effect in the expansion parameter.1

Most noticeably, in the simple examples we preliminarily
discuss in this work, we show that we can have a very good
control on the analytic structure (and singularities) of the
results. We stress that this good control is coming from

multiple Taylor expansions at different points (in the end,
different values for the chemical potential) and Padé
approximants. While all this is discussed in the framework
of (and motivated by) thimble regularization, it is important
to recognize in what we do an overall strategy that does not
apply only to this regularization. This is in a sense a
strategy which can go well beyond thimbles.
The paper is organized in a such a way that a minimal

prior knowledge of the subject is assumed. In Sec. II we
collect the basics of thimble regularization; in particular, we
define what a thimble decomposition is and we mention a
couple of approaches to multiple thimbles simulations
we have been testing in the last few years; the main
content of the section is the focus on Stokes phenomena.
Section III contains the basic description of the computa-
tional method we propose together with a discussion of
preliminary results for a couple of theories, which (while
admittedly simple) are supposed to be valuable prototypes.
Conclusions IV are meant to recognize to which extent
the strategy we discuss can go beyond the application to
thimble regularization.
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It is assumed that SðxÞ ¼ SRðxÞ þ iSIðxÞ. x stands collec-
tively for the real degrees of freedom of our original
problem and z for the degrees of freedom that are the
complexification of the latter. (1) is the original formulation
of the problem, while (1b) is the thimble decomposition as
expected from Lefschetz/Picard theory. pσ are critical
points where ∂zS ¼ 0. The thimbles J σ attached to each
critical point are the union of all the steepest ascent paths
(SA) which are the solutions of
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stemming from a given critical point (initial condition).
Both numerator and denominator (i.e., the partition func-
tion) of (1a) are rewritten as a linear combination of

1We stress that the nonperturbative effects we are talking about
are not the ones in the coupling constant, i.e., the ones we are
most often concerned with.
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very general (semiclassical) arguments, this contribu-
tion is expected to be more and more enhanced in the
thermodynamic limit. At a more fundamental level, the
regularization of a field theory on the dominant thimble
defines a local quantum field theory with exactly the same
symmetries, the same number of degrees of freedom
(belonging to the same representations of the symmetry
groups) and the same local interactions as the original
theory. Moreover, the perturbative expansion on the dom-
inant thimble is exactly the same computed in standard
perturbation theory in the original formulation. Quite
interestingly, in the case of the relativistic Bose gas this
approximation proved to work very well [7]. The Bose gas
was of course only one success. Needless to say, if the
dominant thimble dominance hypothesis held true for a
wide range of theories, that would be a major success:
numerical simulations for thimble regularization would be
in the end not that difficult. The Thirring model was shown
to be a (first) counterexample: in this case the dominant
thimble does not capture the (complete) correct result [8,9].
This was a major motivation for the exploration of alter-
native formulations somehow inspired by thimbles. The
idea of deforming the original domain of integration is
indeed a very general one (from this point of view the
complexification of the degrees of freedom is quite an
obvious thing to do). Alternatives to thimble regularization
were put forward, e.g., the holomorphic flow [9] or various
definitions of sign-optimized manifolds, possibly selected
by deep-learning techniques [10–12]; for a recent, nice
review of most of these ideas see [13].
In this work we want to explore the idea of performing

Taylor expansions on Lefschetz thimbles. All in all, the
main idea is to compute Taylor expansions in different
regions of the parameter space of a given theory, namely
around points where only the dominant thimble contributes
to the result one is interested in. This could seem somehow
a lucky scenario, but we argue that this can quite often be
the case. Through multiple expansions these (different,
disjoint) regions can be bridged and in this way multi-
thimbles simulations can be circumvented. This bridging
can most effectively be obtained via Padé approximants.
The question then should be: “Can we trust this bridging?”
The answer is yes if we can prove that we are going through
a legitimate analytic continuation. Needless to say, working
with Taylor expansions we are aiming at a control on
analytic contributions to the result and we will be blind to
any nonperturbative effect in the expansion parameter.1

Most noticeably, in the simple examples we preliminarily
discuss in this work, we show that we can have a very good
control on the analytic structure (and singularities) of the
results. We stress that this good control is coming from

multiple Taylor expansions at different points (in the end,
different values for the chemical potential) and Padé
approximants. While all this is discussed in the framework
of (and motivated by) thimble regularization, it is important
to recognize in what we do an overall strategy that does not
apply only to this regularization. This is in a sense a
strategy which can go well beyond thimbles.
The paper is organized in a such a way that a minimal
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we have been testing in the last few years; the main
content of the section is the focus on Stokes phenomena.
Section III contains the basic description of the computa-
tional method we propose together with a discussion of
preliminary results for a couple of theories, which (while
admittedly simple) are supposed to be valuable prototypes.
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the strategy we discuss can go beyond the application to
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It is assumed that SðxÞ ¼ SRðxÞ þ iSIðxÞ. x stands collec-
tively for the real degrees of freedom of our original
problem and z for the degrees of freedom that are the
complexification of the latter. (1) is the original formulation
of the problem, while (1b) is the thimble decomposition as
expected from Lefschetz/Picard theory. pσ are critical
points where ∂zS ¼ 0. The thimbles J σ attached to each
critical point are the union of all the steepest ascent paths
(SA) which are the solutions of
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stemming from a given critical point (initial condition).
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very general (semiclassical) arguments, this contribu-
tion is expected to be more and more enhanced in the
thermodynamic limit. At a more fundamental level, the
regularization of a field theory on the dominant thimble
defines a local quantum field theory with exactly the same
symmetries, the same number of degrees of freedom
(belonging to the same representations of the symmetry
groups) and the same local interactions as the original
theory. Moreover, the perturbative expansion on the dom-
inant thimble is exactly the same computed in standard
perturbation theory in the original formulation. Quite
interestingly, in the case of the relativistic Bose gas this
approximation proved to work very well [7]. The Bose gas
was of course only one success. Needless to say, if the
dominant thimble dominance hypothesis held true for a
wide range of theories, that would be a major success:
numerical simulations for thimble regularization would be
in the end not that difficult. The Thirring model was shown
to be a (first) counterexample: in this case the dominant
thimble does not capture the (complete) correct result [8,9].
This was a major motivation for the exploration of alter-
native formulations somehow inspired by thimbles. The
idea of deforming the original domain of integration is
indeed a very general one (from this point of view the
complexification of the degrees of freedom is quite an
obvious thing to do). Alternatives to thimble regularization
were put forward, e.g., the holomorphic flow [9] or various
definitions of sign-optimized manifolds, possibly selected
by deep-learning techniques [10–12]; for a recent, nice
review of most of these ideas see [13].
In this work we want to explore the idea of performing

Taylor expansions on Lefschetz thimbles. All in all, the
main idea is to compute Taylor expansions in different
regions of the parameter space of a given theory, namely
around points where only the dominant thimble contributes
to the result one is interested in. This could seem somehow
a lucky scenario, but we argue that this can quite often be
the case. Through multiple expansions these (different,
disjoint) regions can be bridged and in this way multi-
thimbles simulations can be circumvented. This bridging
can most effectively be obtained via Padé approximants.
The question then should be: “Can we trust this bridging?”
The answer is yes if we can prove that we are going through
a legitimate analytic continuation. Needless to say, working
with Taylor expansions we are aiming at a control on
analytic contributions to the result and we will be blind to
any nonperturbative effect in the expansion parameter.1

Most noticeably, in the simple examples we preliminarily
discuss in this work, we show that we can have a very good
control on the analytic structure (and singularities) of the
results. We stress that this good control is coming from
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It is assumed that SðxÞ ¼ SRðxÞ þ iSIðxÞ. x stands collec-
tively for the real degrees of freedom of our original
problem and z for the degrees of freedom that are the
complexification of the latter. (1) is the original formulation
of the problem, while (1b) is the thimble decomposition as
expected from Lefschetz/Picard theory. pσ are critical
points where ∂zS ¼ 0. The thimbles J σ attached to each
critical point are the union of all the steepest ascent paths
(SA) which are the solutions of
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very general (semiclassical) arguments, this contribu-
tion is expected to be more and more enhanced in the
thermodynamic limit. At a more fundamental level, the
regularization of a field theory on the dominant thimble
defines a local quantum field theory with exactly the same
symmetries, the same number of degrees of freedom
(belonging to the same representations of the symmetry
groups) and the same local interactions as the original
theory. Moreover, the perturbative expansion on the dom-
inant thimble is exactly the same computed in standard
perturbation theory in the original formulation. Quite
interestingly, in the case of the relativistic Bose gas this
approximation proved to work very well [7]. The Bose gas
was of course only one success. Needless to say, if the
dominant thimble dominance hypothesis held true for a
wide range of theories, that would be a major success:
numerical simulations for thimble regularization would be
in the end not that difficult. The Thirring model was shown
to be a (first) counterexample: in this case the dominant
thimble does not capture the (complete) correct result [8,9].
This was a major motivation for the exploration of alter-
native formulations somehow inspired by thimbles. The
idea of deforming the original domain of integration is
indeed a very general one (from this point of view the
complexification of the degrees of freedom is quite an
obvious thing to do). Alternatives to thimble regularization
were put forward, e.g., the holomorphic flow [9] or various
definitions of sign-optimized manifolds, possibly selected
by deep-learning techniques [10–12]; for a recent, nice
review of most of these ideas see [13].
In this work we want to explore the idea of performing

Taylor expansions on Lefschetz thimbles. All in all, the
main idea is to compute Taylor expansions in different
regions of the parameter space of a given theory, namely
around points where only the dominant thimble contributes
to the result one is interested in. This could seem somehow
a lucky scenario, but we argue that this can quite often be
the case. Through multiple expansions these (different,
disjoint) regions can be bridged and in this way multi-
thimbles simulations can be circumvented. This bridging
can most effectively be obtained via Padé approximants.
The question then should be: “Can we trust this bridging?”
The answer is yes if we can prove that we are going through
a legitimate analytic continuation. Needless to say, working
with Taylor expansions we are aiming at a control on
analytic contributions to the result and we will be blind to
any nonperturbative effect in the expansion parameter.1

Most noticeably, in the simple examples we preliminarily
discuss in this work, we show that we can have a very good
control on the analytic structure (and singularities) of the
results. We stress that this good control is coming from

multiple Taylor expansions at different points (in the end,
different values for the chemical potential) and Padé
approximants. While all this is discussed in the framework
of (and motivated by) thimble regularization, it is important
to recognize in what we do an overall strategy that does not
apply only to this regularization. This is in a sense a
strategy which can go well beyond thimbles.
The paper is organized in a such a way that a minimal

prior knowledge of the subject is assumed. In Sec. II we
collect the basics of thimble regularization; in particular, we
define what a thimble decomposition is and we mention a
couple of approaches to multiple thimbles simulations
we have been testing in the last few years; the main
content of the section is the focus on Stokes phenomena.
Section III contains the basic description of the computa-
tional method we propose together with a discussion of
preliminary results for a couple of theories, which (while
admittedly simple) are supposed to be valuable prototypes.
Conclusions IV are meant to recognize to which extent
the strategy we discuss can go beyond the application to
thimble regularization.

II. THIMBLE DECOMPOSITION AND STOKES
PHENOMENA: A STORY OF CONTINUITY

AND DISCONTINUITIES

A. Basics of thimble decomposition
and basic multiple thimbles computations

Let us summarize the general problem by writing
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It is assumed that SðxÞ ¼ SRðxÞ þ iSIðxÞ. x stands collec-
tively for the real degrees of freedom of our original
problem and z for the degrees of freedom that are the
complexification of the latter. (1) is the original formulation
of the problem, while (1b) is the thimble decomposition as
expected from Lefschetz/Picard theory. pσ are critical
points where ∂zS ¼ 0. The thimbles J σ attached to each
critical point are the union of all the steepest ascent paths
(SA) which are the solutions of

d
dt

zi ¼
∂S̄
∂z̄i

stemming from a given critical point (initial condition).
Both numerator and denominator (i.e., the partition func-
tion) of (1a) are rewritten as a linear combination of

1We stress that the nonperturbative effects we are talking about
are not the ones in the coupling constant, i.e., the ones we are
most often concerned with.
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very general (semiclassical) arguments, this contribu-
tion is expected to be more and more enhanced in the
thermodynamic limit. At a more fundamental level, the
regularization of a field theory on the dominant thimble
defines a local quantum field theory with exactly the same
symmetries, the same number of degrees of freedom
(belonging to the same representations of the symmetry
groups) and the same local interactions as the original
theory. Moreover, the perturbative expansion on the dom-
inant thimble is exactly the same computed in standard
perturbation theory in the original formulation. Quite
interestingly, in the case of the relativistic Bose gas this
approximation proved to work very well [7]. The Bose gas
was of course only one success. Needless to say, if the
dominant thimble dominance hypothesis held true for a
wide range of theories, that would be a major success:
numerical simulations for thimble regularization would be
in the end not that difficult. The Thirring model was shown
to be a (first) counterexample: in this case the dominant
thimble does not capture the (complete) correct result [8,9].
This was a major motivation for the exploration of alter-
native formulations somehow inspired by thimbles. The
idea of deforming the original domain of integration is
indeed a very general one (from this point of view the
complexification of the degrees of freedom is quite an
obvious thing to do). Alternatives to thimble regularization
were put forward, e.g., the holomorphic flow [9] or various
definitions of sign-optimized manifolds, possibly selected
by deep-learning techniques [10–12]; for a recent, nice
review of most of these ideas see [13].
In this work we want to explore the idea of performing

Taylor expansions on Lefschetz thimbles. All in all, the
main idea is to compute Taylor expansions in different
regions of the parameter space of a given theory, namely
around points where only the dominant thimble contributes
to the result one is interested in. This could seem somehow
a lucky scenario, but we argue that this can quite often be
the case. Through multiple expansions these (different,
disjoint) regions can be bridged and in this way multi-
thimbles simulations can be circumvented. This bridging
can most effectively be obtained via Padé approximants.
The question then should be: “Can we trust this bridging?”
The answer is yes if we can prove that we are going through
a legitimate analytic continuation. Needless to say, working
with Taylor expansions we are aiming at a control on
analytic contributions to the result and we will be blind to
any nonperturbative effect in the expansion parameter.1

Most noticeably, in the simple examples we preliminarily
discuss in this work, we show that we can have a very good
control on the analytic structure (and singularities) of the
results. We stress that this good control is coming from

multiple Taylor expansions at different points (in the end,
different values for the chemical potential) and Padé
approximants. While all this is discussed in the framework
of (and motivated by) thimble regularization, it is important
to recognize in what we do an overall strategy that does not
apply only to this regularization. This is in a sense a
strategy which can go well beyond thimbles.
The paper is organized in a such a way that a minimal

prior knowledge of the subject is assumed. In Sec. II we
collect the basics of thimble regularization; in particular, we
define what a thimble decomposition is and we mention a
couple of approaches to multiple thimbles simulations
we have been testing in the last few years; the main
content of the section is the focus on Stokes phenomena.
Section III contains the basic description of the computa-
tional method we propose together with a discussion of
preliminary results for a couple of theories, which (while
admittedly simple) are supposed to be valuable prototypes.
Conclusions IV are meant to recognize to which extent
the strategy we discuss can go beyond the application to
thimble regularization.

II. THIMBLE DECOMPOSITION AND STOKES
PHENOMENA: A STORY OF CONTINUITY

AND DISCONTINUITIES

A. Basics of thimble decomposition
and basic multiple thimbles computations

Let us summarize the general problem by writing
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It is assumed that SðxÞ ¼ SRðxÞ þ iSIðxÞ. x stands collec-
tively for the real degrees of freedom of our original
problem and z for the degrees of freedom that are the
complexification of the latter. (1) is the original formulation
of the problem, while (1b) is the thimble decomposition as
expected from Lefschetz/Picard theory. pσ are critical
points where ∂zS ¼ 0. The thimbles J σ attached to each
critical point are the union of all the steepest ascent paths
(SA) which are the solutions of

d
dt

zi ¼
∂S̄
∂z̄i

stemming from a given critical point (initial condition).
Both numerator and denominator (i.e., the partition func-
tion) of (1a) are rewritten as a linear combination of

1We stress that the nonperturbative effects we are talking about
are not the ones in the coupling constant, i.e., the ones we are
most often concerned with.
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very general (semiclassical) arguments, this contribu-
tion is expected to be more and more enhanced in the
thermodynamic limit. At a more fundamental level, the
regularization of a field theory on the dominant thimble
defines a local quantum field theory with exactly the same
symmetries, the same number of degrees of freedom
(belonging to the same representations of the symmetry
groups) and the same local interactions as the original
theory. Moreover, the perturbative expansion on the dom-
inant thimble is exactly the same computed in standard
perturbation theory in the original formulation. Quite
interestingly, in the case of the relativistic Bose gas this
approximation proved to work very well [7]. The Bose gas
was of course only one success. Needless to say, if the
dominant thimble dominance hypothesis held true for a
wide range of theories, that would be a major success:
numerical simulations for thimble regularization would be
in the end not that difficult. The Thirring model was shown
to be a (first) counterexample: in this case the dominant
thimble does not capture the (complete) correct result [8,9].
This was a major motivation for the exploration of alter-
native formulations somehow inspired by thimbles. The
idea of deforming the original domain of integration is
indeed a very general one (from this point of view the
complexification of the degrees of freedom is quite an
obvious thing to do). Alternatives to thimble regularization
were put forward, e.g., the holomorphic flow [9] or various
definitions of sign-optimized manifolds, possibly selected
by deep-learning techniques [10–12]; for a recent, nice
review of most of these ideas see [13].
In this work we want to explore the idea of performing

Taylor expansions on Lefschetz thimbles. All in all, the
main idea is to compute Taylor expansions in different
regions of the parameter space of a given theory, namely
around points where only the dominant thimble contributes
to the result one is interested in. This could seem somehow
a lucky scenario, but we argue that this can quite often be
the case. Through multiple expansions these (different,
disjoint) regions can be bridged and in this way multi-
thimbles simulations can be circumvented. This bridging
can most effectively be obtained via Padé approximants.
The question then should be: “Can we trust this bridging?”
The answer is yes if we can prove that we are going through
a legitimate analytic continuation. Needless to say, working
with Taylor expansions we are aiming at a control on
analytic contributions to the result and we will be blind to
any nonperturbative effect in the expansion parameter.1

Most noticeably, in the simple examples we preliminarily
discuss in this work, we show that we can have a very good
control on the analytic structure (and singularities) of the
results. We stress that this good control is coming from

multiple Taylor expansions at different points (in the end,
different values for the chemical potential) and Padé
approximants. While all this is discussed in the framework
of (and motivated by) thimble regularization, it is important
to recognize in what we do an overall strategy that does not
apply only to this regularization. This is in a sense a
strategy which can go well beyond thimbles.
The paper is organized in a such a way that a minimal

prior knowledge of the subject is assumed. In Sec. II we
collect the basics of thimble regularization; in particular, we
define what a thimble decomposition is and we mention a
couple of approaches to multiple thimbles simulations
we have been testing in the last few years; the main
content of the section is the focus on Stokes phenomena.
Section III contains the basic description of the computa-
tional method we propose together with a discussion of
preliminary results for a couple of theories, which (while
admittedly simple) are supposed to be valuable prototypes.
Conclusions IV are meant to recognize to which extent
the strategy we discuss can go beyond the application to
thimble regularization.

II. THIMBLE DECOMPOSITION AND STOKES
PHENOMENA: A STORY OF CONTINUITY

AND DISCONTINUITIES

A. Basics of thimble decomposition
and basic multiple thimbles computations

Let us summarize the general problem by writing

hOi ¼ Z−1
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It is assumed that SðxÞ ¼ SRðxÞ þ iSIðxÞ. x stands collec-
tively for the real degrees of freedom of our original
problem and z for the degrees of freedom that are the
complexification of the latter. (1) is the original formulation
of the problem, while (1b) is the thimble decomposition as
expected from Lefschetz/Picard theory. pσ are critical
points where ∂zS ¼ 0. The thimbles J σ attached to each
critical point are the union of all the steepest ascent paths
(SA) which are the solutions of

d
dt

zi ¼
∂S̄
∂z̄i

stemming from a given critical point (initial condition).
Both numerator and denominator (i.e., the partition func-
tion) of (1a) are rewritten as a linear combination of

1We stress that the nonperturbative effects we are talking about
are not the ones in the coupling constant, i.e., the ones we are
most often concerned with.
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very general (semiclassical) arguments, this contribu-
tion is expected to be more and more enhanced in the
thermodynamic limit. At a more fundamental level, the
regularization of a field theory on the dominant thimble
defines a local quantum field theory with exactly the same
symmetries, the same number of degrees of freedom
(belonging to the same representations of the symmetry
groups) and the same local interactions as the original
theory. Moreover, the perturbative expansion on the dom-
inant thimble is exactly the same computed in standard
perturbation theory in the original formulation. Quite
interestingly, in the case of the relativistic Bose gas this
approximation proved to work very well [7]. The Bose gas
was of course only one success. Needless to say, if the
dominant thimble dominance hypothesis held true for a
wide range of theories, that would be a major success:
numerical simulations for thimble regularization would be
in the end not that difficult. The Thirring model was shown
to be a (first) counterexample: in this case the dominant
thimble does not capture the (complete) correct result [8,9].
This was a major motivation for the exploration of alter-
native formulations somehow inspired by thimbles. The
idea of deforming the original domain of integration is
indeed a very general one (from this point of view the
complexification of the degrees of freedom is quite an
obvious thing to do). Alternatives to thimble regularization
were put forward, e.g., the holomorphic flow [9] or various
definitions of sign-optimized manifolds, possibly selected
by deep-learning techniques [10–12]; for a recent, nice
review of most of these ideas see [13].
In this work we want to explore the idea of performing

Taylor expansions on Lefschetz thimbles. All in all, the
main idea is to compute Taylor expansions in different
regions of the parameter space of a given theory, namely
around points where only the dominant thimble contributes
to the result one is interested in. This could seem somehow
a lucky scenario, but we argue that this can quite often be
the case. Through multiple expansions these (different,
disjoint) regions can be bridged and in this way multi-
thimbles simulations can be circumvented. This bridging
can most effectively be obtained via Padé approximants.
The question then should be: “Can we trust this bridging?”
The answer is yes if we can prove that we are going through
a legitimate analytic continuation. Needless to say, working
with Taylor expansions we are aiming at a control on
analytic contributions to the result and we will be blind to
any nonperturbative effect in the expansion parameter.1

Most noticeably, in the simple examples we preliminarily
discuss in this work, we show that we can have a very good
control on the analytic structure (and singularities) of the
results. We stress that this good control is coming from

multiple Taylor expansions at different points (in the end,
different values for the chemical potential) and Padé
approximants. While all this is discussed in the framework
of (and motivated by) thimble regularization, it is important
to recognize in what we do an overall strategy that does not
apply only to this regularization. This is in a sense a
strategy which can go well beyond thimbles.
The paper is organized in a such a way that a minimal

prior knowledge of the subject is assumed. In Sec. II we
collect the basics of thimble regularization; in particular, we
define what a thimble decomposition is and we mention a
couple of approaches to multiple thimbles simulations
we have been testing in the last few years; the main
content of the section is the focus on Stokes phenomena.
Section III contains the basic description of the computa-
tional method we propose together with a discussion of
preliminary results for a couple of theories, which (while
admittedly simple) are supposed to be valuable prototypes.
Conclusions IV are meant to recognize to which extent
the strategy we discuss can go beyond the application to
thimble regularization.

II. THIMBLE DECOMPOSITION AND STOKES
PHENOMENA: A STORY OF CONTINUITY

AND DISCONTINUITIES

A. Basics of thimble decomposition
and basic multiple thimbles computations

Let us summarize the general problem by writing
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It is assumed that SðxÞ ¼ SRðxÞ þ iSIðxÞ. x stands collec-
tively for the real degrees of freedom of our original
problem and z for the degrees of freedom that are the
complexification of the latter. (1) is the original formulation
of the problem, while (1b) is the thimble decomposition as
expected from Lefschetz/Picard theory. pσ are critical
points where ∂zS ¼ 0. The thimbles J σ attached to each
critical point are the union of all the steepest ascent paths
(SA) which are the solutions of

d
dt

zi ¼
∂S̄
∂z̄i

stemming from a given critical point (initial condition).
Both numerator and denominator (i.e., the partition func-
tion) of (1a) are rewritten as a linear combination of

1We stress that the nonperturbative effects we are talking about
are not the ones in the coupling constant, i.e., the ones we are
most often concerned with.
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very general (semiclassical) arguments, this contribu-
tion is expected to be more and more enhanced in the
thermodynamic limit. At a more fundamental level, the
regularization of a field theory on the dominant thimble
defines a local quantum field theory with exactly the same
symmetries, the same number of degrees of freedom
(belonging to the same representations of the symmetry
groups) and the same local interactions as the original
theory. Moreover, the perturbative expansion on the dom-
inant thimble is exactly the same computed in standard
perturbation theory in the original formulation. Quite
interestingly, in the case of the relativistic Bose gas this
approximation proved to work very well [7]. The Bose gas
was of course only one success. Needless to say, if the
dominant thimble dominance hypothesis held true for a
wide range of theories, that would be a major success:
numerical simulations for thimble regularization would be
in the end not that difficult. The Thirring model was shown
to be a (first) counterexample: in this case the dominant
thimble does not capture the (complete) correct result [8,9].
This was a major motivation for the exploration of alter-
native formulations somehow inspired by thimbles. The
idea of deforming the original domain of integration is
indeed a very general one (from this point of view the
complexification of the degrees of freedom is quite an
obvious thing to do). Alternatives to thimble regularization
were put forward, e.g., the holomorphic flow [9] or various
definitions of sign-optimized manifolds, possibly selected
by deep-learning techniques [10–12]; for a recent, nice
review of most of these ideas see [13].
In this work we want to explore the idea of performing

Taylor expansions on Lefschetz thimbles. All in all, the
main idea is to compute Taylor expansions in different
regions of the parameter space of a given theory, namely
around points where only the dominant thimble contributes
to the result one is interested in. This could seem somehow
a lucky scenario, but we argue that this can quite often be
the case. Through multiple expansions these (different,
disjoint) regions can be bridged and in this way multi-
thimbles simulations can be circumvented. This bridging
can most effectively be obtained via Padé approximants.
The question then should be: “Can we trust this bridging?”
The answer is yes if we can prove that we are going through
a legitimate analytic continuation. Needless to say, working
with Taylor expansions we are aiming at a control on
analytic contributions to the result and we will be blind to
any nonperturbative effect in the expansion parameter.1

Most noticeably, in the simple examples we preliminarily
discuss in this work, we show that we can have a very good
control on the analytic structure (and singularities) of the
results. We stress that this good control is coming from

multiple Taylor expansions at different points (in the end,
different values for the chemical potential) and Padé
approximants. While all this is discussed in the framework
of (and motivated by) thimble regularization, it is important
to recognize in what we do an overall strategy that does not
apply only to this regularization. This is in a sense a
strategy which can go well beyond thimbles.
The paper is organized in a such a way that a minimal

prior knowledge of the subject is assumed. In Sec. II we
collect the basics of thimble regularization; in particular, we
define what a thimble decomposition is and we mention a
couple of approaches to multiple thimbles simulations
we have been testing in the last few years; the main
content of the section is the focus on Stokes phenomena.
Section III contains the basic description of the computa-
tional method we propose together with a discussion of
preliminary results for a couple of theories, which (while
admittedly simple) are supposed to be valuable prototypes.
Conclusions IV are meant to recognize to which extent
the strategy we discuss can go beyond the application to
thimble regularization.

II. THIMBLE DECOMPOSITION AND STOKES
PHENOMENA: A STORY OF CONTINUITY
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A. Basics of thimble decomposition
and basic multiple thimbles computations

Let us summarize the general problem by writing
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It is assumed that SðxÞ ¼ SRðxÞ þ iSIðxÞ. x stands collec-
tively for the real degrees of freedom of our original
problem and z for the degrees of freedom that are the
complexification of the latter. (1) is the original formulation
of the problem, while (1b) is the thimble decomposition as
expected from Lefschetz/Picard theory. pσ are critical
points where ∂zS ¼ 0. The thimbles J σ attached to each
critical point are the union of all the steepest ascent paths
(SA) which are the solutions of

d
dt

zi ¼
∂S̄
∂z̄i

stemming from a given critical point (initial condition).
Both numerator and denominator (i.e., the partition func-
tion) of (1a) are rewritten as a linear combination of

1We stress that the nonperturbative effects we are talking about
are not the ones in the coupling constant, i.e., the ones we are
most often concerned with.
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very general (semiclassical) arguments, this contribu-
tion is expected to be more and more enhanced in the
thermodynamic limit. At a more fundamental level, the
regularization of a field theory on the dominant thimble
defines a local quantum field theory with exactly the same
symmetries, the same number of degrees of freedom
(belonging to the same representations of the symmetry
groups) and the same local interactions as the original
theory. Moreover, the perturbative expansion on the dom-
inant thimble is exactly the same computed in standard
perturbation theory in the original formulation. Quite
interestingly, in the case of the relativistic Bose gas this
approximation proved to work very well [7]. The Bose gas
was of course only one success. Needless to say, if the
dominant thimble dominance hypothesis held true for a
wide range of theories, that would be a major success:
numerical simulations for thimble regularization would be
in the end not that difficult. The Thirring model was shown
to be a (first) counterexample: in this case the dominant
thimble does not capture the (complete) correct result [8,9].
This was a major motivation for the exploration of alter-
native formulations somehow inspired by thimbles. The
idea of deforming the original domain of integration is
indeed a very general one (from this point of view the
complexification of the degrees of freedom is quite an
obvious thing to do). Alternatives to thimble regularization
were put forward, e.g., the holomorphic flow [9] or various
definitions of sign-optimized manifolds, possibly selected
by deep-learning techniques [10–12]; for a recent, nice
review of most of these ideas see [13].
In this work we want to explore the idea of performing

Taylor expansions on Lefschetz thimbles. All in all, the
main idea is to compute Taylor expansions in different
regions of the parameter space of a given theory, namely
around points where only the dominant thimble contributes
to the result one is interested in. This could seem somehow
a lucky scenario, but we argue that this can quite often be
the case. Through multiple expansions these (different,
disjoint) regions can be bridged and in this way multi-
thimbles simulations can be circumvented. This bridging
can most effectively be obtained via Padé approximants.
The question then should be: “Can we trust this bridging?”
The answer is yes if we can prove that we are going through
a legitimate analytic continuation. Needless to say, working
with Taylor expansions we are aiming at a control on
analytic contributions to the result and we will be blind to
any nonperturbative effect in the expansion parameter.1

Most noticeably, in the simple examples we preliminarily
discuss in this work, we show that we can have a very good
control on the analytic structure (and singularities) of the
results. We stress that this good control is coming from

multiple Taylor expansions at different points (in the end,
different values for the chemical potential) and Padé
approximants. While all this is discussed in the framework
of (and motivated by) thimble regularization, it is important
to recognize in what we do an overall strategy that does not
apply only to this regularization. This is in a sense a
strategy which can go well beyond thimbles.
The paper is organized in a such a way that a minimal

prior knowledge of the subject is assumed. In Sec. II we
collect the basics of thimble regularization; in particular, we
define what a thimble decomposition is and we mention a
couple of approaches to multiple thimbles simulations
we have been testing in the last few years; the main
content of the section is the focus on Stokes phenomena.
Section III contains the basic description of the computa-
tional method we propose together with a discussion of
preliminary results for a couple of theories, which (while
admittedly simple) are supposed to be valuable prototypes.
Conclusions IV are meant to recognize to which extent
the strategy we discuss can go beyond the application to
thimble regularization.

II. THIMBLE DECOMPOSITION AND STOKES
PHENOMENA: A STORY OF CONTINUITY

AND DISCONTINUITIES

A. Basics of thimble decomposition
and basic multiple thimbles computations

Let us summarize the general problem by writing
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It is assumed that SðxÞ ¼ SRðxÞ þ iSIðxÞ. x stands collec-
tively for the real degrees of freedom of our original
problem and z for the degrees of freedom that are the
complexification of the latter. (1) is the original formulation
of the problem, while (1b) is the thimble decomposition as
expected from Lefschetz/Picard theory. pσ are critical
points where ∂zS ¼ 0. The thimbles J σ attached to each
critical point are the union of all the steepest ascent paths
(SA) which are the solutions of

d
dt

zi ¼
∂S̄
∂z̄i

stemming from a given critical point (initial condition).
Both numerator and denominator (i.e., the partition func-
tion) of (1a) are rewritten as a linear combination of

1We stress that the nonperturbative effects we are talking about
are not the ones in the coupling constant, i.e., the ones we are
most often concerned with.
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integrals computed on the thimbles attached to critical
points; the sum is formally extended to all of them, but the
coefficients nσ can be zero for possibly many critical
points. Actually nσ ¼ 0 for a critical point when the
associated unstable thimble (the union of the steepest
descent paths stemming from the critical point) does not
intersect the original integration manifold. While the
(constant) phase e−iSIðpσÞ is factored in front of each
integral, yet another phase enters the integrands. This is
the so-called residual phase [14] (eiω) which accounts for
the orientation of the thimbles with respect to the embed-
ding manifold.2 In (1c) hOi is rewritten by defining

hXiσ ≡
R
J σ

dze−SRX
R
J σ

dze−SR
≡

R
J σ

dze−SRX

Zσ
:

Stated in this way, the thimble decomposition is a linear
combination of expectation values computed on single
thimbles, with coefficients proportional to the Zσ . As a
result, multiple thimbles simulations amount to a given
prescription for obtaining, in one way or another, (a) the
contribution attached to each given thimble hOiσ contrib-
uting to the result and (b) the relative weights in (1c).
Actually, (b) turns out to be a harder task than (a). Despite
the difficulties, there are cases in which we could attempt
and succeed in multiple thimbles simulations. While these
are admittedly preliminary steps in an interesting direction,
they are worth mentioning, if only to appreciate the peculiar
circumstances under which they worked out.
There are cases in which not only it turns out that non-

null contributions come from a limited number of thimbles,
but also a few of the latter are related to each other due to
symmetries. One possible strategy in such cases is the one
which was successful for QCD in 0 þ 1 dimensions [15]. In
that case (due to a symmetry which is in place) the correct
result was obtained by taking into account only two
contributions according to

hOi ¼
hOeiωiσ1 þ αhOeiωiσ2
heiωiσ1 þ αheiωiσ2

: ð2Þ

(2) is yet another rewriting of the thimble decomposition.
All in all, all our ignorance of relative weights is in such a
case coded in one single parameter, i.e., α. The value of the
latter can be fixed assuming one known measurement as a
normalization point. We can then predict the value of other
observables. It is obvious that in such a way we give up the
hope of a first principles derivation of relative weights. This
is very much in the spirit of general frameworks for
(nonperturbative) renormalization. Quite interestingly, this

appears to be possible also in the framework of the Thirring
model [16].
It should be stressed that relative weights are quite easy

to obtain in a semiclassical approximation, which is also
referred to as the Gaussian approximation. This suggests
another strategy: one starts with the relative weights as
computed in such an approximation and then compute
corrections as the simulations proceeds. Once again, this is
not expected to work efficiently in every case. A case of
success was a minimal version of the so-called heavy dense
approximation for QCD [17]. Yet another proposal for
“reweighting Lefschetz Thimbles” was put forward in [18].

B. Deeper into the problem: Stokes phenomena

Multiple thimbles simulations are a hard problem and
solutions so far have been admittedly a partial success. Our
goal here is to find an alternative to them which goes
beyond the naive single thimble prescription. In order to
proceed, let us have a look at Stokes phenomena: these
control the basic mechanism of the thimble decomposition.
The main lesson to take home is that a thimble decom-
position is never given once and forever. In the following
we provide a simplified, informal discussion. The inter-
ested reader is strongly referred to [19] for a nice discussion
of the subject in the context of the Thirring model.
Loosely speaking, we have a thimble decomposition

when the union of a given number of thimbles is a
convenient deformation of the original domain of integra-
tion, just like in standard applications of the Cauchy
theorem. It is clear that the deformation provided by
thimbles is not the only possible one (this is, e.g., the
spirit of [9–12]). Strictly speaking, thimbles provide a basis
of the relative homology group which the integration cycle
we are interested in belongs to. It is a very convenient basis
because the imaginary part of the action stays constant on
thimbles. It is also a very convenient basis because the
coefficients in the linear combination reconstructing a
given path (the nσ) are integers. Moreover (as already
said) we have a criterion to establish which thimbles do not
enter a decomposition: nσ ¼ 0 whenever the unstable
thimble associated to a given critical point does not
intersect the original domain of integration.3 This has an
important consequence, which is quite clear pictorially. As
they are different solutions of the same (first order)
differential equation subject to different initial conditions,
different thimbles can not cross each other. Put in a simple-
minded (but maybe effective) way, they act as barriers to
each other: when the union of a given number of thimbles
provide a correct decomposition of the original integration
contour, other thimbles are simply kept out.
In order to gain some insight, in Fig. 1 we plot what the

problem looks like in a simple toy model, i.e., the 0-dim ϕ4

2Thimbles are manifolds of the same (real) dimension of the
original manifold the theory was formulated on, but they are
embedded in a manifold of twice that dimension.

3It can be shown that the nσ have the meaning of intersection
numbers.

TAYLOR EXPANSIONS ON LEFSCHETZ THIMBLES PHYS. REV. D 103, 034513 (2021)

034513-3

with



very general (semiclassical) arguments, this contribu-
tion is expected to be more and more enhanced in the
thermodynamic limit. At a more fundamental level, the
regularization of a field theory on the dominant thimble
defines a local quantum field theory with exactly the same
symmetries, the same number of degrees of freedom
(belonging to the same representations of the symmetry
groups) and the same local interactions as the original
theory. Moreover, the perturbative expansion on the dom-
inant thimble is exactly the same computed in standard
perturbation theory in the original formulation. Quite
interestingly, in the case of the relativistic Bose gas this
approximation proved to work very well [7]. The Bose gas
was of course only one success. Needless to say, if the
dominant thimble dominance hypothesis held true for a
wide range of theories, that would be a major success:
numerical simulations for thimble regularization would be
in the end not that difficult. The Thirring model was shown
to be a (first) counterexample: in this case the dominant
thimble does not capture the (complete) correct result [8,9].
This was a major motivation for the exploration of alter-
native formulations somehow inspired by thimbles. The
idea of deforming the original domain of integration is
indeed a very general one (from this point of view the
complexification of the degrees of freedom is quite an
obvious thing to do). Alternatives to thimble regularization
were put forward, e.g., the holomorphic flow [9] or various
definitions of sign-optimized manifolds, possibly selected
by deep-learning techniques [10–12]; for a recent, nice
review of most of these ideas see [13].
In this work we want to explore the idea of performing

Taylor expansions on Lefschetz thimbles. All in all, the
main idea is to compute Taylor expansions in different
regions of the parameter space of a given theory, namely
around points where only the dominant thimble contributes
to the result one is interested in. This could seem somehow
a lucky scenario, but we argue that this can quite often be
the case. Through multiple expansions these (different,
disjoint) regions can be bridged and in this way multi-
thimbles simulations can be circumvented. This bridging
can most effectively be obtained via Padé approximants.
The question then should be: “Can we trust this bridging?”
The answer is yes if we can prove that we are going through
a legitimate analytic continuation. Needless to say, working
with Taylor expansions we are aiming at a control on
analytic contributions to the result and we will be blind to
any nonperturbative effect in the expansion parameter.1

Most noticeably, in the simple examples we preliminarily
discuss in this work, we show that we can have a very good
control on the analytic structure (and singularities) of the
results. We stress that this good control is coming from

multiple Taylor expansions at different points (in the end,
different values for the chemical potential) and Padé
approximants. While all this is discussed in the framework
of (and motivated by) thimble regularization, it is important
to recognize in what we do an overall strategy that does not
apply only to this regularization. This is in a sense a
strategy which can go well beyond thimbles.
The paper is organized in a such a way that a minimal

prior knowledge of the subject is assumed. In Sec. II we
collect the basics of thimble regularization; in particular, we
define what a thimble decomposition is and we mention a
couple of approaches to multiple thimbles simulations
we have been testing in the last few years; the main
content of the section is the focus on Stokes phenomena.
Section III contains the basic description of the computa-
tional method we propose together with a discussion of
preliminary results for a couple of theories, which (while
admittedly simple) are supposed to be valuable prototypes.
Conclusions IV are meant to recognize to which extent
the strategy we discuss can go beyond the application to
thimble regularization.

II. THIMBLE DECOMPOSITION AND STOKES
PHENOMENA: A STORY OF CONTINUITY

AND DISCONTINUITIES

A. Basics of thimble decomposition
and basic multiple thimbles computations

Let us summarize the general problem by writing

hOi ¼ Z−1
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It is assumed that SðxÞ ¼ SRðxÞ þ iSIðxÞ. x stands collec-
tively for the real degrees of freedom of our original
problem and z for the degrees of freedom that are the
complexification of the latter. (1) is the original formulation
of the problem, while (1b) is the thimble decomposition as
expected from Lefschetz/Picard theory. pσ are critical
points where ∂zS ¼ 0. The thimbles J σ attached to each
critical point are the union of all the steepest ascent paths
(SA) which are the solutions of

d
dt

zi ¼
∂S̄
∂z̄i

stemming from a given critical point (initial condition).
Both numerator and denominator (i.e., the partition func-
tion) of (1a) are rewritten as a linear combination of

1We stress that the nonperturbative effects we are talking about
are not the ones in the coupling constant, i.e., the ones we are
most often concerned with.
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Thimble regularisation in a nutshell (via a toy model)

very general (semiclassical) arguments, this contribu-
tion is expected to be more and more enhanced in the
thermodynamic limit. At a more fundamental level, the
regularization of a field theory on the dominant thimble
defines a local quantum field theory with exactly the same
symmetries, the same number of degrees of freedom
(belonging to the same representations of the symmetry
groups) and the same local interactions as the original
theory. Moreover, the perturbative expansion on the dom-
inant thimble is exactly the same computed in standard
perturbation theory in the original formulation. Quite
interestingly, in the case of the relativistic Bose gas this
approximation proved to work very well [7]. The Bose gas
was of course only one success. Needless to say, if the
dominant thimble dominance hypothesis held true for a
wide range of theories, that would be a major success:
numerical simulations for thimble regularization would be
in the end not that difficult. The Thirring model was shown
to be a (first) counterexample: in this case the dominant
thimble does not capture the (complete) correct result [8,9].
This was a major motivation for the exploration of alter-
native formulations somehow inspired by thimbles. The
idea of deforming the original domain of integration is
indeed a very general one (from this point of view the
complexification of the degrees of freedom is quite an
obvious thing to do). Alternatives to thimble regularization
were put forward, e.g., the holomorphic flow [9] or various
definitions of sign-optimized manifolds, possibly selected
by deep-learning techniques [10–12]; for a recent, nice
review of most of these ideas see [13].
In this work we want to explore the idea of performing

Taylor expansions on Lefschetz thimbles. All in all, the
main idea is to compute Taylor expansions in different
regions of the parameter space of a given theory, namely
around points where only the dominant thimble contributes
to the result one is interested in. This could seem somehow
a lucky scenario, but we argue that this can quite often be
the case. Through multiple expansions these (different,
disjoint) regions can be bridged and in this way multi-
thimbles simulations can be circumvented. This bridging
can most effectively be obtained via Padé approximants.
The question then should be: “Can we trust this bridging?”
The answer is yes if we can prove that we are going through
a legitimate analytic continuation. Needless to say, working
with Taylor expansions we are aiming at a control on
analytic contributions to the result and we will be blind to
any nonperturbative effect in the expansion parameter.1

Most noticeably, in the simple examples we preliminarily
discuss in this work, we show that we can have a very good
control on the analytic structure (and singularities) of the
results. We stress that this good control is coming from

multiple Taylor expansions at different points (in the end,
different values for the chemical potential) and Padé
approximants. While all this is discussed in the framework
of (and motivated by) thimble regularization, it is important
to recognize in what we do an overall strategy that does not
apply only to this regularization. This is in a sense a
strategy which can go well beyond thimbles.
The paper is organized in a such a way that a minimal

prior knowledge of the subject is assumed. In Sec. II we
collect the basics of thimble regularization; in particular, we
define what a thimble decomposition is and we mention a
couple of approaches to multiple thimbles simulations
we have been testing in the last few years; the main
content of the section is the focus on Stokes phenomena.
Section III contains the basic description of the computa-
tional method we propose together with a discussion of
preliminary results for a couple of theories, which (while
admittedly simple) are supposed to be valuable prototypes.
Conclusions IV are meant to recognize to which extent
the strategy we discuss can go beyond the application to
thimble regularization.

II. THIMBLE DECOMPOSITION AND STOKES
PHENOMENA: A STORY OF CONTINUITY

AND DISCONTINUITIES

A. Basics of thimble decomposition
and basic multiple thimbles computations

Let us summarize the general problem by writing

hOi ¼ Z−1
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It is assumed that SðxÞ ¼ SRðxÞ þ iSIðxÞ. x stands collec-
tively for the real degrees of freedom of our original
problem and z for the degrees of freedom that are the
complexification of the latter. (1) is the original formulation
of the problem, while (1b) is the thimble decomposition as
expected from Lefschetz/Picard theory. pσ are critical
points where ∂zS ¼ 0. The thimbles J σ attached to each
critical point are the union of all the steepest ascent paths
(SA) which are the solutions of

d
dt

zi ¼
∂S̄
∂z̄i

stemming from a given critical point (initial condition).
Both numerator and denominator (i.e., the partition func-
tion) of (1a) are rewritten as a linear combination of

1We stress that the nonperturbative effects we are talking about
are not the ones in the coupling constant, i.e., the ones we are
most often concerned with.
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very general (semiclassical) arguments, this contribu-
tion is expected to be more and more enhanced in the
thermodynamic limit. At a more fundamental level, the
regularization of a field theory on the dominant thimble
defines a local quantum field theory with exactly the same
symmetries, the same number of degrees of freedom
(belonging to the same representations of the symmetry
groups) and the same local interactions as the original
theory. Moreover, the perturbative expansion on the dom-
inant thimble is exactly the same computed in standard
perturbation theory in the original formulation. Quite
interestingly, in the case of the relativistic Bose gas this
approximation proved to work very well [7]. The Bose gas
was of course only one success. Needless to say, if the
dominant thimble dominance hypothesis held true for a
wide range of theories, that would be a major success:
numerical simulations for thimble regularization would be
in the end not that difficult. The Thirring model was shown
to be a (first) counterexample: in this case the dominant
thimble does not capture the (complete) correct result [8,9].
This was a major motivation for the exploration of alter-
native formulations somehow inspired by thimbles. The
idea of deforming the original domain of integration is
indeed a very general one (from this point of view the
complexification of the degrees of freedom is quite an
obvious thing to do). Alternatives to thimble regularization
were put forward, e.g., the holomorphic flow [9] or various
definitions of sign-optimized manifolds, possibly selected
by deep-learning techniques [10–12]; for a recent, nice
review of most of these ideas see [13].
In this work we want to explore the idea of performing

Taylor expansions on Lefschetz thimbles. All in all, the
main idea is to compute Taylor expansions in different
regions of the parameter space of a given theory, namely
around points where only the dominant thimble contributes
to the result one is interested in. This could seem somehow
a lucky scenario, but we argue that this can quite often be
the case. Through multiple expansions these (different,
disjoint) regions can be bridged and in this way multi-
thimbles simulations can be circumvented. This bridging
can most effectively be obtained via Padé approximants.
The question then should be: “Can we trust this bridging?”
The answer is yes if we can prove that we are going through
a legitimate analytic continuation. Needless to say, working
with Taylor expansions we are aiming at a control on
analytic contributions to the result and we will be blind to
any nonperturbative effect in the expansion parameter.1

Most noticeably, in the simple examples we preliminarily
discuss in this work, we show that we can have a very good
control on the analytic structure (and singularities) of the
results. We stress that this good control is coming from

multiple Taylor expansions at different points (in the end,
different values for the chemical potential) and Padé
approximants. While all this is discussed in the framework
of (and motivated by) thimble regularization, it is important
to recognize in what we do an overall strategy that does not
apply only to this regularization. This is in a sense a
strategy which can go well beyond thimbles.
The paper is organized in a such a way that a minimal

prior knowledge of the subject is assumed. In Sec. II we
collect the basics of thimble regularization; in particular, we
define what a thimble decomposition is and we mention a
couple of approaches to multiple thimbles simulations
we have been testing in the last few years; the main
content of the section is the focus on Stokes phenomena.
Section III contains the basic description of the computa-
tional method we propose together with a discussion of
preliminary results for a couple of theories, which (while
admittedly simple) are supposed to be valuable prototypes.
Conclusions IV are meant to recognize to which extent
the strategy we discuss can go beyond the application to
thimble regularization.

II. THIMBLE DECOMPOSITION AND STOKES
PHENOMENA: A STORY OF CONTINUITY
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A. Basics of thimble decomposition
and basic multiple thimbles computations

Let us summarize the general problem by writing
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It is assumed that SðxÞ ¼ SRðxÞ þ iSIðxÞ. x stands collec-
tively for the real degrees of freedom of our original
problem and z for the degrees of freedom that are the
complexification of the latter. (1) is the original formulation
of the problem, while (1b) is the thimble decomposition as
expected from Lefschetz/Picard theory. pσ are critical
points where ∂zS ¼ 0. The thimbles J σ attached to each
critical point are the union of all the steepest ascent paths
(SA) which are the solutions of

d
dt

zi ¼
∂S̄
∂z̄i

stemming from a given critical point (initial condition).
Both numerator and denominator (i.e., the partition func-
tion) of (1a) are rewritten as a linear combination of

1We stress that the nonperturbative effects we are talking about
are not the ones in the coupling constant, i.e., the ones we are
most often concerned with.
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union of solutions of the SA equations
attached to STATIONARY POINTS

very general (semiclassical) arguments, this contribu-
tion is expected to be more and more enhanced in the
thermodynamic limit. At a more fundamental level, the
regularization of a field theory on the dominant thimble
defines a local quantum field theory with exactly the same
symmetries, the same number of degrees of freedom
(belonging to the same representations of the symmetry
groups) and the same local interactions as the original
theory. Moreover, the perturbative expansion on the dom-
inant thimble is exactly the same computed in standard
perturbation theory in the original formulation. Quite
interestingly, in the case of the relativistic Bose gas this
approximation proved to work very well [7]. The Bose gas
was of course only one success. Needless to say, if the
dominant thimble dominance hypothesis held true for a
wide range of theories, that would be a major success:
numerical simulations for thimble regularization would be
in the end not that difficult. The Thirring model was shown
to be a (first) counterexample: in this case the dominant
thimble does not capture the (complete) correct result [8,9].
This was a major motivation for the exploration of alter-
native formulations somehow inspired by thimbles. The
idea of deforming the original domain of integration is
indeed a very general one (from this point of view the
complexification of the degrees of freedom is quite an
obvious thing to do). Alternatives to thimble regularization
were put forward, e.g., the holomorphic flow [9] or various
definitions of sign-optimized manifolds, possibly selected
by deep-learning techniques [10–12]; for a recent, nice
review of most of these ideas see [13].
In this work we want to explore the idea of performing

Taylor expansions on Lefschetz thimbles. All in all, the
main idea is to compute Taylor expansions in different
regions of the parameter space of a given theory, namely
around points where only the dominant thimble contributes
to the result one is interested in. This could seem somehow
a lucky scenario, but we argue that this can quite often be
the case. Through multiple expansions these (different,
disjoint) regions can be bridged and in this way multi-
thimbles simulations can be circumvented. This bridging
can most effectively be obtained via Padé approximants.
The question then should be: “Can we trust this bridging?”
The answer is yes if we can prove that we are going through
a legitimate analytic continuation. Needless to say, working
with Taylor expansions we are aiming at a control on
analytic contributions to the result and we will be blind to
any nonperturbative effect in the expansion parameter.1

Most noticeably, in the simple examples we preliminarily
discuss in this work, we show that we can have a very good
control on the analytic structure (and singularities) of the
results. We stress that this good control is coming from

multiple Taylor expansions at different points (in the end,
different values for the chemical potential) and Padé
approximants. While all this is discussed in the framework
of (and motivated by) thimble regularization, it is important
to recognize in what we do an overall strategy that does not
apply only to this regularization. This is in a sense a
strategy which can go well beyond thimbles.
The paper is organized in a such a way that a minimal

prior knowledge of the subject is assumed. In Sec. II we
collect the basics of thimble regularization; in particular, we
define what a thimble decomposition is and we mention a
couple of approaches to multiple thimbles simulations
we have been testing in the last few years; the main
content of the section is the focus on Stokes phenomena.
Section III contains the basic description of the computa-
tional method we propose together with a discussion of
preliminary results for a couple of theories, which (while
admittedly simple) are supposed to be valuable prototypes.
Conclusions IV are meant to recognize to which extent
the strategy we discuss can go beyond the application to
thimble regularization.
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It is assumed that SðxÞ ¼ SRðxÞ þ iSIðxÞ. x stands collec-
tively for the real degrees of freedom of our original
problem and z for the degrees of freedom that are the
complexification of the latter. (1) is the original formulation
of the problem, while (1b) is the thimble decomposition as
expected from Lefschetz/Picard theory. pσ are critical
points where ∂zS ¼ 0. The thimbles J σ attached to each
critical point are the union of all the steepest ascent paths
(SA) which are the solutions of

d
dt

zi ¼
∂S̄
∂z̄i

stemming from a given critical point (initial condition).
Both numerator and denominator (i.e., the partition func-
tion) of (1a) are rewritten as a linear combination of

1We stress that the nonperturbative effects we are talking about
are not the ones in the coupling constant, i.e., the ones we are
most often concerned with.
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very general (semiclassical) arguments, this contribu-
tion is expected to be more and more enhanced in the
thermodynamic limit. At a more fundamental level, the
regularization of a field theory on the dominant thimble
defines a local quantum field theory with exactly the same
symmetries, the same number of degrees of freedom
(belonging to the same representations of the symmetry
groups) and the same local interactions as the original
theory. Moreover, the perturbative expansion on the dom-
inant thimble is exactly the same computed in standard
perturbation theory in the original formulation. Quite
interestingly, in the case of the relativistic Bose gas this
approximation proved to work very well [7]. The Bose gas
was of course only one success. Needless to say, if the
dominant thimble dominance hypothesis held true for a
wide range of theories, that would be a major success:
numerical simulations for thimble regularization would be
in the end not that difficult. The Thirring model was shown
to be a (first) counterexample: in this case the dominant
thimble does not capture the (complete) correct result [8,9].
This was a major motivation for the exploration of alter-
native formulations somehow inspired by thimbles. The
idea of deforming the original domain of integration is
indeed a very general one (from this point of view the
complexification of the degrees of freedom is quite an
obvious thing to do). Alternatives to thimble regularization
were put forward, e.g., the holomorphic flow [9] or various
definitions of sign-optimized manifolds, possibly selected
by deep-learning techniques [10–12]; for a recent, nice
review of most of these ideas see [13].
In this work we want to explore the idea of performing

Taylor expansions on Lefschetz thimbles. All in all, the
main idea is to compute Taylor expansions in different
regions of the parameter space of a given theory, namely
around points where only the dominant thimble contributes
to the result one is interested in. This could seem somehow
a lucky scenario, but we argue that this can quite often be
the case. Through multiple expansions these (different,
disjoint) regions can be bridged and in this way multi-
thimbles simulations can be circumvented. This bridging
can most effectively be obtained via Padé approximants.
The question then should be: “Can we trust this bridging?”
The answer is yes if we can prove that we are going through
a legitimate analytic continuation. Needless to say, working
with Taylor expansions we are aiming at a control on
analytic contributions to the result and we will be blind to
any nonperturbative effect in the expansion parameter.1

Most noticeably, in the simple examples we preliminarily
discuss in this work, we show that we can have a very good
control on the analytic structure (and singularities) of the
results. We stress that this good control is coming from

multiple Taylor expansions at different points (in the end,
different values for the chemical potential) and Padé
approximants. While all this is discussed in the framework
of (and motivated by) thimble regularization, it is important
to recognize in what we do an overall strategy that does not
apply only to this regularization. This is in a sense a
strategy which can go well beyond thimbles.
The paper is organized in a such a way that a minimal

prior knowledge of the subject is assumed. In Sec. II we
collect the basics of thimble regularization; in particular, we
define what a thimble decomposition is and we mention a
couple of approaches to multiple thimbles simulations
we have been testing in the last few years; the main
content of the section is the focus on Stokes phenomena.
Section III contains the basic description of the computa-
tional method we propose together with a discussion of
preliminary results for a couple of theories, which (while
admittedly simple) are supposed to be valuable prototypes.
Conclusions IV are meant to recognize to which extent
the strategy we discuss can go beyond the application to
thimble regularization.

II. THIMBLE DECOMPOSITION AND STOKES
PHENOMENA: A STORY OF CONTINUITY

AND DISCONTINUITIES

A. Basics of thimble decomposition
and basic multiple thimbles computations

Let us summarize the general problem by writing

hOi ¼ Z−1
Z

dxe−SðxÞOðxÞ ð1aÞ

¼
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R
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dze−SRðzÞeiωðzÞ
ð1bÞ

¼
P

σnσe
−iSIðpσÞZσhOeiωiσP

σnσe
−iSIðpσÞZσheiωiσ

ð1cÞ

It is assumed that SðxÞ ¼ SRðxÞ þ iSIðxÞ. x stands collec-
tively for the real degrees of freedom of our original
problem and z for the degrees of freedom that are the
complexification of the latter. (1) is the original formulation
of the problem, while (1b) is the thimble decomposition as
expected from Lefschetz/Picard theory. pσ are critical
points where ∂zS ¼ 0. The thimbles J σ attached to each
critical point are the union of all the steepest ascent paths
(SA) which are the solutions of

d
dt

zi ¼
∂S̄
∂z̄i

stemming from a given critical point (initial condition).
Both numerator and denominator (i.e., the partition func-
tion) of (1a) are rewritten as a linear combination of

1We stress that the nonperturbative effects we are talking about
are not the ones in the coupling constant, i.e., the ones we are
most often concerned with.
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(belonging to the same representations of the symmetry
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approximation proved to work very well [7]. The Bose gas
was of course only one success. Needless to say, if the
dominant thimble dominance hypothesis held true for a
wide range of theories, that would be a major success:
numerical simulations for thimble regularization would be
in the end not that difficult. The Thirring model was shown
to be a (first) counterexample: in this case the dominant
thimble does not capture the (complete) correct result [8,9].
This was a major motivation for the exploration of alter-
native formulations somehow inspired by thimbles. The
idea of deforming the original domain of integration is
indeed a very general one (from this point of view the
complexification of the degrees of freedom is quite an
obvious thing to do). Alternatives to thimble regularization
were put forward, e.g., the holomorphic flow [9] or various
definitions of sign-optimized manifolds, possibly selected
by deep-learning techniques [10–12]; for a recent, nice
review of most of these ideas see [13].
In this work we want to explore the idea of performing

Taylor expansions on Lefschetz thimbles. All in all, the
main idea is to compute Taylor expansions in different
regions of the parameter space of a given theory, namely
around points where only the dominant thimble contributes
to the result one is interested in. This could seem somehow
a lucky scenario, but we argue that this can quite often be
the case. Through multiple expansions these (different,
disjoint) regions can be bridged and in this way multi-
thimbles simulations can be circumvented. This bridging
can most effectively be obtained via Padé approximants.
The question then should be: “Can we trust this bridging?”
The answer is yes if we can prove that we are going through
a legitimate analytic continuation. Needless to say, working
with Taylor expansions we are aiming at a control on
analytic contributions to the result and we will be blind to
any nonperturbative effect in the expansion parameter.1

Most noticeably, in the simple examples we preliminarily
discuss in this work, we show that we can have a very good
control on the analytic structure (and singularities) of the
results. We stress that this good control is coming from

multiple Taylor expansions at different points (in the end,
different values for the chemical potential) and Padé
approximants. While all this is discussed in the framework
of (and motivated by) thimble regularization, it is important
to recognize in what we do an overall strategy that does not
apply only to this regularization. This is in a sense a
strategy which can go well beyond thimbles.
The paper is organized in a such a way that a minimal

prior knowledge of the subject is assumed. In Sec. II we
collect the basics of thimble regularization; in particular, we
define what a thimble decomposition is and we mention a
couple of approaches to multiple thimbles simulations
we have been testing in the last few years; the main
content of the section is the focus on Stokes phenomena.
Section III contains the basic description of the computa-
tional method we propose together with a discussion of
preliminary results for a couple of theories, which (while
admittedly simple) are supposed to be valuable prototypes.
Conclusions IV are meant to recognize to which extent
the strategy we discuss can go beyond the application to
thimble regularization.

II. THIMBLE DECOMPOSITION AND STOKES
PHENOMENA: A STORY OF CONTINUITY

AND DISCONTINUITIES

A. Basics of thimble decomposition
and basic multiple thimbles computations

Let us summarize the general problem by writing

hOi ¼ Z−1
Z

dxe−SðxÞOðxÞ ð1aÞ
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It is assumed that SðxÞ ¼ SRðxÞ þ iSIðxÞ. x stands collec-
tively for the real degrees of freedom of our original
problem and z for the degrees of freedom that are the
complexification of the latter. (1) is the original formulation
of the problem, while (1b) is the thimble decomposition as
expected from Lefschetz/Picard theory. pσ are critical
points where ∂zS ¼ 0. The thimbles J σ attached to each
critical point are the union of all the steepest ascent paths
(SA) which are the solutions of

d
dt

zi ¼
∂S̄
∂z̄i

stemming from a given critical point (initial condition).
Both numerator and denominator (i.e., the partition func-
tion) of (1a) are rewritten as a linear combination of

1We stress that the nonperturbative effects we are talking about
are not the ones in the coupling constant, i.e., the ones we are
most often concerned with.
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integrals computed on the thimbles attached to critical
points; the sum is formally extended to all of them, but the
coefficients nσ can be zero for possibly many critical
points. Actually nσ ¼ 0 for a critical point when the
associated unstable thimble (the union of the steepest
descent paths stemming from the critical point) does not
intersect the original integration manifold. While the
(constant) phase e−iSIðpσÞ is factored in front of each
integral, yet another phase enters the integrands. This is
the so-called residual phase [14] (eiω) which accounts for
the orientation of the thimbles with respect to the embed-
ding manifold.2 In (1c) hOi is rewritten by defining

hXiσ ≡
R
J σ

dze−SRX
R
J σ

dze−SR
≡

R
J σ

dze−SRX

Zσ
:

Stated in this way, the thimble decomposition is a linear
combination of expectation values computed on single
thimbles, with coefficients proportional to the Zσ . As a
result, multiple thimbles simulations amount to a given
prescription for obtaining, in one way or another, (a) the
contribution attached to each given thimble hOiσ contrib-
uting to the result and (b) the relative weights in (1c).
Actually, (b) turns out to be a harder task than (a). Despite
the difficulties, there are cases in which we could attempt
and succeed in multiple thimbles simulations. While these
are admittedly preliminary steps in an interesting direction,
they are worth mentioning, if only to appreciate the peculiar
circumstances under which they worked out.
There are cases in which not only it turns out that non-

null contributions come from a limited number of thimbles,
but also a few of the latter are related to each other due to
symmetries. One possible strategy in such cases is the one
which was successful for QCD in 0 þ 1 dimensions [15]. In
that case (due to a symmetry which is in place) the correct
result was obtained by taking into account only two
contributions according to

hOi ¼
hOeiωiσ1 þ αhOeiωiσ2
heiωiσ1 þ αheiωiσ2

: ð2Þ

(2) is yet another rewriting of the thimble decomposition.
All in all, all our ignorance of relative weights is in such a
case coded in one single parameter, i.e., α. The value of the
latter can be fixed assuming one known measurement as a
normalization point. We can then predict the value of other
observables. It is obvious that in such a way we give up the
hope of a first principles derivation of relative weights. This
is very much in the spirit of general frameworks for
(nonperturbative) renormalization. Quite interestingly, this

appears to be possible also in the framework of the Thirring
model [16].
It should be stressed that relative weights are quite easy

to obtain in a semiclassical approximation, which is also
referred to as the Gaussian approximation. This suggests
another strategy: one starts with the relative weights as
computed in such an approximation and then compute
corrections as the simulations proceeds. Once again, this is
not expected to work efficiently in every case. A case of
success was a minimal version of the so-called heavy dense
approximation for QCD [17]. Yet another proposal for
“reweighting Lefschetz Thimbles” was put forward in [18].

B. Deeper into the problem: Stokes phenomena

Multiple thimbles simulations are a hard problem and
solutions so far have been admittedly a partial success. Our
goal here is to find an alternative to them which goes
beyond the naive single thimble prescription. In order to
proceed, let us have a look at Stokes phenomena: these
control the basic mechanism of the thimble decomposition.
The main lesson to take home is that a thimble decom-
position is never given once and forever. In the following
we provide a simplified, informal discussion. The inter-
ested reader is strongly referred to [19] for a nice discussion
of the subject in the context of the Thirring model.
Loosely speaking, we have a thimble decomposition

when the union of a given number of thimbles is a
convenient deformation of the original domain of integra-
tion, just like in standard applications of the Cauchy
theorem. It is clear that the deformation provided by
thimbles is not the only possible one (this is, e.g., the
spirit of [9–12]). Strictly speaking, thimbles provide a basis
of the relative homology group which the integration cycle
we are interested in belongs to. It is a very convenient basis
because the imaginary part of the action stays constant on
thimbles. It is also a very convenient basis because the
coefficients in the linear combination reconstructing a
given path (the nσ) are integers. Moreover (as already
said) we have a criterion to establish which thimbles do not
enter a decomposition: nσ ¼ 0 whenever the unstable
thimble associated to a given critical point does not
intersect the original domain of integration.3 This has an
important consequence, which is quite clear pictorially. As
they are different solutions of the same (first order)
differential equation subject to different initial conditions,
different thimbles can not cross each other. Put in a simple-
minded (but maybe effective) way, they act as barriers to
each other: when the union of a given number of thimbles
provide a correct decomposition of the original integration
contour, other thimbles are simply kept out.
In order to gain some insight, in Fig. 1 we plot what the

problem looks like in a simple toy model, i.e., the 0-dim ϕ4

2Thimbles are manifolds of the same (real) dimension of the
original manifold the theory was formulated on, but they are
embedded in a manifold of twice that dimension.

3It can be shown that the nσ have the meaning of intersection
numbers.
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theory. The problem amounts to computing simple
one-dimensional integrals (see [20]) defined via a “partition
function”

Z ¼
Z

R
dϕe−SðϕÞ SðϕÞ ¼ 1

2
σϕ2 þ 1

4
λϕ4

where we take λ ∈ Rþ and σ ∈ C, which makes the
“action” S complex. In the following we will keep fixed
σI > 0,4 so that the thimble decomposition is decided by
the value of σR. We have three critical points, for which we
adhere to the same notation of [20], labeling them as
ϕ0 ¼ 0 and ϕ% ¼ %

ffiffiffiffiffiffi
− σ

λ

p
. In the following discussion of

Fig. 1 we encourage the reader to look at it having in mind
the general picture and that is why we will keep the
references to the actual model to a minimum.
In the left panel, we can see the correct thimble

decomposition at a given point of the parameter space of
the theory (namely σR > 0); stable thimbles are depicted as
continuous (blue) lines: as it is manifest, one single thimble
is enough to get a correct deformation of the original
domain of integration (the latter being the real axis).5

Probing different points in the parameter space, one finds
that critical points and associated thimbles do move around
in the manifold embedding the original one (i.e., the
complexified manifold). As they smoothly move around,
they are always subject to the constraint of not crossing
each other. Thus the thimbles that contribute to the
decomposition of the original domain of integration keep
on keeping the others out.
There is only one way thimbles can cross each other: we

need two thimbles to sit on top of each other. This means
that two different critical points are connected by a SA/SD
path, i.e., the stable thimble of one sits on top of the
unstable thimble of the other. When this occurs we are in

presence of a Stokes phenomenon: see the central panel
(here σR ¼ 0). As it is clear from the figure, at a Stokes
phenomenon the thimble decomposition fails.
After a Stokes phenomenon has occurred, the relative

arrangement of thimbles can change and a different thimble
decomposition is in place (see right panel, where σR < 0).
The toy model we referred to is a trivial example: one can

recognize the occurrence of a Stokes phenomenon by direct
inspection. One could then think that tracking Stokes
phenomena could be an almost impossible task in a typical
case. This is not the case, since we have a clear signal that a
Stokes phenomenon can occur: when two critical points are
connected as described above, the imaginary part of the
action takes the same value. To look for Stokes phenomena,
we change the values of the parameters describing the
theory; let us denote collectively these parameters by ξ. As
the ξvary, a critical point pσ moves around and the value of
the imaginary part of the action associated to it (and to the
stable and unstable thimbles attached to it) describes a
curve SðσÞI ðξÞ. In order that a Stokes phenomenon occurs,
two curves need to intersect, i.e., SðσÞI ðξ0Þ ¼ Sðσ

0Þ
I ðξ0Þ. For a

beautiful description of the procedure which we just
sketched, we refer the interested reader to [19].
We end this sketchy discussion with a trivial, but in

practice relevant observation. Reconstructing the correct
thimble decomposition is not necessarily the end of story. It
canwell be that one (ormore) thimble(s) entering the correct
thimble decomposition is (are) so damped with respect to
other contributions that its (their) contribution is de facto
negligible. There are cases in which this is evident from the
semi-classical approximation: this has to dowith thee−SRðpσÞ

that can be factored in front of the integral associated to a
critical pointpσ andwhichwas one of themain rationales for
the single thimble dominance hypothesis.

C. Discontinuities vs continuity

Stokes phenomena mark discontinuities in the thimble
decomposition and one is left with the problem of fixing the
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FIG. 1. Thimbles structure for a 0-dim ϕ4 toy model: continuous (blue) lines are stable thimbles; dashed (red) lines are unstable
thimbles. The three panels refer to different points in the parameter space of the theory. In the middle, an example of a Stokes
phenomenon. For further details, see [20].

4This is the same choice of [20].
5Note how only one unstable thimble intersects the original

domain of integration; unstable thimbles are depicted as dashed
(red) lines.
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theory. The problem amounts to computing simple
one-dimensional integrals (see [20]) defined via a “partition
function”

Z ¼
Z

R
dϕe−SðϕÞ SðϕÞ ¼ 1

2
σϕ2 þ 1

4
λϕ4

where we take λ ∈ Rþ and σ ∈ C, which makes the
“action” S complex. In the following we will keep fixed
σI > 0,4 so that the thimble decomposition is decided by
the value of σR. We have three critical points, for which we
adhere to the same notation of [20], labeling them as
ϕ0 ¼ 0 and ϕ% ¼ %
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Fig. 1 we encourage the reader to look at it having in mind
the general picture and that is why we will keep the
references to the actual model to a minimum.
In the left panel, we can see the correct thimble

decomposition at a given point of the parameter space of
the theory (namely σR > 0); stable thimbles are depicted as
continuous (blue) lines: as it is manifest, one single thimble
is enough to get a correct deformation of the original
domain of integration (the latter being the real axis).5

Probing different points in the parameter space, one finds
that critical points and associated thimbles do move around
in the manifold embedding the original one (i.e., the
complexified manifold). As they smoothly move around,
they are always subject to the constraint of not crossing
each other. Thus the thimbles that contribute to the
decomposition of the original domain of integration keep
on keeping the others out.
There is only one way thimbles can cross each other: we

need two thimbles to sit on top of each other. This means
that two different critical points are connected by a SA/SD
path, i.e., the stable thimble of one sits on top of the
unstable thimble of the other. When this occurs we are in

presence of a Stokes phenomenon: see the central panel
(here σR ¼ 0). As it is clear from the figure, at a Stokes
phenomenon the thimble decomposition fails.
After a Stokes phenomenon has occurred, the relative

arrangement of thimbles can change and a different thimble
decomposition is in place (see right panel, where σR < 0).
The toy model we referred to is a trivial example: one can

recognize the occurrence of a Stokes phenomenon by direct
inspection. One could then think that tracking Stokes
phenomena could be an almost impossible task in a typical
case. This is not the case, since we have a clear signal that a
Stokes phenomenon can occur: when two critical points are
connected as described above, the imaginary part of the
action takes the same value. To look for Stokes phenomena,
we change the values of the parameters describing the
theory; let us denote collectively these parameters by ξ. As
the ξvary, a critical point pσ moves around and the value of
the imaginary part of the action associated to it (and to the
stable and unstable thimbles attached to it) describes a
curve SðσÞI ðξÞ. In order that a Stokes phenomenon occurs,
two curves need to intersect, i.e., SðσÞI ðξ0Þ ¼ Sðσ

0Þ
I ðξ0Þ. For a

beautiful description of the procedure which we just
sketched, we refer the interested reader to [19].
We end this sketchy discussion with a trivial, but in

practice relevant observation. Reconstructing the correct
thimble decomposition is not necessarily the end of story. It
canwell be that one (ormore) thimble(s) entering the correct
thimble decomposition is (are) so damped with respect to
other contributions that its (their) contribution is de facto
negligible. There are cases in which this is evident from the
semi-classical approximation: this has to dowith thee−SRðpσÞ

that can be factored in front of the integral associated to a
critical pointpσ andwhichwas one of themain rationales for
the single thimble dominance hypothesis.

C. Discontinuities vs continuity

Stokes phenomena mark discontinuities in the thimble
decomposition and one is left with the problem of fixing the
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FIG. 1. Thimbles structure for a 0-dim ϕ4 toy model: continuous (blue) lines are stable thimbles; dashed (red) lines are unstable
thimbles. The three panels refer to different points in the parameter space of the theory. In the middle, an example of a Stokes
phenomenon. For further details, see [20].

4This is the same choice of [20].
5Note how only one unstable thimble intersects the original

domain of integration; unstable thimbles are depicted as dashed
(red) lines.

F. DI RENZO, S. SINGH, and K. ZAMBELLO PHYS. REV. D 103, 034513 (2021)

034513-4

concrete example



I am cheating you …



I am cheating you …

theory. The problem amounts to computing simple
one-dimensional integrals (see [20]) defined via a “partition
function”

Z ¼
Z
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dϕe−SðϕÞ SðϕÞ ¼ 1

2
σϕ2 þ 1

4
λϕ4

where we take λ ∈ Rþ and σ ∈ C, which makes the
“action” S complex. In the following we will keep fixed
σI > 0,4 so that the thimble decomposition is decided by
the value of σR. We have three critical points, for which we
adhere to the same notation of [20], labeling them as
ϕ0 ¼ 0 and ϕ% ¼ %
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p
. In the following discussion of

Fig. 1 we encourage the reader to look at it having in mind
the general picture and that is why we will keep the
references to the actual model to a minimum.
In the left panel, we can see the correct thimble

decomposition at a given point of the parameter space of
the theory (namely σR > 0); stable thimbles are depicted as
continuous (blue) lines: as it is manifest, one single thimble
is enough to get a correct deformation of the original
domain of integration (the latter being the real axis).5

Probing different points in the parameter space, one finds
that critical points and associated thimbles do move around
in the manifold embedding the original one (i.e., the
complexified manifold). As they smoothly move around,
they are always subject to the constraint of not crossing
each other. Thus the thimbles that contribute to the
decomposition of the original domain of integration keep
on keeping the others out.
There is only one way thimbles can cross each other: we

need two thimbles to sit on top of each other. This means
that two different critical points are connected by a SA/SD
path, i.e., the stable thimble of one sits on top of the
unstable thimble of the other. When this occurs we are in

presence of a Stokes phenomenon: see the central panel
(here σR ¼ 0). As it is clear from the figure, at a Stokes
phenomenon the thimble decomposition fails.
After a Stokes phenomenon has occurred, the relative

arrangement of thimbles can change and a different thimble
decomposition is in place (see right panel, where σR < 0).
The toy model we referred to is a trivial example: one can

recognize the occurrence of a Stokes phenomenon by direct
inspection. One could then think that tracking Stokes
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case. This is not the case, since we have a clear signal that a
Stokes phenomenon can occur: when two critical points are
connected as described above, the imaginary part of the
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negligible. There are cases in which this is evident from the
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that can be factored in front of the integral associated to a
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σI > 0,4 so that the thimble decomposition is decided by
the value of σR. We have three critical points, for which we
adhere to the same notation of [20], labeling them as
ϕ0 ¼ 0 and ϕ% ¼ %
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Fig. 1 we encourage the reader to look at it having in mind
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references to the actual model to a minimum.
In the left panel, we can see the correct thimble

decomposition at a given point of the parameter space of
the theory (namely σR > 0); stable thimbles are depicted as
continuous (blue) lines: as it is manifest, one single thimble
is enough to get a correct deformation of the original
domain of integration (the latter being the real axis).5
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decomposition of the original domain of integration keep
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There is only one way thimbles can cross each other: we
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path, i.e., the stable thimble of one sits on top of the
unstable thimble of the other. When this occurs we are in
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(here σR ¼ 0). As it is clear from the figure, at a Stokes
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After a Stokes phenomenon has occurred, the relative
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recognize the occurrence of a Stokes phenomenon by direct
inspection. One could then think that tracking Stokes
phenomena could be an almost impossible task in a typical
case. This is not the case, since we have a clear signal that a
Stokes phenomenon can occur: when two critical points are
connected as described above, the imaginary part of the
action takes the same value. To look for Stokes phenomena,
we change the values of the parameters describing the
theory; let us denote collectively these parameters by ξ. As
the ξvary, a critical point pσ moves around and the value of
the imaginary part of the action associated to it (and to the
stable and unstable thimbles attached to it) describes a
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We end this sketchy discussion with a trivial, but in
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thimble decomposition is not necessarily the end of story. It
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thimble decomposition is (are) so damped with respect to
other contributions that its (their) contribution is de facto
negligible. There are cases in which this is evident from the
semi-classical approximation: this has to dowith thee−SRðpσÞ
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the single thimble dominance hypothesis.
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the general picture and that is why we will keep the
references to the actual model to a minimum.
In the left panel, we can see the correct thimble

decomposition at a given point of the parameter space of
the theory (namely σR > 0); stable thimbles are depicted as
continuous (blue) lines: as it is manifest, one single thimble
is enough to get a correct deformation of the original
domain of integration (the latter being the real axis).5

Probing different points in the parameter space, one finds
that critical points and associated thimbles do move around
in the manifold embedding the original one (i.e., the
complexified manifold). As they smoothly move around,
they are always subject to the constraint of not crossing
each other. Thus the thimbles that contribute to the
decomposition of the original domain of integration keep
on keeping the others out.
There is only one way thimbles can cross each other: we

need two thimbles to sit on top of each other. This means
that two different critical points are connected by a SA/SD
path, i.e., the stable thimble of one sits on top of the
unstable thimble of the other. When this occurs we are in

presence of a Stokes phenomenon: see the central panel
(here σR ¼ 0). As it is clear from the figure, at a Stokes
phenomenon the thimble decomposition fails.
After a Stokes phenomenon has occurred, the relative

arrangement of thimbles can change and a different thimble
decomposition is in place (see right panel, where σR < 0).
The toy model we referred to is a trivial example: one can

recognize the occurrence of a Stokes phenomenon by direct
inspection. One could then think that tracking Stokes
phenomena could be an almost impossible task in a typical
case. This is not the case, since we have a clear signal that a
Stokes phenomenon can occur: when two critical points are
connected as described above, the imaginary part of the
action takes the same value. To look for Stokes phenomena,
we change the values of the parameters describing the
theory; let us denote collectively these parameters by ξ. As
the ξvary, a critical point pσ moves around and the value of
the imaginary part of the action associated to it (and to the
stable and unstable thimbles attached to it) describes a
curve SðσÞI ðξÞ. In order that a Stokes phenomenon occurs,
two curves need to intersect, i.e., SðσÞI ðξ0Þ ¼ Sðσ

0Þ
I ðξ0Þ. For a

beautiful description of the procedure which we just
sketched, we refer the interested reader to [19].
We end this sketchy discussion with a trivial, but in

practice relevant observation. Reconstructing the correct
thimble decomposition is not necessarily the end of story. It
canwell be that one (ormore) thimble(s) entering the correct
thimble decomposition is (are) so damped with respect to
other contributions that its (their) contribution is de facto
negligible. There are cases in which this is evident from the
semi-classical approximation: this has to dowith thee−SRðpσÞ

that can be factored in front of the integral associated to a
critical pointpσ andwhichwas one of themain rationales for
the single thimble dominance hypothesis.
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theory. The problem amounts to computing simple
one-dimensional integrals (see [20]) defined via a “partition
function”

Z ¼
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dϕe−SðϕÞ SðϕÞ ¼ 1

2
σϕ2 þ 1
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where we take λ ∈ Rþ and σ ∈ C, which makes the
“action” S complex. In the following we will keep fixed
σI > 0,4 so that the thimble decomposition is decided by
the value of σR. We have three critical points, for which we
adhere to the same notation of [20], labeling them as
ϕ0 ¼ 0 and ϕ% ¼ %
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Fig. 1 we encourage the reader to look at it having in mind
the general picture and that is why we will keep the
references to the actual model to a minimum.
In the left panel, we can see the correct thimble

decomposition at a given point of the parameter space of
the theory (namely σR > 0); stable thimbles are depicted as
continuous (blue) lines: as it is manifest, one single thimble
is enough to get a correct deformation of the original
domain of integration (the latter being the real axis).5

Probing different points in the parameter space, one finds
that critical points and associated thimbles do move around
in the manifold embedding the original one (i.e., the
complexified manifold). As they smoothly move around,
they are always subject to the constraint of not crossing
each other. Thus the thimbles that contribute to the
decomposition of the original domain of integration keep
on keeping the others out.
There is only one way thimbles can cross each other: we

need two thimbles to sit on top of each other. This means
that two different critical points are connected by a SA/SD
path, i.e., the stable thimble of one sits on top of the
unstable thimble of the other. When this occurs we are in

presence of a Stokes phenomenon: see the central panel
(here σR ¼ 0). As it is clear from the figure, at a Stokes
phenomenon the thimble decomposition fails.
After a Stokes phenomenon has occurred, the relative

arrangement of thimbles can change and a different thimble
decomposition is in place (see right panel, where σR < 0).
The toy model we referred to is a trivial example: one can

recognize the occurrence of a Stokes phenomenon by direct
inspection. One could then think that tracking Stokes
phenomena could be an almost impossible task in a typical
case. This is not the case, since we have a clear signal that a
Stokes phenomenon can occur: when two critical points are
connected as described above, the imaginary part of the
action takes the same value. To look for Stokes phenomena,
we change the values of the parameters describing the
theory; let us denote collectively these parameters by ξ. As
the ξvary, a critical point pσ moves around and the value of
the imaginary part of the action associated to it (and to the
stable and unstable thimbles attached to it) describes a
curve SðσÞI ðξÞ. In order that a Stokes phenomenon occurs,
two curves need to intersect, i.e., SðσÞI ðξ0Þ ¼ Sðσ

0Þ
I ðξ0Þ. For a

beautiful description of the procedure which we just
sketched, we refer the interested reader to [19].
We end this sketchy discussion with a trivial, but in

practice relevant observation. Reconstructing the correct
thimble decomposition is not necessarily the end of story. It
canwell be that one (ormore) thimble(s) entering the correct
thimble decomposition is (are) so damped with respect to
other contributions that its (their) contribution is de facto
negligible. There are cases in which this is evident from the
semi-classical approximation: this has to dowith thee−SRðpσÞ

that can be factored in front of the integral associated to a
critical pointpσ andwhichwas one of themain rationales for
the single thimble dominance hypothesis.
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Stokes phenomena mark discontinuities in the thimble
decomposition and one is left with the problem of fixing the
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theory. The problem amounts to computing simple
one-dimensional integrals (see [20]) defined via a “partition
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where we take λ ∈ Rþ and σ ∈ C, which makes the
“action” S complex. In the following we will keep fixed
σI > 0,4 so that the thimble decomposition is decided by
the value of σR. We have three critical points, for which we
adhere to the same notation of [20], labeling them as
ϕ0 ¼ 0 and ϕ% ¼ %
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Fig. 1 we encourage the reader to look at it having in mind
the general picture and that is why we will keep the
references to the actual model to a minimum.
In the left panel, we can see the correct thimble

decomposition at a given point of the parameter space of
the theory (namely σR > 0); stable thimbles are depicted as
continuous (blue) lines: as it is manifest, one single thimble
is enough to get a correct deformation of the original
domain of integration (the latter being the real axis).5

Probing different points in the parameter space, one finds
that critical points and associated thimbles do move around
in the manifold embedding the original one (i.e., the
complexified manifold). As they smoothly move around,
they are always subject to the constraint of not crossing
each other. Thus the thimbles that contribute to the
decomposition of the original domain of integration keep
on keeping the others out.
There is only one way thimbles can cross each other: we

need two thimbles to sit on top of each other. This means
that two different critical points are connected by a SA/SD
path, i.e., the stable thimble of one sits on top of the
unstable thimble of the other. When this occurs we are in

presence of a Stokes phenomenon: see the central panel
(here σR ¼ 0). As it is clear from the figure, at a Stokes
phenomenon the thimble decomposition fails.
After a Stokes phenomenon has occurred, the relative

arrangement of thimbles can change and a different thimble
decomposition is in place (see right panel, where σR < 0).
The toy model we referred to is a trivial example: one can

recognize the occurrence of a Stokes phenomenon by direct
inspection. One could then think that tracking Stokes
phenomena could be an almost impossible task in a typical
case. This is not the case, since we have a clear signal that a
Stokes phenomenon can occur: when two critical points are
connected as described above, the imaginary part of the
action takes the same value. To look for Stokes phenomena,
we change the values of the parameters describing the
theory; let us denote collectively these parameters by ξ. As
the ξvary, a critical point pσ moves around and the value of
the imaginary part of the action associated to it (and to the
stable and unstable thimbles attached to it) describes a
curve SðσÞI ðξÞ. In order that a Stokes phenomenon occurs,
two curves need to intersect, i.e., SðσÞI ðξ0Þ ¼ Sðσ
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I ðξ0Þ. For a

beautiful description of the procedure which we just
sketched, we refer the interested reader to [19].
We end this sketchy discussion with a trivial, but in

practice relevant observation. Reconstructing the correct
thimble decomposition is not necessarily the end of story. It
canwell be that one (ormore) thimble(s) entering the correct
thimble decomposition is (are) so damped with respect to
other contributions that its (their) contribution is de facto
negligible. There are cases in which this is evident from the
semi-classical approximation: this has to dowith thee−SRðpσÞ

that can be factored in front of the integral associated to a
critical pointpσ andwhichwas one of themain rationales for
the single thimble dominance hypothesis.
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SINGLE THIMBLE DOMINANCE has been a dream for a while …

Sometimes it holds true, in general it fails

Thirring model first clear counterexample



(2) Once we have proposed a new configuration n̂0,
we perform aMetropolis accept/reject test by accept-
ing the proposal with probability Paccðn̂0 ← n̂Þ ¼
min

!
1;

Zσ
n̂0

Zσ
n̂

"
. Since the Metropolis proposal is sym-

metric, this is enough to satisfy the detailed balance
principle and the Markov chain will converge to the
targeted probability distribution Zσ

n̂
Zσ
.

The key ingredients that we need to compute are the partial
partition function Zn̂ and the (contribution from the current
SA path to the) observable fn̂. These are time integrals
whose computation requires to integrate the differential
equations for both the fields and the basis vectors given in
Eqs. (2) and (4) starting from an initial condition close to
the critical point,

#
z ¼ zσ þ

P
i nie

λitvðiÞ

VðhÞ ¼ vðhÞeλht
:

Actually in our calculations we integrate in action instead
of integrating in time. Since the real part of the action is
monotonic in time, one can make the change of variable

dSR
dt

¼1

2

d
dt
ðSþ S̄Þ¼ j∇Sj2↦dt¼dSRj∇Sj−2¼dsj∇Sj−2:

In the last step we have also defined a second change of
variable s ¼ SR − SRðzσÞ. In terms of s, the differential
equations for the fields and the basis become

dzi
ds

¼ j∇Sj−2 ∂S̄∂z̄i ;

dVðhÞ
j

ds
¼ j∇Sj−2

X

i

V̄ðhÞ
i ∂2

zizjS:

The change of variable is also performed for the time
integrals defining Zn̂ and fn̂, yielding

Zn̂ ¼ 2
X

i

λin2i e
−SRðzσÞ

Z
∞

0
dsj∇Sj−2e−sþ log j det VðsÞj;

fn̂ ¼ 2
X

i

λin2i e
−SRðzσÞ

Z
∞

0
ds fj∇Sj−2e−sþ log j det VðsÞj: ð5Þ

The advantage is twofold. First, the integration in action has
the effect of decreasing the number of iterations required to
reach convergence. Second, one can immediately recognize
from Eq. (5) that the integrals can be calculated using the
Gauss-Laguerre quadrature, i.e.,

Z
∞

0
fðxÞe−xdx ¼

X
wifðxiÞ;

where fxig and fwig are the quadrature points and their
associated weights. The calculation of the determinant
(which is computationally quite expensive) is required
only at the quadrature points.

III. ONE-THIMBLE SIMULATIONS

We now discuss the thimble regularization of the one-
dimensional Thirring model. As we have remarked in the
introduction, historically this is one of the very first
examples that have shown the inadequacy of the single-
thimble approximation (see Refs. [8–11]). The lattice
action for this theory can be written down as

S ¼ β
X

n¼1…L

ð1 − cosðϕnÞÞ − log det D;

where det D ¼ 1
2L−1

ðcoshðLμ̂ þ i
P

n ϕnÞ þ
coshðL asinhðm̂ÞÞÞ is the fermionic determinant. The
parameters μ̂ ¼ μa and m̂ ¼ ma are, respectively, the
chemical potential and the fermion mass in lattice units,
β ¼ ð2g2aÞ−1 is the inverse coupling constant and ϕn is a
scalar field discretized on a one-dimensional lattice of
length L. The theory features a sign problem originating
from the fermionic determinant, which is complex at
finite μ̂.
An analytical solution is known for the partition func-

tion. This is given in term of the modified Bessel functions
of the first kind InðxÞ,

Z¼ 1

2L−1
e−Lβ½I1ðβÞL coshðLμ̂Þþ I0ðβÞLcoshðLasinhðm̂ÞÞ&:

From the partition function one can derive closed-form
expressions for the physical observables, such the scalar
condensate hχ̄χi and the fermion density hni,

hχ̄χi ¼ 1

L
∂ log Z
∂m̂ ¼ 1

coshðasinhðm̂ÞÞ
I0ðβÞL sinhðL asinhðm̂ÞÞ

I1ðβÞL coshðLμ̂Þ þ I0ðβÞL cos hðL asinhðm̂ÞÞ

hni ¼ 1

L
∂ log Z
∂μ̂ ¼ I1ðβÞL sinhðLμ̂Þ

I1ðβÞL coshðLμ̂Þ þ I0ðβÞL coshðL asinhðm̂ÞÞ
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Thirring model: from failure to new opportunity

chemical potentials. This does not come as a surprise (it is
exactly what other authors found previously) and shows
that the contribution from the subdominant thimbles cannot
be neglected.

IV. MULTITHIMBLE SIMULATIONS

The reason why the single-thimble approximation fails is
that, when the chemical potential is increased starting from
zero, different Stokes phenomena take place and the
thimble decomposition changes. As a result thimbles other
than the fundamental one need to be taken into account at
high chemical potentials, even though at zero chemical
potential the contribution from the fundamental thimble
J σ0 is the only non-negligible one.
All in all the subdominant contribution that one has to

take into account is the one from the thimble J σ1 , which
enters the decomposition at μ̂ ≈ 0.56. Indeed at this
chemical potential the imaginary parts of the action at
σ0 and σ1 are the same, as shown in the bottom right picture
of Fig. 1. This is a necessary condition for a Stokes
phenomenon, which indeed happens. For a very nice
and thorough analysis of the Stokes phenomena and their
consequences on the thimble decomposition, we refer the
reader to Ref. [9].
In order to properly collect the contributions from the

fundamental thimble J σ0 and the subdominant thimble
J σ1 , we have to determine the relative weights of the two
contributions. The approach we took is the one we have
followed for (0þ 1)-dimensional QCD. Since we are
considering only two independent thimble contributions,
the expectation value of a generic observable O can be
written as

hOi ¼ n0e−iSIðz0ÞZ0hOeiω0i0 þ n12e−iSIðz12ÞZ12hOeiω12i12
n0e−iSIðz0ÞZ0hOeiω0i0 þ n12e−iSIðz12ÞZ12hOeiω12i12

:

Here we use the subscript 12 to denote quantities that
refer to the critical points σ1 and σ−1. As we have already

observed these critical points give rise to conjugate con-
tributions (whose sum is purely real). When J σ1 enters the
thimble decomposition, so does J σ−1 , but we have only one
independent contribution. Now if we divide both the
numerator and the denominator by n0e−iSIðz0ÞZ0 we obtain

hOi ¼ hOeiω0i0 þ αhOeiω12i12
heiω0i0 þ αheiω12i12

;

where α ¼ n12e−iSI ðz12ÞZ12

n0e−iSI ðz0ÞZ0
. Since α only depends on the

thimble structure of the theory, we can determine it by
taking some observable Õ as a normalization point and then
use such value to calculate any other observable.
For the Thirring model we fixed α from the (analytical

solution of the) number density and we used it to calculate
the scalar condensate. The numerical results are shown in
Fig. 3. The results are now in agreement with the analytical
solution: the contribution from the subdominant thimble
fully accounts for the discrepancies observed in the results
from one-thimble simulations (and that is why we could
make a long story short earlier, when we said that the
subdominant contribution that one has to take into account
is the one from the thimble J σ1). Notice that the statistical
errors are quite large for μ̂ ≈ 0.6 ÷ 0.75, this is in part due to
cancellations in the calculation of α and in part due to
numerical difficulties in sampling the nondominant thim-
ble. The partial partition function (i.e., the probability
distribution for importance sampling) shows sharp spikes
in some regions of n0 (i.e., the initial direction of the SA
path on the tangent space along the Takagi vector having
the largest Takagi value). Within these regions the partial
partition function varies by several order of magnitude and
this makes it difficult to keep a good acceptance ratio.
Moreover for J σ1 the regions are also so thin that the
regions of interest cannot be represented in double pre-
cision. Quadruple precision is needed in the simulations,
with a noticeable impact on the performance of the code.

FIG. 2. Scalar condensate for L ¼ 4, β ¼ 1.0, 1.5, 2.0, 4.0 and
ma ¼ 1: results from one-thimble simulations on J σ0 .

FIG. 3. Scalar condensate for L ¼ 4, β ¼ 1.0, 1.5, 2.0 and
ma ¼ 1: results from multithimble simulations on J σ0 and J σ% 1
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(2) Once we have proposed a new configuration n̂0,
we perform aMetropolis accept/reject test by accept-
ing the proposal with probability Paccðn̂0 ← n̂Þ ¼
min

!
1;

Zσ
n̂0

Zσ
n̂

"
. Since the Metropolis proposal is sym-

metric, this is enough to satisfy the detailed balance
principle and the Markov chain will converge to the
targeted probability distribution Zσ

n̂
Zσ
.

The key ingredients that we need to compute are the partial
partition function Zn̂ and the (contribution from the current
SA path to the) observable fn̂. These are time integrals
whose computation requires to integrate the differential
equations for both the fields and the basis vectors given in
Eqs. (2) and (4) starting from an initial condition close to
the critical point,

#
z ¼ zσ þ

P
i nie

λitvðiÞ

VðhÞ ¼ vðhÞeλht
:

Actually in our calculations we integrate in action instead
of integrating in time. Since the real part of the action is
monotonic in time, one can make the change of variable

dSR
dt

¼1

2

d
dt
ðSþ S̄Þ¼ j∇Sj2↦dt¼dSRj∇Sj−2¼dsj∇Sj−2:

In the last step we have also defined a second change of
variable s ¼ SR − SRðzσÞ. In terms of s, the differential
equations for the fields and the basis become

dzi
ds

¼ j∇Sj−2 ∂S̄∂z̄i ;

dVðhÞ
j

ds
¼ j∇Sj−2

X

i

V̄ðhÞ
i ∂2

zizjS:

The change of variable is also performed for the time
integrals defining Zn̂ and fn̂, yielding

Zn̂ ¼ 2
X

i

λin2i e
−SRðzσÞ

Z
∞

0
dsj∇Sj−2e−sþ log j det VðsÞj;

fn̂ ¼ 2
X

i

λin2i e
−SRðzσÞ

Z
∞

0
ds fj∇Sj−2e−sþ log j det VðsÞj: ð5Þ

The advantage is twofold. First, the integration in action has
the effect of decreasing the number of iterations required to
reach convergence. Second, one can immediately recognize
from Eq. (5) that the integrals can be calculated using the
Gauss-Laguerre quadrature, i.e.,

Z
∞

0
fðxÞe−xdx ¼

X
wifðxiÞ;

where fxig and fwig are the quadrature points and their
associated weights. The calculation of the determinant
(which is computationally quite expensive) is required
only at the quadrature points.

III. ONE-THIMBLE SIMULATIONS

We now discuss the thimble regularization of the one-
dimensional Thirring model. As we have remarked in the
introduction, historically this is one of the very first
examples that have shown the inadequacy of the single-
thimble approximation (see Refs. [8–11]). The lattice
action for this theory can be written down as

S ¼ β
X

n¼1…L

ð1 − cosðϕnÞÞ − log det D;

where det D ¼ 1
2L−1

ðcoshðLμ̂ þ i
P

n ϕnÞ þ
coshðL asinhðm̂ÞÞÞ is the fermionic determinant. The
parameters μ̂ ¼ μa and m̂ ¼ ma are, respectively, the
chemical potential and the fermion mass in lattice units,
β ¼ ð2g2aÞ−1 is the inverse coupling constant and ϕn is a
scalar field discretized on a one-dimensional lattice of
length L. The theory features a sign problem originating
from the fermionic determinant, which is complex at
finite μ̂.
An analytical solution is known for the partition func-

tion. This is given in term of the modified Bessel functions
of the first kind InðxÞ,

Z¼ 1

2L−1
e−Lβ½I1ðβÞL coshðLμ̂Þþ I0ðβÞLcoshðLasinhðm̂ÞÞ&:

From the partition function one can derive closed-form
expressions for the physical observables, such the scalar
condensate hχ̄χi and the fermion density hni,

hχ̄χi ¼ 1

L
∂ log Z
∂m̂ ¼ 1

coshðasinhðm̂ÞÞ
I0ðβÞL sinhðL asinhðm̂ÞÞ

I1ðβÞL coshðLμ̂Þ þ I0ðβÞL cos hðL asinhðm̂ÞÞ

hni ¼ 1

L
∂ log Z
∂μ̂ ¼ I1ðβÞL sinhðLμ̂Þ

I1ðβÞL coshðLμ̂Þ þ I0ðβÞL coshðL asinhðm̂ÞÞ
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chemical potentials. This does not come as a surprise (it is
exactly what other authors found previously) and shows
that the contribution from the subdominant thimbles cannot
be neglected.

IV. MULTITHIMBLE SIMULATIONS

The reason why the single-thimble approximation fails is
that, when the chemical potential is increased starting from
zero, different Stokes phenomena take place and the
thimble decomposition changes. As a result thimbles other
than the fundamental one need to be taken into account at
high chemical potentials, even though at zero chemical
potential the contribution from the fundamental thimble
J σ0 is the only non-negligible one.
All in all the subdominant contribution that one has to

take into account is the one from the thimble J σ1 , which
enters the decomposition at μ̂ ≈ 0.56. Indeed at this
chemical potential the imaginary parts of the action at
σ0 and σ1 are the same, as shown in the bottom right picture
of Fig. 1. This is a necessary condition for a Stokes
phenomenon, which indeed happens. For a very nice
and thorough analysis of the Stokes phenomena and their
consequences on the thimble decomposition, we refer the
reader to Ref. [9].
In order to properly collect the contributions from the

fundamental thimble J σ0 and the subdominant thimble
J σ1 , we have to determine the relative weights of the two
contributions. The approach we took is the one we have
followed for (0þ 1)-dimensional QCD. Since we are
considering only two independent thimble contributions,
the expectation value of a generic observable O can be
written as

hOi ¼ n0e−iSIðz0ÞZ0hOeiω0i0 þ n12e−iSIðz12ÞZ12hOeiω12i12
n0e−iSIðz0ÞZ0hOeiω0i0 þ n12e−iSIðz12ÞZ12hOeiω12i12

:

Here we use the subscript 12 to denote quantities that
refer to the critical points σ1 and σ−1. As we have already

observed these critical points give rise to conjugate con-
tributions (whose sum is purely real). When J σ1 enters the
thimble decomposition, so does J σ−1 , but we have only one
independent contribution. Now if we divide both the
numerator and the denominator by n0e−iSIðz0ÞZ0 we obtain

hOi ¼ hOeiω0i0 þ αhOeiω12i12
heiω0i0 þ αheiω12i12

;

where α ¼ n12e−iSI ðz12ÞZ12

n0e−iSI ðz0ÞZ0
. Since α only depends on the

thimble structure of the theory, we can determine it by
taking some observable Õ as a normalization point and then
use such value to calculate any other observable.
For the Thirring model we fixed α from the (analytical

solution of the) number density and we used it to calculate
the scalar condensate. The numerical results are shown in
Fig. 3. The results are now in agreement with the analytical
solution: the contribution from the subdominant thimble
fully accounts for the discrepancies observed in the results
from one-thimble simulations (and that is why we could
make a long story short earlier, when we said that the
subdominant contribution that one has to take into account
is the one from the thimble J σ1). Notice that the statistical
errors are quite large for μ̂ ≈ 0.6 ÷ 0.75, this is in part due to
cancellations in the calculation of α and in part due to
numerical difficulties in sampling the nondominant thim-
ble. The partial partition function (i.e., the probability
distribution for importance sampling) shows sharp spikes
in some regions of n0 (i.e., the initial direction of the SA
path on the tangent space along the Takagi vector having
the largest Takagi value). Within these regions the partial
partition function varies by several order of magnitude and
this makes it difficult to keep a good acceptance ratio.
Moreover for J σ1 the regions are also so thin that the
regions of interest cannot be represented in double pre-
cision. Quadruple precision is needed in the simulations,
with a noticeable impact on the performance of the code.

FIG. 2. Scalar condensate for L ¼ 4, β ¼ 1.0, 1.5, 2.0, 4.0 and
ma ¼ 1: results from one-thimble simulations on J σ0 .

FIG. 3. Scalar condensate for L ¼ 4, β ¼ 1.0, 1.5, 2.0 and
ma ¼ 1: results from multithimble simulations on J σ0 and J σ% 1

.
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chemical potentials. This does not come as a surprise (it is
exactly what other authors found previously) and shows
that the contribution from the subdominant thimbles cannot
be neglected.

IV. MULTITHIMBLE SIMULATIONS

The reason why the single-thimble approximation fails is
that, when the chemical potential is increased starting from
zero, different Stokes phenomena take place and the
thimble decomposition changes. As a result thimbles other
than the fundamental one need to be taken into account at
high chemical potentials, even though at zero chemical
potential the contribution from the fundamental thimble
J σ0 is the only non-negligible one.
All in all the subdominant contribution that one has to

take into account is the one from the thimble J σ1 , which
enters the decomposition at μ̂ ≈ 0.56. Indeed at this
chemical potential the imaginary parts of the action at
σ0 and σ1 are the same, as shown in the bottom right picture
of Fig. 1. This is a necessary condition for a Stokes
phenomenon, which indeed happens. For a very nice
and thorough analysis of the Stokes phenomena and their
consequences on the thimble decomposition, we refer the
reader to Ref. [9].
In order to properly collect the contributions from the

fundamental thimble J σ0 and the subdominant thimble
J σ1 , we have to determine the relative weights of the two
contributions. The approach we took is the one we have
followed for (0þ 1)-dimensional QCD. Since we are
considering only two independent thimble contributions,
the expectation value of a generic observable O can be
written as

hOi ¼ n0e−iSIðz0ÞZ0hOeiω0i0 þ n12e−iSIðz12ÞZ12hOeiω12i12
n0e−iSIðz0ÞZ0hOeiω0i0 þ n12e−iSIðz12ÞZ12hOeiω12i12

:

Here we use the subscript 12 to denote quantities that
refer to the critical points σ1 and σ−1. As we have already

observed these critical points give rise to conjugate con-
tributions (whose sum is purely real). When J σ1 enters the
thimble decomposition, so does J σ−1 , but we have only one
independent contribution. Now if we divide both the
numerator and the denominator by n0e−iSIðz0ÞZ0 we obtain

hOi ¼ hOeiω0i0 þ αhOeiω12i12
heiω0i0 þ αheiω12i12

;

where α ¼ n12e−iSI ðz12ÞZ12

n0e−iSI ðz0ÞZ0
. Since α only depends on the

thimble structure of the theory, we can determine it by
taking some observable Õ as a normalization point and then
use such value to calculate any other observable.
For the Thirring model we fixed α from the (analytical

solution of the) number density and we used it to calculate
the scalar condensate. The numerical results are shown in
Fig. 3. The results are now in agreement with the analytical
solution: the contribution from the subdominant thimble
fully accounts for the discrepancies observed in the results
from one-thimble simulations (and that is why we could
make a long story short earlier, when we said that the
subdominant contribution that one has to take into account
is the one from the thimble J σ1). Notice that the statistical
errors are quite large for μ̂ ≈ 0.6 ÷ 0.75, this is in part due to
cancellations in the calculation of α and in part due to
numerical difficulties in sampling the nondominant thim-
ble. The partial partition function (i.e., the probability
distribution for importance sampling) shows sharp spikes
in some regions of n0 (i.e., the initial direction of the SA
path on the tangent space along the Takagi vector having
the largest Takagi value). Within these regions the partial
partition function varies by several order of magnitude and
this makes it difficult to keep a good acceptance ratio.
Moreover for J σ1 the regions are also so thin that the
regions of interest cannot be represented in double pre-
cision. Quadruple precision is needed in the simulations,
with a noticeable impact on the performance of the code.

FIG. 2. Scalar condensate for L ¼ 4, β ¼ 1.0, 1.5, 2.0, 4.0 and
ma ¼ 1: results from one-thimble simulations on J σ0 .

FIG. 3. Scalar condensate for L ¼ 4, β ¼ 1.0, 1.5, 2.0 and
ma ¼ 1: results from multithimble simulations on J σ0 and J σ% 1
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integrals computed on the thimbles attached to critical
points; the sum is formally extended to all of them, but the
coefficients nσ can be zero for possibly many critical
points. Actually nσ ¼ 0 for a critical point when the
associated unstable thimble (the union of the steepest
descent paths stemming from the critical point) does not
intersect the original integration manifold. While the
(constant) phase e−iSIðpσÞ is factored in front of each
integral, yet another phase enters the integrands. This is
the so-called residual phase [14] (eiω) which accounts for
the orientation of the thimbles with respect to the embed-
ding manifold.2 In (1c) hOi is rewritten by defining

hXiσ ≡
R
J σ

dze−SRX
R
J σ

dze−SR
≡

R
J σ

dze−SRX

Zσ
:

Stated in this way, the thimble decomposition is a linear
combination of expectation values computed on single
thimbles, with coefficients proportional to the Zσ . As a
result, multiple thimbles simulations amount to a given
prescription for obtaining, in one way or another, (a) the
contribution attached to each given thimble hOiσ contrib-
uting to the result and (b) the relative weights in (1c).
Actually, (b) turns out to be a harder task than (a). Despite
the difficulties, there are cases in which we could attempt
and succeed in multiple thimbles simulations. While these
are admittedly preliminary steps in an interesting direction,
they are worth mentioning, if only to appreciate the peculiar
circumstances under which they worked out.
There are cases in which not only it turns out that non-

null contributions come from a limited number of thimbles,
but also a few of the latter are related to each other due to
symmetries. One possible strategy in such cases is the one
which was successful for QCD in 0 þ 1 dimensions [15]. In
that case (due to a symmetry which is in place) the correct
result was obtained by taking into account only two
contributions according to

hOi ¼
hOeiωiσ1 þ αhOeiωiσ2
heiωiσ1 þ αheiωiσ2

: ð2Þ

(2) is yet another rewriting of the thimble decomposition.
All in all, all our ignorance of relative weights is in such a
case coded in one single parameter, i.e., α. The value of the
latter can be fixed assuming one known measurement as a
normalization point. We can then predict the value of other
observables. It is obvious that in such a way we give up the
hope of a first principles derivation of relative weights. This
is very much in the spirit of general frameworks for
(nonperturbative) renormalization. Quite interestingly, this

appears to be possible also in the framework of the Thirring
model [16].
It should be stressed that relative weights are quite easy

to obtain in a semiclassical approximation, which is also
referred to as the Gaussian approximation. This suggests
another strategy: one starts with the relative weights as
computed in such an approximation and then compute
corrections as the simulations proceeds. Once again, this is
not expected to work efficiently in every case. A case of
success was a minimal version of the so-called heavy dense
approximation for QCD [17]. Yet another proposal for
“reweighting Lefschetz Thimbles” was put forward in [18].

B. Deeper into the problem: Stokes phenomena

Multiple thimbles simulations are a hard problem and
solutions so far have been admittedly a partial success. Our
goal here is to find an alternative to them which goes
beyond the naive single thimble prescription. In order to
proceed, let us have a look at Stokes phenomena: these
control the basic mechanism of the thimble decomposition.
The main lesson to take home is that a thimble decom-
position is never given once and forever. In the following
we provide a simplified, informal discussion. The inter-
ested reader is strongly referred to [19] for a nice discussion
of the subject in the context of the Thirring model.
Loosely speaking, we have a thimble decomposition

when the union of a given number of thimbles is a
convenient deformation of the original domain of integra-
tion, just like in standard applications of the Cauchy
theorem. It is clear that the deformation provided by
thimbles is not the only possible one (this is, e.g., the
spirit of [9–12]). Strictly speaking, thimbles provide a basis
of the relative homology group which the integration cycle
we are interested in belongs to. It is a very convenient basis
because the imaginary part of the action stays constant on
thimbles. It is also a very convenient basis because the
coefficients in the linear combination reconstructing a
given path (the nσ) are integers. Moreover (as already
said) we have a criterion to establish which thimbles do not
enter a decomposition: nσ ¼ 0 whenever the unstable
thimble associated to a given critical point does not
intersect the original domain of integration.3 This has an
important consequence, which is quite clear pictorially. As
they are different solutions of the same (first order)
differential equation subject to different initial conditions,
different thimbles can not cross each other. Put in a simple-
minded (but maybe effective) way, they act as barriers to
each other: when the union of a given number of thimbles
provide a correct decomposition of the original integration
contour, other thimbles are simply kept out.
In order to gain some insight, in Fig. 1 we plot what the

problem looks like in a simple toy model, i.e., the 0-dim ϕ4

2Thimbles are manifolds of the same (real) dimension of the
original manifold the theory was formulated on, but they are
embedded in a manifold of twice that dimension.

3It can be shown that the nσ have the meaning of intersection
numbers.
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μ. We can obtain a dimensionless quantity by taking the
ratio μ

m ¼ μ̂
m̂. Since the analytic result is known, the single

thimble approximation was shown not to account for the
correct result on the entire μ

m axis. In our new approach the
problem is solved and in Fig. 2 we display the essential
features of our results: as an example, we show results for
the chiral condensate hχ̄χi (parameters are L ¼ 8, β ¼ 1,
m ¼ 2). We can argue that all the requirements of the
program that we sketched above can be met. There is a
preliminary point we have to make. For real β a Stokes
phenomenon is potentially present up to a given value of μ

m:
this involves the dominant thimble pσ0 and another critical
point. We denote the latter pσ0̄, following the notation of
[19]. The problem can be easily solved by adding a small
imaginary part to β: in this way a Stokes phenomenon does
not take place, a thimble decomposition is in place and
while pσ0̄ could in principle give a contribution to the
result, this is de facto negligible due to the huge difference
SRðpσ0̄Þ ≫ SRðpσ0Þ. This solves the problem and any
further reference to this point will be omitted in the
following.
(1) A first value of μ

m for which only the dominant
thimble pσ0 accounts for the correct result can be
found in a very fundamental, yet simple way. The
range of values SI can take on the real axis depends
on the values of μ̂ and m̂ and, below a given value of
μ
m, this range is limited. By explicit computation of

the SðσÞI ðμmÞ we can show that no unstable thimble
associated to a critical point pσ other that the
dominant one can intersect the original domain of
integration below a given value μ0

m.
7 Thus for μ

m < μ0
m

we can easily select a first point at which the
dominant thimble provides the only contribution

to the result. We picked μ
m ¼ 0.4 and computed the

Taylor expansion up to the second derivative.
We now need to find a second value of μ

m at which
the dominant thimble accounts for the complete
result and compute the Taylor expansion on it. In
principle we could study the crossing mechanism
between the different curves SðσÞI ðμmÞ (see subsec-
tion II B). In practice there is a much simpler way to
proceed. First of all, we point out that the asymptotic
value of hχ̄χi is known: for large enough values of μ
the chiral condensate is zero. We notice that for μ

m ¼
1.4 the value of hχ̄χi computed on the dominant
thimble is very close to zero. By inspecting the
values of SRðpσÞ for thimbles other than the funda-
mental one, we find that, for μ

m ¼ 1.4, SRðpσÞ ≫
SRðpσ0Þ for all the critical points but three, that we
denote σ1, σ1̄, σ2̄.

8 Two of them (σ1̄ and σ2̄) have
values of the real action which are lower than Smin,
which is the minimum value SR takes on the original
domain of integration: because of this, the unstable
thimbles associated to them can’t intersect the
original domain of integration. As for σ1, in this
simple model it does not take that much to show that
the unstable thimble attached to it does not intersect
the original domain of integration (see the left panel
of Fig. 2). We conclude that the dominant thimble σ0
can account for the complete result at this value of μ

m.
We have thus selected the second point we were
looking for; at this point the series has been
computed up to the fifth derivative. One might
object that we made use of the explicit query for
intersections between the original domain of inte-
gration and a given unstable thimble, which thing is

FIG. 2. (Left panel) The flow lines highlighting the thimbles structure of the 1-dim Thirring model at μ
m ¼ 1.4: stable thimbles are

depicted in blue, unstable thimbles in magenta. The dominant thimble is associated to the critical point sitting at ℜðzÞ ¼ 0. The critical
point σ1 is the closest to the latter to the right (there is a mirror image to the left as well): notice that the unstable thimble associated to it
does not intersect the original domain of integration (which is on the real axis). (Center panel) The chiral condensate as obtained from
the analytic solution (continuous black line) and from our Padé approximant (we plot points instead of a continuum line so that the size
of errors are easier to spot.). The points providing input to the evaluation of Padé are marked as triangles. (Right panel) Singularity of the
solution in the complex plane: red point computed from the analytic solution, green point is the only pole of our Padé approximant. We
plot the radii of convergence which are relevant for the expansions at hand: our analytic continuation indeed stands on firm ground.

7The value of m̂ is held fixed. 8We once again adhere to the notation of [19].
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μ. We can obtain a dimensionless quantity by taking the
ratio μ

m ¼ μ̂
m̂. Since the analytic result is known, the single

thimble approximation was shown not to account for the
correct result on the entire μ

m axis. In our new approach the
problem is solved and in Fig. 2 we display the essential
features of our results: as an example, we show results for
the chiral condensate hχ̄χi (parameters are L ¼ 8, β ¼ 1,
m ¼ 2). We can argue that all the requirements of the
program that we sketched above can be met. There is a
preliminary point we have to make. For real β a Stokes
phenomenon is potentially present up to a given value of μ

m:
this involves the dominant thimble pσ0 and another critical
point. We denote the latter pσ0̄, following the notation of
[19]. The problem can be easily solved by adding a small
imaginary part to β: in this way a Stokes phenomenon does
not take place, a thimble decomposition is in place and
while pσ0̄ could in principle give a contribution to the
result, this is de facto negligible due to the huge difference
SRðpσ0̄Þ ≫ SRðpσ0Þ. This solves the problem and any
further reference to this point will be omitted in the
following.
(1) A first value of μ

m for which only the dominant
thimble pσ0 accounts for the correct result can be
found in a very fundamental, yet simple way. The
range of values SI can take on the real axis depends
on the values of μ̂ and m̂ and, below a given value of
μ
m, this range is limited. By explicit computation of

the SðσÞI ðμmÞ we can show that no unstable thimble
associated to a critical point pσ other that the
dominant one can intersect the original domain of
integration below a given value μ0

m.
7 Thus for μ

m < μ0
m

we can easily select a first point at which the
dominant thimble provides the only contribution

to the result. We picked μ
m ¼ 0.4 and computed the

Taylor expansion up to the second derivative.
We now need to find a second value of μ

m at which
the dominant thimble accounts for the complete
result and compute the Taylor expansion on it. In
principle we could study the crossing mechanism
between the different curves SðσÞI ðμmÞ (see subsec-
tion II B). In practice there is a much simpler way to
proceed. First of all, we point out that the asymptotic
value of hχ̄χi is known: for large enough values of μ
the chiral condensate is zero. We notice that for μ

m ¼
1.4 the value of hχ̄χi computed on the dominant
thimble is very close to zero. By inspecting the
values of SRðpσÞ for thimbles other than the funda-
mental one, we find that, for μ

m ¼ 1.4, SRðpσÞ ≫
SRðpσ0Þ for all the critical points but three, that we
denote σ1, σ1̄, σ2̄.

8 Two of them (σ1̄ and σ2̄) have
values of the real action which are lower than Smin,
which is the minimum value SR takes on the original
domain of integration: because of this, the unstable
thimbles associated to them can’t intersect the
original domain of integration. As for σ1, in this
simple model it does not take that much to show that
the unstable thimble attached to it does not intersect
the original domain of integration (see the left panel
of Fig. 2). We conclude that the dominant thimble σ0
can account for the complete result at this value of μ

m.
We have thus selected the second point we were
looking for; at this point the series has been
computed up to the fifth derivative. One might
object that we made use of the explicit query for
intersections between the original domain of inte-
gration and a given unstable thimble, which thing is

FIG. 2. (Left panel) The flow lines highlighting the thimbles structure of the 1-dim Thirring model at μ
m ¼ 1.4: stable thimbles are

depicted in blue, unstable thimbles in magenta. The dominant thimble is associated to the critical point sitting at ℜðzÞ ¼ 0. The critical
point σ1 is the closest to the latter to the right (there is a mirror image to the left as well): notice that the unstable thimble associated to it
does not intersect the original domain of integration (which is on the real axis). (Center panel) The chiral condensate as obtained from
the analytic solution (continuous black line) and from our Padé approximant (we plot points instead of a continuum line so that the size
of errors are easier to spot.). The points providing input to the evaluation of Padé are marked as triangles. (Right panel) Singularity of the
solution in the complex plane: red point computed from the analytic solution, green point is the only pole of our Padé approximant. We
plot the radii of convergence which are relevant for the expansions at hand: our analytic continuation indeed stands on firm ground.

7The value of m̂ is held fixed. 8We once again adhere to the notation of [19].
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Taylor expansions on Lefschetz thimbles
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For the finer lattices we proceeded as we did for the
L ¼ 8 lattice. We selected two suitable expansion points
and we calculated the Taylor coefficients up to order 2 and
5 by one-thimble simulations. As extra constraints we also
calculated the coefficients of order 0 at the boundaries of
the μ̂ range. These data were used as inputs to construct the
Padé approximants. For the L ¼ 32, 64 lattices the stat-
istical error on the fifth order Taylor coefficient was quite
large and this resulted in a large indetermination on the
Padé approximant itself. Fortunately in building our (multi-
point) Padé approximants we have two different handles

that we can make use of: one handle is the order of the
Taylor expansions, the second one is the number of
expansion points. For the L ¼ 32, 64 lattices we decided
to use an additional extra constraint in the low μ̂ region in
place of the fifth order Taylor coefficient.
The numerical results are shown in Fig. 6. The bottom

left and bottom right pictures show how the Padé approx-
imants (the colored error bars) converge to the analytical
solution (the red line) as we gradually increase the order of
the Taylor coefficients calculated at the two (central)
expansion points. Specifically these pictures illustrate what
happens in the two different cases (L ¼ 16 and L ¼ 64)
where, respectively, two and three extra constraints were
used and the highest order that has been calculated in the
Taylor expansion was, respectively, 5 and 4.
The top panel of Fig. 6 summarizes the results we have

obtained for all the lattices. Different colors denote differ-
ent lattices. The analytical solutions are drawn as colored
solid lines. The results from the simulations are in good
agreement with the analytical solutions, and the statistical
errors are well under control up to L ¼ 64.

FIG. 6. Results from the continuum limit analysis (Lm̂ ¼ 16, βm̂ ¼ 2). The bottom left and bottom right pictures show how the Padé
approximants converge to the correct solution for the L ¼ 16 and L ¼ 64 lattices. The expansion points are shown as red points.
Different colors are used to denote the Padé approximants obtained by using a gradually increasing order of the Taylor coefficients for
the two central expansion points. Respectively, two and three extra constraints on the zeroth order Taylor coefficients were used for the
two lattices and the highest order Taylor coefficient that was calculated is, respectively, 5 and 4. The top picture summarizes the results
we obtained in our analysis. Different colors correspond to different lattice sizes. The analytical solutions are denoted by the colored
solid lines.

TABLE I. Parameters used for the continuum limit analysis
(Lm̂ ¼ 16, βm̂ ¼ 2).

L β ma

8 1.0 2.00
16 2.0 1.00
32 4.0 0.50
64 8.0 0.25
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We could take the continuum limit

and σ2̄. Two of them (namely σ1̄ and σ2̄) have a real
part of the action SR less than the minimum Smin

R of
the real action on the original domain of integration.
Hence their unstable thimble cannot intersect the
original domain of integration. As for σ1 one can
explicitly check that the attached unstable thimble
does not intersect the original domain of integration.
See the top picture of Fig. 5. The critical point σ0 is
represented by the green point sitting at ReðzÞ ¼ 0.
The critical point σ1 is represented by the closest
green point to σ0 to the left. The unstable thimbles
are displayed in magenta.

(3) The very same reasoning applied to μ
m ¼ 0.4 and μ

m ¼
1.4 can be applied to μ

m ¼ 0 and μ
m ¼ 1.8 (actually at

μ
m ¼ 0 there is no sign problem and thimble regu-
larization is not even needed).

We have computed by one-thimble simulations the Taylor
coefficients for the scalar condensate at μ

m ¼ 0.4 and
μ
m ¼ 1.4, respectively, up to orders 2 and 5. Then we have
constructed a (multipoint) Padé approximation using these

coefficients as inputs, adding as extra constraints the
coefficients of order 0 at the boundaries of the region we
have considered, i.e., μ

m ¼ 0 and μ
m ¼ 1.8. These extra

constraints were also calculated by one-thimble simulations.
The results are shown in the bottom left picture of Fig. 5.

The expansion points are displayed as black points. The
numerical results from the Padé approximants are displayed
in black (with error bars): they are in good agreement with
the analytical solution (the black line). The bottom right
picture of Fig. 5 shows the expansion points (the black
points) on the complex μ

m plane. The picture also shows the
pole of the approximant (the blue point) and the true
singularity of the observable (the green point). The first
matches quite well with the latter.
Finally the simulations have been repeated towards the

continuum limit. For this theory the continuum limit is
reached by increasing L ¼ 1

Ta and β ¼ 1
2g2a while keeping

fixed the dimensionless products Lm̂ and βm̂. In particular
we kept constant Lm̂ ¼ 16 and βm̂ ¼ 2. The parameters
used in the simulations are summarized in Table I.

FIG. 5. The top picture shows the thimble structure for L ¼ 8, β ¼ 1.0 and ma ¼ 2 at μ
m ¼ 1.4. The critical points are represented by

the green points, while the stable and unstable thimbles are displayed in blue and magenta. The critical point σ0 is the one sitting at
ReðzÞ ¼ 0 and the critical point immediately on the left is σ1. The unstable thimble attached to the former intersects the original domain
of integration (the real axis), while the unstable thimble attached to the latter does not. The bottom left picture shows the results from
Padé as black error bars, which are in very good agreement with the expectations from the analytical solution (represented by the black
solid line). The expansion points are also shown as black points. In the bottom right picture the expansion points are displayed on the
complex μ

m plane. On top of these are also shown the singularity of the condensate (the green point) and the stable pole of the Padé
approximant (the blue point).
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and σ2̄. Two of them (namely σ1̄ and σ2̄) have a real
part of the action SR less than the minimum Smin

R of
the real action on the original domain of integration.
Hence their unstable thimble cannot intersect the
original domain of integration. As for σ1 one can
explicitly check that the attached unstable thimble
does not intersect the original domain of integration.
See the top picture of Fig. 5. The critical point σ0 is
represented by the green point sitting at ReðzÞ ¼ 0.
The critical point σ1 is represented by the closest
green point to σ0 to the left. The unstable thimbles
are displayed in magenta.

(3) The very same reasoning applied to μ
m ¼ 0.4 and μ

m ¼
1.4 can be applied to μ

m ¼ 0 and μ
m ¼ 1.8 (actually at

μ
m ¼ 0 there is no sign problem and thimble regu-
larization is not even needed).

We have computed by one-thimble simulations the Taylor
coefficients for the scalar condensate at μ

m ¼ 0.4 and
μ
m ¼ 1.4, respectively, up to orders 2 and 5. Then we have
constructed a (multipoint) Padé approximation using these

coefficients as inputs, adding as extra constraints the
coefficients of order 0 at the boundaries of the region we
have considered, i.e., μ

m ¼ 0 and μ
m ¼ 1.8. These extra

constraints were also calculated by one-thimble simulations.
The results are shown in the bottom left picture of Fig. 5.

The expansion points are displayed as black points. The
numerical results from the Padé approximants are displayed
in black (with error bars): they are in good agreement with
the analytical solution (the black line). The bottom right
picture of Fig. 5 shows the expansion points (the black
points) on the complex μ

m plane. The picture also shows the
pole of the approximant (the blue point) and the true
singularity of the observable (the green point). The first
matches quite well with the latter.
Finally the simulations have been repeated towards the

continuum limit. For this theory the continuum limit is
reached by increasing L ¼ 1

Ta and β ¼ 1
2g2a while keeping

fixed the dimensionless products Lm̂ and βm̂. In particular
we kept constant Lm̂ ¼ 16 and βm̂ ¼ 2. The parameters
used in the simulations are summarized in Table I.

FIG. 5. The top picture shows the thimble structure for L ¼ 8, β ¼ 1.0 and ma ¼ 2 at μ
m ¼ 1.4. The critical points are represented by

the green points, while the stable and unstable thimbles are displayed in blue and magenta. The critical point σ0 is the one sitting at
ReðzÞ ¼ 0 and the critical point immediately on the left is σ1. The unstable thimble attached to the former intersects the original domain
of integration (the real axis), while the unstable thimble attached to the latter does not. The bottom left picture shows the results from
Padé as black error bars, which are in very good agreement with the expectations from the analytical solution (represented by the black
solid line). The expansion points are also shown as black points. In the bottom right picture the expansion points are displayed on the
complex μ

m plane. On top of these are also shown the singularity of the condensate (the green point) and the stable pole of the Padé
approximant (the blue point).
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(2) Once we have proposed a new configuration n̂0,
we perform aMetropolis accept/reject test by accept-
ing the proposal with probability Paccðn̂0 ← n̂Þ ¼
min

!
1;

Zσ
n̂0

Zσ
n̂

"
. Since the Metropolis proposal is sym-

metric, this is enough to satisfy the detailed balance
principle and the Markov chain will converge to the
targeted probability distribution Zσ

n̂
Zσ
.

The key ingredients that we need to compute are the partial
partition function Zn̂ and the (contribution from the current
SA path to the) observable fn̂. These are time integrals
whose computation requires to integrate the differential
equations for both the fields and the basis vectors given in
Eqs. (2) and (4) starting from an initial condition close to
the critical point,

#
z ¼ zσ þ

P
i nie

λitvðiÞ

VðhÞ ¼ vðhÞeλht
:

Actually in our calculations we integrate in action instead
of integrating in time. Since the real part of the action is
monotonic in time, one can make the change of variable

dSR
dt

¼1

2

d
dt
ðSþ S̄Þ¼ j∇Sj2↦dt¼dSRj∇Sj−2¼dsj∇Sj−2:

In the last step we have also defined a second change of
variable s ¼ SR − SRðzσÞ. In terms of s, the differential
equations for the fields and the basis become

dzi
ds

¼ j∇Sj−2 ∂S̄∂z̄i ;

dVðhÞ
j

ds
¼ j∇Sj−2

X

i

V̄ðhÞ
i ∂2

zizjS:

The change of variable is also performed for the time
integrals defining Zn̂ and fn̂, yielding

Zn̂ ¼ 2
X

i

λin2i e
−SRðzσÞ

Z
∞

0
dsj∇Sj−2e−sþ log j det VðsÞj;

fn̂ ¼ 2
X

i

λin2i e
−SRðzσÞ

Z
∞

0
ds fj∇Sj−2e−sþ log j det VðsÞj: ð5Þ

The advantage is twofold. First, the integration in action has
the effect of decreasing the number of iterations required to
reach convergence. Second, one can immediately recognize
from Eq. (5) that the integrals can be calculated using the
Gauss-Laguerre quadrature, i.e.,

Z
∞

0
fðxÞe−xdx ¼

X
wifðxiÞ;

where fxig and fwig are the quadrature points and their
associated weights. The calculation of the determinant
(which is computationally quite expensive) is required
only at the quadrature points.

III. ONE-THIMBLE SIMULATIONS

We now discuss the thimble regularization of the one-
dimensional Thirring model. As we have remarked in the
introduction, historically this is one of the very first
examples that have shown the inadequacy of the single-
thimble approximation (see Refs. [8–11]). The lattice
action for this theory can be written down as

S ¼ β
X

n¼1…L

ð1 − cosðϕnÞÞ − log det D;

where det D ¼ 1
2L−1

ðcoshðLμ̂ þ i
P

n ϕnÞ þ
coshðL asinhðm̂ÞÞÞ is the fermionic determinant. The
parameters μ̂ ¼ μa and m̂ ¼ ma are, respectively, the
chemical potential and the fermion mass in lattice units,
β ¼ ð2g2aÞ−1 is the inverse coupling constant and ϕn is a
scalar field discretized on a one-dimensional lattice of
length L. The theory features a sign problem originating
from the fermionic determinant, which is complex at
finite μ̂.
An analytical solution is known for the partition func-

tion. This is given in term of the modified Bessel functions
of the first kind InðxÞ,

Z¼ 1

2L−1
e−Lβ½I1ðβÞL coshðLμ̂Þþ I0ðβÞLcoshðLasinhðm̂ÞÞ&:

From the partition function one can derive closed-form
expressions for the physical observables, such the scalar
condensate hχ̄χi and the fermion density hni,

hχ̄χi ¼ 1

L
∂ log Z
∂m̂ ¼ 1

coshðasinhðm̂ÞÞ
I0ðβÞL sinhðL asinhðm̂ÞÞ

I1ðβÞL coshðLμ̂Þ þ I0ðβÞL cos hðL asinhðm̂ÞÞ

hni ¼ 1

L
∂ log Z
∂μ̂ ¼ I1ðβÞL sinhðLμ̂Þ

I1ðβÞL coshðLμ̂Þ þ I0ðβÞL coshðL asinhðm̂ÞÞ
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and σ2̄. Two of them (namely σ1̄ and σ2̄) have a real
part of the action SR less than the minimum Smin

R of
the real action on the original domain of integration.
Hence their unstable thimble cannot intersect the
original domain of integration. As for σ1 one can
explicitly check that the attached unstable thimble
does not intersect the original domain of integration.
See the top picture of Fig. 5. The critical point σ0 is
represented by the green point sitting at ReðzÞ ¼ 0.
The critical point σ1 is represented by the closest
green point to σ0 to the left. The unstable thimbles
are displayed in magenta.

(3) The very same reasoning applied to μ
m ¼ 0.4 and μ

m ¼
1.4 can be applied to μ

m ¼ 0 and μ
m ¼ 1.8 (actually at

μ
m ¼ 0 there is no sign problem and thimble regu-
larization is not even needed).

We have computed by one-thimble simulations the Taylor
coefficients for the scalar condensate at μ

m ¼ 0.4 and
μ
m ¼ 1.4, respectively, up to orders 2 and 5. Then we have
constructed a (multipoint) Padé approximation using these

coefficients as inputs, adding as extra constraints the
coefficients of order 0 at the boundaries of the region we
have considered, i.e., μ

m ¼ 0 and μ
m ¼ 1.8. These extra

constraints were also calculated by one-thimble simulations.
The results are shown in the bottom left picture of Fig. 5.

The expansion points are displayed as black points. The
numerical results from the Padé approximants are displayed
in black (with error bars): they are in good agreement with
the analytical solution (the black line). The bottom right
picture of Fig. 5 shows the expansion points (the black
points) on the complex μ

m plane. The picture also shows the
pole of the approximant (the blue point) and the true
singularity of the observable (the green point). The first
matches quite well with the latter.
Finally the simulations have been repeated towards the

continuum limit. For this theory the continuum limit is
reached by increasing L ¼ 1

Ta and β ¼ 1
2g2a while keeping

fixed the dimensionless products Lm̂ and βm̂. In particular
we kept constant Lm̂ ¼ 16 and βm̂ ¼ 2. The parameters
used in the simulations are summarized in Table I.

FIG. 5. The top picture shows the thimble structure for L ¼ 8, β ¼ 1.0 and ma ¼ 2 at μ
m ¼ 1.4. The critical points are represented by

the green points, while the stable and unstable thimbles are displayed in blue and magenta. The critical point σ0 is the one sitting at
ReðzÞ ¼ 0 and the critical point immediately on the left is σ1. The unstable thimble attached to the former intersects the original domain
of integration (the real axis), while the unstable thimble attached to the latter does not. The bottom left picture shows the results from
Padé as black error bars, which are in very good agreement with the expectations from the analytical solution (represented by the black
solid line). The expansion points are also shown as black points. In the bottom right picture the expansion points are displayed on the
complex μ

m plane. On top of these are also shown the singularity of the condensate (the green point) and the stable pole of the Padé
approximant (the blue point).
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What can we compute in dense lattice QCD, given the sign problem?

Taylor expansions at ZERO

singularities and apply them to the cases of the Roberge-
Weiss transition and the chiral transition of QCD. We also
discuss the case of the QCD critical end point. In Sec. III,
we provide details of our lattice QCD calculations, and in
Sec. IV, we discuss our strategy for determining rational
approximations to our lattice data. We present our findings
of the extracted singularities in Sec. V. We summarize and
conclude in Sec. VI. In order to consolidate our findings,
we compiled a number of the Appendixes (B–F), where we
discuss numerical issues related to our rational approx-
imations, which are based on a multipoint Padé method.

II. EXPECTED SINGULARITIES

The grand canonical partition function in lattice QCD,
ZGC ¼ ZðV; T; μBÞ has the form of a (high dimensional)
polynomial at any finite volume V and is positive for real
values of the temperature T and baryon chemical potential
μB. However, following Lee, Yang [30,31], and Fischer
[32], we point out that ZGC exhibits many zeros in the
complex chemical potential plane, which can be used to
extract valuable information on the phase transitions that
may occur in the system. A physical phase transition in the
thermodynamic limit can be identified when for V → ∞
one of the complex zeros approaches a point with real
parameters T; μB.
The grand canonical potential logðZGCÞ diverges when

one approaches a zero of ZGC. Singularities of the grand
canonical potential and its derivatives will limit any
analytic expansion performed at zero or purely imaginary
chemical potentials. The positions of the zeros of ZGC can
thus also be used to estimate the radius of convergence of
the Taylor expansion method.
In different ðT; μBÞ regions, the QCD partition function

can be approximately described by effective theories. At
high temperatures, far above the QCD transition, we might
be able to use a free Fermi gas to describe the thermody-
namic behavior of the quarks. Below the QCD crossover
temperature Tpc, the Hadron resonance gas is known to
describe the bulk thermodynamics of QCD matter quite
well [33–35]. However, we can also consider universal
behavior in the vicinity of the Roberge-Weiss, the chiral
transition, or even in the vicinity of the QCD critical end
point (if existing). In particular, we can predict the positions
of singularities in the complex μB plane, by applying
suitable mappings from the parameter space of QCD to
the relevant scaling fields in the vicinity of a critical point.
In the following, we make extensive use of the fact that the
scaling function of the order parameter fGðzÞ exhibits a
branch cut singularity at z ¼ zc, where the scaling variable
z is expressed in terms of the reduced temperature t and
symmetry breaking field h as z ¼ t=jhj1=βδ. The universal
position zc of the universal singularity, known as the Lee-
Yang edge singularity, has been recently determined for
different universality classes [36]. The three distinct scaling
approaches are visualized in Fig. 1. At this point not all of

the nonuniversal normalization constants that fix the above
mentioned mappings are known. We thus vary some of the
parameters to give an impression of the functional depend-
ence, which is discussed in more detail below. Also shown
are identified Lee-Yang-edge singularities from our lattice
QCD calculations on Nτ ¼ 4, 6 lattices. The determination
of the data points is discussed in Sec. V.

A. Singularities in the vicinity of the
Roberge-Weiss (RW) transition

The RW critical point (μB=T ¼ iπ) is a remnant of the
Zð3Þ symmetry in the quenched ðmq→ ∞Þ limit of QCD,
where mq specifies the quark masses, and the QCD
partition function has a reflection symmetry around
μB=T ¼ iπ [37]. The nature of the RW end point could
be either a first order triple point or a second order Zð2Þ
critical point depending on the value of the quark masses
[38]. In (2þ 1)-flavor QCD with a physical value of the
light quark masses with improved lattice discretization,
which is discussed here, one finds a second order Zð2Þ
critical point [39–41]. The order parameter in the vicinity of
a second order transition can be written as the sum of a
universal and a regular part,

M ¼ h1=δfGðzÞ þMreg; z≡ t=jhj1=βδ; ð1Þ

where t, h are scaling fields, and β, δ are critical exponents.
Also, fG is the universal scaling function for the order
parameter, whereasMreg accounts for regular contributions.

FIG. 1. Overview of the expected scaling behavior of the Lee-
Yang edge singularities in the complex plane of the baryon
chemical potential (μB=T). Universal scaling in the vicinity of the
Roberge-Weiss transition, the chiral transition, and the critical
end point is shown in yellow, green, and red, respectively. The
width of the bands indicate uncertainties in the nonuniversal
parameters. See the text for a detailed discussion. Data points
depict identified Lee-Yang edge singularities (method II) at
different temperatures, from lattice QCD calculations on lattices
with temporal extent Nτ ¼ 4, 6.
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singularities and apply them to the cases of the Roberge-
Weiss transition and the chiral transition of QCD. We also
discuss the case of the QCD critical end point. In Sec. III,
we provide details of our lattice QCD calculations, and in
Sec. IV, we discuss our strategy for determining rational
approximations to our lattice data. We present our findings
of the extracted singularities in Sec. V. We summarize and
conclude in Sec. VI. In order to consolidate our findings,
we compiled a number of the Appendixes (B–F), where we
discuss numerical issues related to our rational approx-
imations, which are based on a multipoint Padé method.

II. EXPECTED SINGULARITIES

The grand canonical partition function in lattice QCD,
ZGC ¼ ZðV; T; μBÞ has the form of a (high dimensional)
polynomial at any finite volume V and is positive for real
values of the temperature T and baryon chemical potential
μB. However, following Lee, Yang [30,31], and Fischer
[32], we point out that ZGC exhibits many zeros in the
complex chemical potential plane, which can be used to
extract valuable information on the phase transitions that
may occur in the system. A physical phase transition in the
thermodynamic limit can be identified when for V → ∞
one of the complex zeros approaches a point with real
parameters T; μB.
The grand canonical potential logðZGCÞ diverges when

one approaches a zero of ZGC. Singularities of the grand
canonical potential and its derivatives will limit any
analytic expansion performed at zero or purely imaginary
chemical potentials. The positions of the zeros of ZGC can
thus also be used to estimate the radius of convergence of
the Taylor expansion method.
In different ðT; μBÞ regions, the QCD partition function

can be approximately described by effective theories. At
high temperatures, far above the QCD transition, we might
be able to use a free Fermi gas to describe the thermody-
namic behavior of the quarks. Below the QCD crossover
temperature Tpc, the Hadron resonance gas is known to
describe the bulk thermodynamics of QCD matter quite
well [33–35]. However, we can also consider universal
behavior in the vicinity of the Roberge-Weiss, the chiral
transition, or even in the vicinity of the QCD critical end
point (if existing). In particular, we can predict the positions
of singularities in the complex μB plane, by applying
suitable mappings from the parameter space of QCD to
the relevant scaling fields in the vicinity of a critical point.
In the following, we make extensive use of the fact that the
scaling function of the order parameter fGðzÞ exhibits a
branch cut singularity at z ¼ zc, where the scaling variable
z is expressed in terms of the reduced temperature t and
symmetry breaking field h as z ¼ t=jhj1=βδ. The universal
position zc of the universal singularity, known as the Lee-
Yang edge singularity, has been recently determined for
different universality classes [36]. The three distinct scaling
approaches are visualized in Fig. 1. At this point not all of

the nonuniversal normalization constants that fix the above
mentioned mappings are known. We thus vary some of the
parameters to give an impression of the functional depend-
ence, which is discussed in more detail below. Also shown
are identified Lee-Yang-edge singularities from our lattice
QCD calculations on Nτ ¼ 4, 6 lattices. The determination
of the data points is discussed in Sec. V.

A. Singularities in the vicinity of the
Roberge-Weiss (RW) transition

The RW critical point (μB=T ¼ iπ) is a remnant of the
Zð3Þ symmetry in the quenched ðmq→ ∞Þ limit of QCD,
where mq specifies the quark masses, and the QCD
partition function has a reflection symmetry around
μB=T ¼ iπ [37]. The nature of the RW end point could
be either a first order triple point or a second order Zð2Þ
critical point depending on the value of the quark masses
[38]. In (2þ 1)-flavor QCD with a physical value of the
light quark masses with improved lattice discretization,
which is discussed here, one finds a second order Zð2Þ
critical point [39–41]. The order parameter in the vicinity of
a second order transition can be written as the sum of a
universal and a regular part,

M ¼ h1=δfGðzÞ þMreg; z≡ t=jhj1=βδ; ð1Þ

where t, h are scaling fields, and β, δ are critical exponents.
Also, fG is the universal scaling function for the order
parameter, whereasMreg accounts for regular contributions.

FIG. 1. Overview of the expected scaling behavior of the Lee-
Yang edge singularities in the complex plane of the baryon
chemical potential (μB=T). Universal scaling in the vicinity of the
Roberge-Weiss transition, the chiral transition, and the critical
end point is shown in yellow, green, and red, respectively. The
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depict identified Lee-Yang edge singularities (method II) at
different temperatures, from lattice QCD calculations on lattices
with temporal extent Nτ ¼ 4, 6.

P. DIMOPOULOS et al. PHYS. REV. D 105, 034513 (2022)

034513-2

singularities and apply them to the cases of the Roberge-
Weiss transition and the chiral transition of QCD. We also
discuss the case of the QCD critical end point. In Sec. III,
we provide details of our lattice QCD calculations, and in
Sec. IV, we discuss our strategy for determining rational
approximations to our lattice data. We present our findings
of the extracted singularities in Sec. V. We summarize and
conclude in Sec. VI. In order to consolidate our findings,
we compiled a number of the Appendixes (B–F), where we
discuss numerical issues related to our rational approx-
imations, which are based on a multipoint Padé method.
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high temperatures, far above the QCD transition, we might
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z is expressed in terms of the reduced temperature t and
symmetry breaking field h as z ¼ t=jhj1=βδ. The universal
position zc of the universal singularity, known as the Lee-
Yang edge singularity, has been recently determined for
different universality classes [36]. The three distinct scaling
approaches are visualized in Fig. 1. At this point not all of

the nonuniversal normalization constants that fix the above
mentioned mappings are known. We thus vary some of the
parameters to give an impression of the functional depend-
ence, which is discussed in more detail below. Also shown
are identified Lee-Yang-edge singularities from our lattice
QCD calculations on Nτ ¼ 4, 6 lattices. The determination
of the data points is discussed in Sec. V.
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The RW critical point (μB=T ¼ iπ) is a remnant of the
Zð3Þ symmetry in the quenched ðmq→ ∞Þ limit of QCD,
where mq specifies the quark masses, and the QCD
partition function has a reflection symmetry around
μB=T ¼ iπ [37]. The nature of the RW end point could
be either a first order triple point or a second order Zð2Þ
critical point depending on the value of the quark masses
[38]. In (2þ 1)-flavor QCD with a physical value of the
light quark masses with improved lattice discretization,
which is discussed here, one finds a second order Zð2Þ
critical point [39–41]. The order parameter in the vicinity of
a second order transition can be written as the sum of a
universal and a regular part,

M ¼ h1=δfGðzÞ þMreg; z≡ t=jhj1=βδ; ð1Þ

where t, h are scaling fields, and β, δ are critical exponents.
Also, fG is the universal scaling function for the order
parameter, whereasMreg accounts for regular contributions.

FIG. 1. Overview of the expected scaling behavior of the Lee-
Yang edge singularities in the complex plane of the baryon
chemical potential (μB=T). Universal scaling in the vicinity of the
Roberge-Weiss transition, the chiral transition, and the critical
end point is shown in yellow, green, and red, respectively. The
width of the bands indicate uncertainties in the nonuniversal
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different temperatures, from lattice QCD calculations on lattices
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The grand canonical potential logðZGCÞ diverges when
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canonical potential and its derivatives will limit any
analytic expansion performed at zero or purely imaginary
chemical potentials. The positions of the zeros of ZGC can
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the Taylor expansion method.
In different ðT; μBÞ regions, the QCD partition function

can be approximately described by effective theories. At
high temperatures, far above the QCD transition, we might
be able to use a free Fermi gas to describe the thermody-
namic behavior of the quarks. Below the QCD crossover
temperature Tpc, the Hadron resonance gas is known to
describe the bulk thermodynamics of QCD matter quite
well [33–35]. However, we can also consider universal
behavior in the vicinity of the Roberge-Weiss, the chiral
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point (if existing). In particular, we can predict the positions
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In the following, we make extensive use of the fact that the
scaling function of the order parameter fGðzÞ exhibits a
branch cut singularity at z ¼ zc, where the scaling variable
z is expressed in terms of the reduced temperature t and
symmetry breaking field h as z ¼ t=jhj1=βδ. The universal
position zc of the universal singularity, known as the Lee-
Yang edge singularity, has been recently determined for
different universality classes [36]. The three distinct scaling
approaches are visualized in Fig. 1. At this point not all of

the nonuniversal normalization constants that fix the above
mentioned mappings are known. We thus vary some of the
parameters to give an impression of the functional depend-
ence, which is discussed in more detail below. Also shown
are identified Lee-Yang-edge singularities from our lattice
QCD calculations on Nτ ¼ 4, 6 lattices. The determination
of the data points is discussed in Sec. V.

A. Singularities in the vicinity of the
Roberge-Weiss (RW) transition

The RW critical point (μB=T ¼ iπ) is a remnant of the
Zð3Þ symmetry in the quenched ðmq→ ∞Þ limit of QCD,
where mq specifies the quark masses, and the QCD
partition function has a reflection symmetry around
μB=T ¼ iπ [37]. The nature of the RW end point could
be either a first order triple point or a second order Zð2Þ
critical point depending on the value of the quark masses
[38]. In (2þ 1)-flavor QCD with a physical value of the
light quark masses with improved lattice discretization,
which is discussed here, one finds a second order Zð2Þ
critical point [39–41]. The order parameter in the vicinity of
a second order transition can be written as the sum of a
universal and a regular part,

M ¼ h1=δfGðzÞ þMreg; z≡ t=jhj1=βδ; ð1Þ

where t, h are scaling fields, and β, δ are critical exponents.
Also, fG is the universal scaling function for the order
parameter, whereasMreg accounts for regular contributions.

FIG. 1. Overview of the expected scaling behavior of the Lee-
Yang edge singularities in the complex plane of the baryon
chemical potential (μB=T). Universal scaling in the vicinity of the
Roberge-Weiss transition, the chiral transition, and the critical
end point is shown in yellow, green, and red, respectively. The
width of the bands indicate uncertainties in the nonuniversal
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singularities and apply them to the cases of the Roberge-
Weiss transition and the chiral transition of QCD. We also
discuss the case of the QCD critical end point. In Sec. III,
we provide details of our lattice QCD calculations, and in
Sec. IV, we discuss our strategy for determining rational
approximations to our lattice data. We present our findings
of the extracted singularities in Sec. V. We summarize and
conclude in Sec. VI. In order to consolidate our findings,
we compiled a number of the Appendixes (B–F), where we
discuss numerical issues related to our rational approx-
imations, which are based on a multipoint Padé method.
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ZGC ¼ ZðV; T; μBÞ has the form of a (high dimensional)
polynomial at any finite volume V and is positive for real
values of the temperature T and baryon chemical potential
μB. However, following Lee, Yang [30,31], and Fischer
[32], we point out that ZGC exhibits many zeros in the
complex chemical potential plane, which can be used to
extract valuable information on the phase transitions that
may occur in the system. A physical phase transition in the
thermodynamic limit can be identified when for V → ∞
one of the complex zeros approaches a point with real
parameters T; μB.
The grand canonical potential logðZGCÞ diverges when

one approaches a zero of ZGC. Singularities of the grand
canonical potential and its derivatives will limit any
analytic expansion performed at zero or purely imaginary
chemical potentials. The positions of the zeros of ZGC can
thus also be used to estimate the radius of convergence of
the Taylor expansion method.
In different ðT; μBÞ regions, the QCD partition function

can be approximately described by effective theories. At
high temperatures, far above the QCD transition, we might
be able to use a free Fermi gas to describe the thermody-
namic behavior of the quarks. Below the QCD crossover
temperature Tpc, the Hadron resonance gas is known to
describe the bulk thermodynamics of QCD matter quite
well [33–35]. However, we can also consider universal
behavior in the vicinity of the Roberge-Weiss, the chiral
transition, or even in the vicinity of the QCD critical end
point (if existing). In particular, we can predict the positions
of singularities in the complex μB plane, by applying
suitable mappings from the parameter space of QCD to
the relevant scaling fields in the vicinity of a critical point.
In the following, we make extensive use of the fact that the
scaling function of the order parameter fGðzÞ exhibits a
branch cut singularity at z ¼ zc, where the scaling variable
z is expressed in terms of the reduced temperature t and
symmetry breaking field h as z ¼ t=jhj1=βδ. The universal
position zc of the universal singularity, known as the Lee-
Yang edge singularity, has been recently determined for
different universality classes [36]. The three distinct scaling
approaches are visualized in Fig. 1. At this point not all of

the nonuniversal normalization constants that fix the above
mentioned mappings are known. We thus vary some of the
parameters to give an impression of the functional depend-
ence, which is discussed in more detail below. Also shown
are identified Lee-Yang-edge singularities from our lattice
QCD calculations on Nτ ¼ 4, 6 lattices. The determination
of the data points is discussed in Sec. V.

A. Singularities in the vicinity of the
Roberge-Weiss (RW) transition

The RW critical point (μB=T ¼ iπ) is a remnant of the
Zð3Þ symmetry in the quenched ðmq→ ∞Þ limit of QCD,
where mq specifies the quark masses, and the QCD
partition function has a reflection symmetry around
μB=T ¼ iπ [37]. The nature of the RW end point could
be either a first order triple point or a second order Zð2Þ
critical point depending on the value of the quark masses
[38]. In (2þ 1)-flavor QCD with a physical value of the
light quark masses with improved lattice discretization,
which is discussed here, one finds a second order Zð2Þ
critical point [39–41]. The order parameter in the vicinity of
a second order transition can be written as the sum of a
universal and a regular part,

M ¼ h1=δfGðzÞ þMreg; z≡ t=jhj1=βδ; ð1Þ

where t, h are scaling fields, and β, δ are critical exponents.
Also, fG is the universal scaling function for the order
parameter, whereasMreg accounts for regular contributions.

FIG. 1. Overview of the expected scaling behavior of the Lee-
Yang edge singularities in the complex plane of the baryon
chemical potential (μB=T). Universal scaling in the vicinity of the
Roberge-Weiss transition, the chiral transition, and the critical
end point is shown in yellow, green, and red, respectively. The
width of the bands indicate uncertainties in the nonuniversal
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with temporal extent Nτ ¼ 4, 6.
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scaling function of the order parameter fGðzÞ exhibits a
branch cut singularity at z ¼ zc, where the scaling variable
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approaches are visualized in Fig. 1. At this point not all of
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parameters to give an impression of the functional depend-
ence, which is discussed in more detail below. Also shown
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QCD calculations on Nτ ¼ 4, 6 lattices. The determination
of the data points is discussed in Sec. V.
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Zð3Þ symmetry in the quenched ðmq→ ∞Þ limit of QCD,
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μB=T ¼ iπ [37]. The nature of the RW end point could
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which is discussed here, one finds a second order Zð2Þ
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a second order transition can be written as the sum of a
universal and a regular part,
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such scaling fits also to lattice QCD data, which is however
currently beyond the scope of this exploratory study.

D. Thermal singularities

The Lee-Yang edge singularities are not the only singu-
larities in the complexμB=T plane.At temperatures above the
QCD crossover (T > Tpc), we expect that quasifree quarks
are the relevant degrees of freedom in the system. Quarks are
distributed according to the Fermi-Dirac distribution
fpðT; μÞ ¼ 1=ðexp ðεp − μÞ=T þ 1Þ. The singularities of
this function are located at %iπT % εp. In particular, the
singularities which are closest to the origin are located at
%iπT % ϵ0, whereε0 ¼ m is the restmass of the particle. The
thermal singularities of quasifree quarks are modified by
residual interactions as long as we are not considering the
Stefan-Boltzmann limit (T → ∞). We expect that to leading
order these modifications are expressed through a substan-
tially larger thermal mass m̃ðTÞ ≫ m.
The analytic structure of the Fermi-Dirac distribution

function interferes with the scaling of the Lee-Yang edge
singularity of the Roberge-Weiss transition, as given in
Eqs. (4) and (5). It is a priori not clear which type of
singularities are closer to the origin/imaginary axis and can
thus be found by a Padé/rational approximation of the data.
As a result of this study, we find that the leading singularities
at Im½μB=T' ¼ %π follow the RW scaling, see Sec. VA.

III. LATTICE SETUP AND OBSERVABLES

The partition function of a (2þ 1)-flavor of highly
improved staggered quarks (HISQ) [50] with imaginary
chemical potential can be written as

Z ¼
Z

DU det½Mðml; iμIlÞ'2=4

× det½Mðms; iμIsÞ'1=4e−S GðUÞ; ð12Þ

where Mðm; iμIÞ represents the fermion matrix of a HISQ
flavor with mass m and chemical potential μ ¼ iμI . The
first determinant represents the two degenerate light flavors
(up and down quarks). For the gauge part S GðUÞ, we are
using the Symanzik improved Wilson action, which is
correct to Oða2Þ in the lattice spacing. For the gauge field
generation, we were using the SIMULATeQCD package
[51] with and implementation of the rational hybrid
Monte Carlo algorithm (RHMC) [52]. The lattice bare
parameters are used from various publications of HotQCD.
The lattice bare quark masses are varied with the lattice
coupling such that for each coupling physical meson
masses are obtained; i.e., we stay on the line of constant
physics (LCP). Here, we make use of the parametrization of
the LCP (for the physical value of the pion mass,
ml=m

phys
s ¼ 1=27) obtained and refined in previous works

[53–55]. The same holds true for the scale setting, where

we used the parametrization of the β function based on the
kaon decay constant. For simplicity, we fix the ratio of the
explored chemical potential in this study to μl=μs ¼ 1.
The observables we calculate are the cumulants of the net

baryon number density, given as

χBn ðT;V;μBÞ¼
! ∂
∂μ̂B

"
n lnZðT;V;μl;μsÞ

VT3

¼
!
1

3

∂
∂μ̂lþ

1

3

∂
∂μ̂s

"
n lnZðT;V;μl;μsÞ

VT3
; ð13Þ

with μ̂X ¼ μX=T, X ¼ B, l, s. Note that the normalization is
done with appropriate powers of the temperature, such that
the observables are dimensionless. The derivatives generate
traces of the type Tr½ðM−1∂M=∂μXÞn ', which we evaluate
with the random noise method, using Oð500Þ random
vectors. For more details on the required traces and the
method of evaluation, see, e.g., [3].
For obvious reasons (sign problem), we perform our

calculations at purely imaginary baryon chemical potential
iμ̂IB, with μ̂IB ∈R. Exploiting all symmetries, we restrict
values for μ̂IB to half the period, i.e., μ̂IB ∈½0; π'. The
symmetries of the partition function generate specific
properties of the observables χBn . At imaginary chemical
potential, they are imaginary and odd functions of μ̂IB for
odd n and real and even functions of μ̂IB for even n . These
properties have been verified by us and can be seen from
Fig. 2, where we show results for the first three cumulants.

FIG. 2. Cumulants of the net baryon number fluctuations as a
function of a purely imaginary chemical potential, for three
different temperatures, obtained on 243 × 4 lattices. Shown are
Im[χB1 ] (top), Re½χB2 ' (middle), and Im[χB3 ]. Data points are
connected by dashed lines to guide the eye.
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singularities and apply them to the cases of the Roberge-
Weiss transition and the chiral transition of QCD. We also
discuss the case of the QCD critical end point. In Sec. III,
we provide details of our lattice QCD calculations, and in
Sec. IV, we discuss our strategy for determining rational
approximations to our lattice data. We present our findings
of the extracted singularities in Sec. V. We summarize and
conclude in Sec. VI. In order to consolidate our findings,
we compiled a number of the Appendixes (B–F), where we
discuss numerical issues related to our rational approx-
imations, which are based on a multipoint Padé method.

II. EXPECTED SINGULARITIES

The grand canonical partition function in lattice QCD,
ZGC ¼ ZðV; T; μBÞ has the form of a (high dimensional)
polynomial at any finite volume V and is positive for real
values of the temperature T and baryon chemical potential
μB. However, following Lee, Yang [30,31], and Fischer
[32], we point out that ZGC exhibits many zeros in the
complex chemical potential plane, which can be used to
extract valuable information on the phase transitions that
may occur in the system. A physical phase transition in the
thermodynamic limit can be identified when for V → ∞
one of the complex zeros approaches a point with real
parameters T; μB.
The grand canonical potential logðZGCÞ diverges when

one approaches a zero of ZGC. Singularities of the grand
canonical potential and its derivatives will limit any
analytic expansion performed at zero or purely imaginary
chemical potentials. The positions of the zeros of ZGC can
thus also be used to estimate the radius of convergence of
the Taylor expansion method.
In different ðT; μBÞ regions, the QCD partition function

can be approximately described by effective theories. At
high temperatures, far above the QCD transition, we might
be able to use a free Fermi gas to describe the thermody-
namic behavior of the quarks. Below the QCD crossover
temperature Tpc, the Hadron resonance gas is known to
describe the bulk thermodynamics of QCD matter quite
well [33–35]. However, we can also consider universal
behavior in the vicinity of the Roberge-Weiss, the chiral
transition, or even in the vicinity of the QCD critical end
point (if existing). In particular, we can predict the positions
of singularities in the complex μB plane, by applying
suitable mappings from the parameter space of QCD to
the relevant scaling fields in the vicinity of a critical point.
In the following, we make extensive use of the fact that the
scaling function of the order parameter fGðzÞ exhibits a
branch cut singularity at z ¼ zc, where the scaling variable
z is expressed in terms of the reduced temperature t and
symmetry breaking field h as z ¼ t=jhj1=βδ. The universal
position zc of the universal singularity, known as the Lee-
Yang edge singularity, has been recently determined for
different universality classes [36]. The three distinct scaling
approaches are visualized in Fig. 1. At this point not all of

the nonuniversal normalization constants that fix the above
mentioned mappings are known. We thus vary some of the
parameters to give an impression of the functional depend-
ence, which is discussed in more detail below. Also shown
are identified Lee-Yang-edge singularities from our lattice
QCD calculations on Nτ ¼ 4, 6 lattices. The determination
of the data points is discussed in Sec. V.

A. Singularities in the vicinity of the
Roberge-Weiss (RW) transition

The RW critical point (μB=T ¼ iπ) is a remnant of the
Zð3Þ symmetry in the quenched ðmq→ ∞Þ limit of QCD,
where mq specifies the quark masses, and the QCD
partition function has a reflection symmetry around
μB=T ¼ iπ [37]. The nature of the RW end point could
be either a first order triple point or a second order Zð2Þ
critical point depending on the value of the quark masses
[38]. In (2þ 1)-flavor QCD with a physical value of the
light quark masses with improved lattice discretization,
which is discussed here, one finds a second order Zð2Þ
critical point [39–41]. The order parameter in the vicinity of
a second order transition can be written as the sum of a
universal and a regular part,

M ¼ h1=δfGðzÞ þMreg; z≡ t=jhj1=βδ; ð1Þ

where t, h are scaling fields, and β, δ are critical exponents.
Also, fG is the universal scaling function for the order
parameter, whereasMreg accounts for regular contributions.

FIG. 1. Overview of the expected scaling behavior of the Lee-
Yang edge singularities in the complex plane of the baryon
chemical potential (μB=T). Universal scaling in the vicinity of the
Roberge-Weiss transition, the chiral transition, and the critical
end point is shown in yellow, green, and red, respectively. The
width of the bands indicate uncertainties in the nonuniversal
parameters. See the text for a detailed discussion. Data points
depict identified Lee-Yang edge singularities (method II) at
different temperatures, from lattice QCD calculations on lattices
with temporal extent Nτ ¼ 4, 6.
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Weiss transition and the chiral transition of QCD. We also
discuss the case of the QCD critical end point. In Sec. III,
we provide details of our lattice QCD calculations, and in
Sec. IV, we discuss our strategy for determining rational
approximations to our lattice data. We present our findings
of the extracted singularities in Sec. V. We summarize and
conclude in Sec. VI. In order to consolidate our findings,
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discuss numerical issues related to our rational approx-
imations, which are based on a multipoint Padé method.
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be able to use a free Fermi gas to describe the thermody-
namic behavior of the quarks. Below the QCD crossover
temperature Tpc, the Hadron resonance gas is known to
describe the bulk thermodynamics of QCD matter quite
well [33–35]. However, we can also consider universal
behavior in the vicinity of the Roberge-Weiss, the chiral
transition, or even in the vicinity of the QCD critical end
point (if existing). In particular, we can predict the positions
of singularities in the complex μB plane, by applying
suitable mappings from the parameter space of QCD to
the relevant scaling fields in the vicinity of a critical point.
In the following, we make extensive use of the fact that the
scaling function of the order parameter fGðzÞ exhibits a
branch cut singularity at z ¼ zc, where the scaling variable
z is expressed in terms of the reduced temperature t and
symmetry breaking field h as z ¼ t=jhj1=βδ. The universal
position zc of the universal singularity, known as the Lee-
Yang edge singularity, has been recently determined for
different universality classes [36]. The three distinct scaling
approaches are visualized in Fig. 1. At this point not all of

the nonuniversal normalization constants that fix the above
mentioned mappings are known. We thus vary some of the
parameters to give an impression of the functional depend-
ence, which is discussed in more detail below. Also shown
are identified Lee-Yang-edge singularities from our lattice
QCD calculations on Nτ ¼ 4, 6 lattices. The determination
of the data points is discussed in Sec. V.

A. Singularities in the vicinity of the
Roberge-Weiss (RW) transition

The RW critical point (μB=T ¼ iπ) is a remnant of the
Zð3Þ symmetry in the quenched ðmq→ ∞Þ limit of QCD,
where mq specifies the quark masses, and the QCD
partition function has a reflection symmetry around
μB=T ¼ iπ [37]. The nature of the RW end point could
be either a first order triple point or a second order Zð2Þ
critical point depending on the value of the quark masses
[38]. In (2þ 1)-flavor QCD with a physical value of the
light quark masses with improved lattice discretization,
which is discussed here, one finds a second order Zð2Þ
critical point [39–41]. The order parameter in the vicinity of
a second order transition can be written as the sum of a
universal and a regular part,

M ¼ h1=δfGðzÞ þMreg; z≡ t=jhj1=βδ; ð1Þ

where t, h are scaling fields, and β, δ are critical exponents.
Also, fG is the universal scaling function for the order
parameter, whereasMreg accounts for regular contributions.

FIG. 1. Overview of the expected scaling behavior of the Lee-
Yang edge singularities in the complex plane of the baryon
chemical potential (μB=T). Universal scaling in the vicinity of the
Roberge-Weiss transition, the chiral transition, and the critical
end point is shown in yellow, green, and red, respectively. The
width of the bands indicate uncertainties in the nonuniversal
parameters. See the text for a detailed discussion. Data points
depict identified Lee-Yang edge singularities (method II) at
different temperatures, from lattice QCD calculations on lattices
with temporal extent Nτ ¼ 4, 6.
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singularities and apply them to the cases of the Roberge-
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we provide details of our lattice QCD calculations, and in
Sec. IV, we discuss our strategy for determining rational
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imations, which are based on a multipoint Padé method.
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The grand canonical partition function in lattice QCD,
ZGC ¼ ZðV; T; μBÞ has the form of a (high dimensional)
polynomial at any finite volume V and is positive for real
values of the temperature T and baryon chemical potential
μB. However, following Lee, Yang [30,31], and Fischer
[32], we point out that ZGC exhibits many zeros in the
complex chemical potential plane, which can be used to
extract valuable information on the phase transitions that
may occur in the system. A physical phase transition in the
thermodynamic limit can be identified when for V → ∞
one of the complex zeros approaches a point with real
parameters T; μB.
The grand canonical potential logðZGCÞ diverges when

one approaches a zero of ZGC. Singularities of the grand
canonical potential and its derivatives will limit any
analytic expansion performed at zero or purely imaginary
chemical potentials. The positions of the zeros of ZGC can
thus also be used to estimate the radius of convergence of
the Taylor expansion method.
In different ðT; μBÞ regions, the QCD partition function

can be approximately described by effective theories. At
high temperatures, far above the QCD transition, we might
be able to use a free Fermi gas to describe the thermody-
namic behavior of the quarks. Below the QCD crossover
temperature Tpc, the Hadron resonance gas is known to
describe the bulk thermodynamics of QCD matter quite
well [33–35]. However, we can also consider universal
behavior in the vicinity of the Roberge-Weiss, the chiral
transition, or even in the vicinity of the QCD critical end
point (if existing). In particular, we can predict the positions
of singularities in the complex μB plane, by applying
suitable mappings from the parameter space of QCD to
the relevant scaling fields in the vicinity of a critical point.
In the following, we make extensive use of the fact that the
scaling function of the order parameter fGðzÞ exhibits a
branch cut singularity at z ¼ zc, where the scaling variable
z is expressed in terms of the reduced temperature t and
symmetry breaking field h as z ¼ t=jhj1=βδ. The universal
position zc of the universal singularity, known as the Lee-
Yang edge singularity, has been recently determined for
different universality classes [36]. The three distinct scaling
approaches are visualized in Fig. 1. At this point not all of

the nonuniversal normalization constants that fix the above
mentioned mappings are known. We thus vary some of the
parameters to give an impression of the functional depend-
ence, which is discussed in more detail below. Also shown
are identified Lee-Yang-edge singularities from our lattice
QCD calculations on Nτ ¼ 4, 6 lattices. The determination
of the data points is discussed in Sec. V.

A. Singularities in the vicinity of the
Roberge-Weiss (RW) transition

The RW critical point (μB=T ¼ iπ) is a remnant of the
Zð3Þ symmetry in the quenched ðmq→ ∞Þ limit of QCD,
where mq specifies the quark masses, and the QCD
partition function has a reflection symmetry around
μB=T ¼ iπ [37]. The nature of the RW end point could
be either a first order triple point or a second order Zð2Þ
critical point depending on the value of the quark masses
[38]. In (2þ 1)-flavor QCD with a physical value of the
light quark masses with improved lattice discretization,
which is discussed here, one finds a second order Zð2Þ
critical point [39–41]. The order parameter in the vicinity of
a second order transition can be written as the sum of a
universal and a regular part,

M ¼ h1=δfGðzÞ þMreg; z≡ t=jhj1=βδ; ð1Þ

where t, h are scaling fields, and β, δ are critical exponents.
Also, fG is the universal scaling function for the order
parameter, whereasMreg accounts for regular contributions.

FIG. 1. Overview of the expected scaling behavior of the Lee-
Yang edge singularities in the complex plane of the baryon
chemical potential (μB=T). Universal scaling in the vicinity of the
Roberge-Weiss transition, the chiral transition, and the critical
end point is shown in yellow, green, and red, respectively. The
width of the bands indicate uncertainties in the nonuniversal
parameters. See the text for a detailed discussion. Data points
depict identified Lee-Yang edge singularities (method II) at
different temperatures, from lattice QCD calculations on lattices
with temporal extent Nτ ¼ 4, 6.
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Let’s merge the two and then go for a (multi-point) PADÈ !

such scaling fits also to lattice QCD data, which is however
currently beyond the scope of this exploratory study.

D. Thermal singularities

The Lee-Yang edge singularities are not the only singu-
larities in the complexμB=T plane.At temperatures above the
QCD crossover (T > Tpc), we expect that quasifree quarks
are the relevant degrees of freedom in the system. Quarks are
distributed according to the Fermi-Dirac distribution
fpðT; μÞ ¼ 1=ðexp ðεp − μÞ=T þ 1Þ. The singularities of
this function are located at %iπT % εp. In particular, the
singularities which are closest to the origin are located at
%iπT % ϵ0, whereε0 ¼ m is the restmass of the particle. The
thermal singularities of quasifree quarks are modified by
residual interactions as long as we are not considering the
Stefan-Boltzmann limit (T → ∞). We expect that to leading
order these modifications are expressed through a substan-
tially larger thermal mass m̃ðTÞ ≫ m.
The analytic structure of the Fermi-Dirac distribution

function interferes with the scaling of the Lee-Yang edge
singularity of the Roberge-Weiss transition, as given in
Eqs. (4) and (5). It is a priori not clear which type of
singularities are closer to the origin/imaginary axis and can
thus be found by a Padé/rational approximation of the data.
As a result of this study, we find that the leading singularities
at Im½μB=T' ¼ %π follow the RW scaling, see Sec. VA.

III. LATTICE SETUP AND OBSERVABLES

The partition function of a (2þ 1)-flavor of highly
improved staggered quarks (HISQ) [50] with imaginary
chemical potential can be written as

Z ¼
Z

DU det½Mðml; iμIlÞ'2=4

× det½Mðms; iμIsÞ'1=4e−S GðUÞ; ð12Þ

where Mðm; iμIÞ represents the fermion matrix of a HISQ
flavor with mass m and chemical potential μ ¼ iμI . The
first determinant represents the two degenerate light flavors
(up and down quarks). For the gauge part S GðUÞ, we are
using the Symanzik improved Wilson action, which is
correct to Oða2Þ in the lattice spacing. For the gauge field
generation, we were using the SIMULATeQCD package
[51] with and implementation of the rational hybrid
Monte Carlo algorithm (RHMC) [52]. The lattice bare
parameters are used from various publications of HotQCD.
The lattice bare quark masses are varied with the lattice
coupling such that for each coupling physical meson
masses are obtained; i.e., we stay on the line of constant
physics (LCP). Here, we make use of the parametrization of
the LCP (for the physical value of the pion mass,
ml=m

phys
s ¼ 1=27) obtained and refined in previous works

[53–55]. The same holds true for the scale setting, where

we used the parametrization of the β function based on the
kaon decay constant. For simplicity, we fix the ratio of the
explored chemical potential in this study to μl=μs ¼ 1.
The observables we calculate are the cumulants of the net

baryon number density, given as

χBn ðT;V;μBÞ¼
! ∂
∂μ̂B

"
n lnZðT;V;μl;μsÞ

VT3

¼
!
1

3

∂
∂μ̂lþ

1

3

∂
∂μ̂s

"
n lnZðT;V;μl;μsÞ

VT3
; ð13Þ

with μ̂X ¼ μX=T, X ¼ B, l, s. Note that the normalization is
done with appropriate powers of the temperature, such that
the observables are dimensionless. The derivatives generate
traces of the type Tr½ðM−1∂M=∂μXÞn ', which we evaluate
with the random noise method, using Oð500Þ random
vectors. For more details on the required traces and the
method of evaluation, see, e.g., [3].
For obvious reasons (sign problem), we perform our

calculations at purely imaginary baryon chemical potential
iμ̂IB, with μ̂IB ∈R. Exploiting all symmetries, we restrict
values for μ̂IB to half the period, i.e., μ̂IB ∈½0; π'. The
symmetries of the partition function generate specific
properties of the observables χBn . At imaginary chemical
potential, they are imaginary and odd functions of μ̂IB for
odd n and real and even functions of μ̂IB for even n . These
properties have been verified by us and can be seen from
Fig. 2, where we show results for the first three cumulants.

FIG. 2. Cumulants of the net baryon number fluctuations as a
function of a purely imaginary chemical potential, for three
different temperatures, obtained on 243 × 4 lattices. Shown are
Im[χB1 ] (top), Re½χB2 ' (middle), and Im[χB3 ]. Data points are
connected by dashed lines to guide the eye.
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Preliminary results were presented in [56]. The data are
tabulated in Appendix A.
Since this is an exploratory study, we leave the con-

tinuum extrapolation for later publications and perform the
calculations on rather course lattices, 243 × 4 and 363 × 6.
We note however that we have deliberately chosen rather
large spatial volumes (we have aspect ratio Nσ=Nτ ¼ 6) in
order to minimize finite size effects which are expected to
become large in the vicinity of a phase transition.

IV. RATIONAL FUNCTION APPROXIMATION
OF THE LATTICE DATA

A. Padé approximants

Padé approximants [57] are a popular subject in approxi-
mation theory. The main idea is to approximate a given
function fðxÞ with a rational function whose derivatives
agree with those of fðxÞ up to a given order. This can be
easily rephrased in terms of power series. To set up our
notations, we first consider a so-called single-point [m/n]
Padé. Suppose the Taylor expansion of fðxÞ about a single
point (in what follows, it is useful to take this point as
x ¼ 0) is known up to a certain order (say L),

fðxÞ ¼
XL

i¼0

cixi þOðxLþ1Þ: ð14Þ

We denote Rm
n ðxÞ the ½m=n&Padé approximant we are

looking for,

Rm
n ðxÞ ¼

PmðxÞ
Q̃n ðxÞ

¼ PmðxÞ
1þQn ðxÞ

¼
Pm

i¼0 aix
i

1þ
Pn

j¼1 bjx
j ; ð15Þ

which is the ratio of two polynomials (Pm and Q̃n ) of order
m and n , respectively. By discarding a nontrivial b0 and
writing Q̃n ðxÞ ¼ 1þQn ðxÞ, in Eq. (15) we have made a
definite choice for the coefficients fai; bjg our approximant
essentially depends on. Given our knowledge of the Taylor
expansion for fðxÞ, in principle, our choice can be for any
order ½m=n&such that mþ n þ 1 ¼ Lþ 1. Strictly speak-
ing, not all such ½m=n&approximants exist.
Rational functions are not the only viable solutions in

approximation theory; polynomial approximants are very
popular as well. We stress from the very beginning a main
virtue of rational functionswe are interested in; they provide a
natural handle to probing the singularities structure of fðxÞ.
Quite trivially, the singularities ofRm

n ðxÞ are coming from the
zeros of 1þQn ðxÞ. To make the latter statement more
precise, we need to more precisely state what we mean by
a ½m=n&approximant. Our attitude is quite pragmatic; we
consider aRm

n ðxÞ for a given choice of½m=n&and solve for the
fai; bjg coefficients given that the power series of fðxÞ is
known to a given order L such thatmþnþ1¼Lþ1. Given
our input, we are not guaranteed that Pm and 1þQn ðxÞ are
coprime polynomials [58]. If this is not the case (i.e., there is a

nontrivial greatest common divisor), singularities of Rm
n ðxÞ

are coming from those zeros of 1þQn ðxÞ which either are
not zeros ofPmðxÞ or are zeros of 1þQn ðxÞ of a higher order
than they are of PmðxÞ. While trivial, this very last statement
will be of some relevance in the following. We are also quite
concerned with yet another property of Rm

n ðxÞ. Poles are the
only singularitieswe can find in a rational function; still, there
are signatures of other singularities of fðxÞ (e.g., branch cuts)
which we can recognize inRm

n ðxÞ once the coefficients of the
latter have been determined to reconstruct the power series of
fðxÞ.Wediscuss this topic (which indeed is relevant in the our
analysis) in Appendix E.
The most direct way of solving for the unknown

coefficients is by approximation through order; we match
coefficients of different powers of x between the (unknown)
rational function and the (known) Taylor series by demand-
ing functional independence (up to order xL). That means
we rewrite

Xm

i¼0

aixi ¼ PmðxÞ ¼ fðxÞð1þQn ðxÞÞ

¼
!XL

i¼0

cixi
"!

1þ
Xn

j¼1

bjxj
"
;

and match

a0 ¼ c0;

a1 ¼ c1 þ b1c0;

a2 ¼ c2 þ b1c1 þ b2c0;

' ' ' : ð16Þ

Equation (16) defines a set of simultaneous, linear equa-
tions, which can be solved by a convenient linear solver.
We stress that most often the linear system is not singular
but ill-conditioned, which is a warning that determining the
solution can be hard. Most importantly, we should keep in
mind that our knowledge of the derivatives of fðxÞ is
coming from stochastic evaluation via Monte Carlo sim-
ulations. Despite this, we see that we can manage to find the
information we are aiming at.
Approximation through order somehow hides that the

information we are making use of is coming from deriv-
atives of fðxÞ. The solution encoded in Eq. (16) can of
course also be obtained by evaluating in x ¼ 0 the tower of
relationships

PmðxÞ − fðxÞQn ðxÞ ¼ fðxÞ;
P0
mðxÞ − f0ðxÞQn ðxÞ − fðxÞQ0

n ðxÞ ¼ f0ðxÞ;
P00
mðxÞ − f00ðxÞQn ðxÞ − fðxÞQ00

n ðxÞ
−2f0ðxÞQ0

n ðxÞ ¼ f00ðxÞ;
' ' ' : ð17Þ
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singularities and apply them to the cases of the Roberge-
Weiss transition and the chiral transition of QCD. We also
discuss the case of the QCD critical end point. In Sec. III,
we provide details of our lattice QCD calculations, and in
Sec. IV, we discuss our strategy for determining rational
approximations to our lattice data. We present our findings
of the extracted singularities in Sec. V. We summarize and
conclude in Sec. VI. In order to consolidate our findings,
we compiled a number of the Appendixes (B–F), where we
discuss numerical issues related to our rational approx-
imations, which are based on a multipoint Padé method.

II. EXPECTED SINGULARITIES

The grand canonical partition function in lattice QCD,
ZGC ¼ ZðV; T; μBÞ has the form of a (high dimensional)
polynomial at any finite volume V and is positive for real
values of the temperature T and baryon chemical potential
μB. However, following Lee, Yang [30,31], and Fischer
[32], we point out that ZGC exhibits many zeros in the
complex chemical potential plane, which can be used to
extract valuable information on the phase transitions that
may occur in the system. A physical phase transition in the
thermodynamic limit can be identified when for V → ∞
one of the complex zeros approaches a point with real
parameters T; μB.
The grand canonical potential logðZGCÞ diverges when

one approaches a zero of ZGC. Singularities of the grand
canonical potential and its derivatives will limit any
analytic expansion performed at zero or purely imaginary
chemical potentials. The positions of the zeros of ZGC can
thus also be used to estimate the radius of convergence of
the Taylor expansion method.
In different ðT; μBÞ regions, the QCD partition function

can be approximately described by effective theories. At
high temperatures, far above the QCD transition, we might
be able to use a free Fermi gas to describe the thermody-
namic behavior of the quarks. Below the QCD crossover
temperature Tpc, the Hadron resonance gas is known to
describe the bulk thermodynamics of QCD matter quite
well [33–35]. However, we can also consider universal
behavior in the vicinity of the Roberge-Weiss, the chiral
transition, or even in the vicinity of the QCD critical end
point (if existing). In particular, we can predict the positions
of singularities in the complex μB plane, by applying
suitable mappings from the parameter space of QCD to
the relevant scaling fields in the vicinity of a critical point.
In the following, we make extensive use of the fact that the
scaling function of the order parameter fGðzÞ exhibits a
branch cut singularity at z ¼ zc, where the scaling variable
z is expressed in terms of the reduced temperature t and
symmetry breaking field h as z ¼ t=jhj1=βδ. The universal
position zc of the universal singularity, known as the Lee-
Yang edge singularity, has been recently determined for
different universality classes [36]. The three distinct scaling
approaches are visualized in Fig. 1. At this point not all of

the nonuniversal normalization constants that fix the above
mentioned mappings are known. We thus vary some of the
parameters to give an impression of the functional depend-
ence, which is discussed in more detail below. Also shown
are identified Lee-Yang-edge singularities from our lattice
QCD calculations on Nτ ¼ 4, 6 lattices. The determination
of the data points is discussed in Sec. V.

A. Singularities in the vicinity of the
Roberge-Weiss (RW) transition

The RW critical point (μB=T ¼ iπ) is a remnant of the
Zð3Þ symmetry in the quenched ðmq→ ∞Þ limit of QCD,
where mq specifies the quark masses, and the QCD
partition function has a reflection symmetry around
μB=T ¼ iπ [37]. The nature of the RW end point could
be either a first order triple point or a second order Zð2Þ
critical point depending on the value of the quark masses
[38]. In (2þ 1)-flavor QCD with a physical value of the
light quark masses with improved lattice discretization,
which is discussed here, one finds a second order Zð2Þ
critical point [39–41]. The order parameter in the vicinity of
a second order transition can be written as the sum of a
universal and a regular part,

M ¼ h1=δfGðzÞ þMreg; z≡ t=jhj1=βδ; ð1Þ

where t, h are scaling fields, and β, δ are critical exponents.
Also, fG is the universal scaling function for the order
parameter, whereasMreg accounts for regular contributions.

FIG. 1. Overview of the expected scaling behavior of the Lee-
Yang edge singularities in the complex plane of the baryon
chemical potential (μB=T). Universal scaling in the vicinity of the
Roberge-Weiss transition, the chiral transition, and the critical
end point is shown in yellow, green, and red, respectively. The
width of the bands indicate uncertainties in the nonuniversal
parameters. See the text for a detailed discussion. Data points
depict identified Lee-Yang edge singularities (method II) at
different temperatures, from lattice QCD calculations on lattices
with temporal extent Nτ ¼ 4, 6.
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such scaling fits also to lattice QCD data, which is however
currently beyond the scope of this exploratory study.

D. Thermal singularities

The Lee-Yang edge singularities are not the only singu-
larities in the complexμB=T plane.At temperatures above the
QCD crossover (T > Tpc), we expect that quasifree quarks
are the relevant degrees of freedom in the system. Quarks are
distributed according to the Fermi-Dirac distribution
fpðT; μÞ ¼ 1=ðexp ðεp − μÞ=T þ 1Þ. The singularities of
this function are located at %iπT % εp. In particular, the
singularities which are closest to the origin are located at
%iπT % ϵ0, whereε0 ¼ m is the restmass of the particle. The
thermal singularities of quasifree quarks are modified by
residual interactions as long as we are not considering the
Stefan-Boltzmann limit (T → ∞). We expect that to leading
order these modifications are expressed through a substan-
tially larger thermal mass m̃ðTÞ ≫ m.
The analytic structure of the Fermi-Dirac distribution

function interferes with the scaling of the Lee-Yang edge
singularity of the Roberge-Weiss transition, as given in
Eqs. (4) and (5). It is a priori not clear which type of
singularities are closer to the origin/imaginary axis and can
thus be found by a Padé/rational approximation of the data.
As a result of this study, we find that the leading singularities
at Im½μB=T' ¼ %π follow the RW scaling, see Sec. VA.

III. LATTICE SETUP AND OBSERVABLES

The partition function of a (2þ 1)-flavor of highly
improved staggered quarks (HISQ) [50] with imaginary
chemical potential can be written as

Z ¼
Z

DU det½Mðml; iμIlÞ'2=4

× det½Mðms; iμIsÞ'1=4e−S GðUÞ; ð12Þ

where Mðm; iμIÞ represents the fermion matrix of a HISQ
flavor with mass m and chemical potential μ ¼ iμI . The
first determinant represents the two degenerate light flavors
(up and down quarks). For the gauge part S GðUÞ, we are
using the Symanzik improved Wilson action, which is
correct to Oða2Þ in the lattice spacing. For the gauge field
generation, we were using the SIMULATeQCD package
[51] with and implementation of the rational hybrid
Monte Carlo algorithm (RHMC) [52]. The lattice bare
parameters are used from various publications of HotQCD.
The lattice bare quark masses are varied with the lattice
coupling such that for each coupling physical meson
masses are obtained; i.e., we stay on the line of constant
physics (LCP). Here, we make use of the parametrization of
the LCP (for the physical value of the pion mass,
ml=m

phys
s ¼ 1=27) obtained and refined in previous works

[53–55]. The same holds true for the scale setting, where

we used the parametrization of the β function based on the
kaon decay constant. For simplicity, we fix the ratio of the
explored chemical potential in this study to μl=μs ¼ 1.
The observables we calculate are the cumulants of the net

baryon number density, given as

χBn ðT;V;μBÞ¼
! ∂
∂μ̂B

"
n lnZðT;V;μl;μsÞ

VT3

¼
!
1

3

∂
∂μ̂lþ

1

3

∂
∂μ̂s

"
n lnZðT;V;μl;μsÞ

VT3
; ð13Þ

with μ̂X ¼ μX=T, X ¼ B, l, s. Note that the normalization is
done with appropriate powers of the temperature, such that
the observables are dimensionless. The derivatives generate
traces of the type Tr½ðM−1∂M=∂μXÞn ', which we evaluate
with the random noise method, using Oð500Þ random
vectors. For more details on the required traces and the
method of evaluation, see, e.g., [3].
For obvious reasons (sign problem), we perform our

calculations at purely imaginary baryon chemical potential
iμ̂IB, with μ̂IB ∈R. Exploiting all symmetries, we restrict
values for μ̂IB to half the period, i.e., μ̂IB ∈½0; π'. The
symmetries of the partition function generate specific
properties of the observables χBn . At imaginary chemical
potential, they are imaginary and odd functions of μ̂IB for
odd n and real and even functions of μ̂IB for even n . These
properties have been verified by us and can be seen from
Fig. 2, where we show results for the first three cumulants.

FIG. 2. Cumulants of the net baryon number fluctuations as a
function of a purely imaginary chemical potential, for three
different temperatures, obtained on 243 × 4 lattices. Shown are
Im[χB1 ] (top), Re½χB2 ' (middle), and Im[χB3 ]. Data points are
connected by dashed lines to guide the eye.
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Preliminary results were presented in [56]. The data are
tabulated in Appendix A.
Since this is an exploratory study, we leave the con-

tinuum extrapolation for later publications and perform the
calculations on rather course lattices, 243 × 4 and 363 × 6.
We note however that we have deliberately chosen rather
large spatial volumes (we have aspect ratio Nσ=Nτ ¼ 6) in
order to minimize finite size effects which are expected to
become large in the vicinity of a phase transition.

IV. RATIONAL FUNCTION APPROXIMATION
OF THE LATTICE DATA

A. Padé approximants

Padé approximants [57] are a popular subject in approxi-
mation theory. The main idea is to approximate a given
function fðxÞ with a rational function whose derivatives
agree with those of fðxÞ up to a given order. This can be
easily rephrased in terms of power series. To set up our
notations, we first consider a so-called single-point [m/n]
Padé. Suppose the Taylor expansion of fðxÞ about a single
point (in what follows, it is useful to take this point as
x ¼ 0) is known up to a certain order (say L),

fðxÞ ¼
XL

i¼0

cixi þOðxLþ1Þ: ð14Þ

We denote Rm
n ðxÞ the ½m=n&Padé approximant we are

looking for,

Rm
n ðxÞ ¼

PmðxÞ
Q̃n ðxÞ

¼ PmðxÞ
1þQn ðxÞ

¼
Pm

i¼0 aix
i

1þ
Pn

j¼1 bjx
j ; ð15Þ

which is the ratio of two polynomials (Pm and Q̃n ) of order
m and n , respectively. By discarding a nontrivial b0 and
writing Q̃n ðxÞ ¼ 1þQn ðxÞ, in Eq. (15) we have made a
definite choice for the coefficients fai; bjg our approximant
essentially depends on. Given our knowledge of the Taylor
expansion for fðxÞ, in principle, our choice can be for any
order ½m=n&such that mþ n þ 1 ¼ Lþ 1. Strictly speak-
ing, not all such ½m=n&approximants exist.
Rational functions are not the only viable solutions in

approximation theory; polynomial approximants are very
popular as well. We stress from the very beginning a main
virtue of rational functionswe are interested in; they provide a
natural handle to probing the singularities structure of fðxÞ.
Quite trivially, the singularities ofRm

n ðxÞ are coming from the
zeros of 1þQn ðxÞ. To make the latter statement more
precise, we need to more precisely state what we mean by
a ½m=n&approximant. Our attitude is quite pragmatic; we
consider aRm

n ðxÞ for a given choice of½m=n&and solve for the
fai; bjg coefficients given that the power series of fðxÞ is
known to a given order L such thatmþnþ1¼Lþ1. Given
our input, we are not guaranteed that Pm and 1þQn ðxÞ are
coprime polynomials [58]. If this is not the case (i.e., there is a

nontrivial greatest common divisor), singularities of Rm
n ðxÞ

are coming from those zeros of 1þQn ðxÞ which either are
not zeros ofPmðxÞ or are zeros of 1þQn ðxÞ of a higher order
than they are of PmðxÞ. While trivial, this very last statement
will be of some relevance in the following. We are also quite
concerned with yet another property of Rm

n ðxÞ. Poles are the
only singularitieswe can find in a rational function; still, there
are signatures of other singularities of fðxÞ (e.g., branch cuts)
which we can recognize inRm

n ðxÞ once the coefficients of the
latter have been determined to reconstruct the power series of
fðxÞ.Wediscuss this topic (which indeed is relevant in the our
analysis) in Appendix E.
The most direct way of solving for the unknown

coefficients is by approximation through order; we match
coefficients of different powers of x between the (unknown)
rational function and the (known) Taylor series by demand-
ing functional independence (up to order xL). That means
we rewrite

Xm

i¼0

aixi ¼ PmðxÞ ¼ fðxÞð1þQn ðxÞÞ

¼
!XL

i¼0

cixi
"!

1þ
Xn

j¼1

bjxj
"
;

and match

a0 ¼ c0;

a1 ¼ c1 þ b1c0;

a2 ¼ c2 þ b1c1 þ b2c0;

' ' ' : ð16Þ

Equation (16) defines a set of simultaneous, linear equa-
tions, which can be solved by a convenient linear solver.
We stress that most often the linear system is not singular
but ill-conditioned, which is a warning that determining the
solution can be hard. Most importantly, we should keep in
mind that our knowledge of the derivatives of fðxÞ is
coming from stochastic evaluation via Monte Carlo sim-
ulations. Despite this, we see that we can manage to find the
information we are aiming at.
Approximation through order somehow hides that the

information we are making use of is coming from deriv-
atives of fðxÞ. The solution encoded in Eq. (16) can of
course also be obtained by evaluating in x ¼ 0 the tower of
relationships

PmðxÞ − fðxÞQn ðxÞ ¼ fðxÞ;
P0
mðxÞ − f0ðxÞQn ðxÞ − fðxÞQ0

n ðxÞ ¼ f0ðxÞ;
P00
mðxÞ − f00ðxÞQn ðxÞ − fðxÞQ00

n ðxÞ
−2f0ðxÞQ0

n ðxÞ ¼ f00ðxÞ;
' ' ' : ð17Þ
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such scaling fits also to lattice QCD data, which is however
currently beyond the scope of this exploratory study.

D. Thermal singularities

The Lee-Yang edge singularities are not the only singu-
larities in the complexμB=T plane.At temperatures above the
QCD crossover (T > Tpc), we expect that quasifree quarks
are the relevant degrees of freedom in the system. Quarks are
distributed according to the Fermi-Dirac distribution
fpðT; μÞ ¼ 1=ðexp ðεp − μÞ=T þ 1Þ. The singularities of
this function are located at %iπT % εp. In particular, the
singularities which are closest to the origin are located at
%iπT % ϵ0, whereε0 ¼ m is the restmass of the particle. The
thermal singularities of quasifree quarks are modified by
residual interactions as long as we are not considering the
Stefan-Boltzmann limit (T → ∞). We expect that to leading
order these modifications are expressed through a substan-
tially larger thermal mass m̃ðTÞ ≫ m.
The analytic structure of the Fermi-Dirac distribution

function interferes with the scaling of the Lee-Yang edge
singularity of the Roberge-Weiss transition, as given in
Eqs. (4) and (5). It is a priori not clear which type of
singularities are closer to the origin/imaginary axis and can
thus be found by a Padé/rational approximation of the data.
As a result of this study, we find that the leading singularities
at Im½μB=T' ¼ %π follow the RW scaling, see Sec. VA.

III. LATTICE SETUP AND OBSERVABLES

The partition function of a (2þ 1)-flavor of highly
improved staggered quarks (HISQ) [50] with imaginary
chemical potential can be written as

Z ¼
Z

DU det½Mðml; iμIlÞ'2=4

× det½Mðms; iμIsÞ'1=4e−S GðUÞ; ð12Þ

where Mðm; iμIÞ represents the fermion matrix of a HISQ
flavor with mass m and chemical potential μ ¼ iμI . The
first determinant represents the two degenerate light flavors
(up and down quarks). For the gauge part S GðUÞ, we are
using the Symanzik improved Wilson action, which is
correct to Oða2Þ in the lattice spacing. For the gauge field
generation, we were using the SIMULATeQCD package
[51] with and implementation of the rational hybrid
Monte Carlo algorithm (RHMC) [52]. The lattice bare
parameters are used from various publications of HotQCD.
The lattice bare quark masses are varied with the lattice
coupling such that for each coupling physical meson
masses are obtained; i.e., we stay on the line of constant
physics (LCP). Here, we make use of the parametrization of
the LCP (for the physical value of the pion mass,
ml=m

phys
s ¼ 1=27) obtained and refined in previous works

[53–55]. The same holds true for the scale setting, where

we used the parametrization of the β function based on the
kaon decay constant. For simplicity, we fix the ratio of the
explored chemical potential in this study to μl=μs ¼ 1.
The observables we calculate are the cumulants of the net

baryon number density, given as

χBn ðT;V;μBÞ¼
! ∂
∂μ̂B

"
n lnZðT;V;μl;μsÞ

VT3

¼
!
1

3

∂
∂μ̂lþ

1

3

∂
∂μ̂s

"
n lnZðT;V;μl;μsÞ

VT3
; ð13Þ

with μ̂X ¼ μX=T, X ¼ B, l, s. Note that the normalization is
done with appropriate powers of the temperature, such that
the observables are dimensionless. The derivatives generate
traces of the type Tr½ðM−1∂M=∂μXÞn ', which we evaluate
with the random noise method, using Oð500Þ random
vectors. For more details on the required traces and the
method of evaluation, see, e.g., [3].
For obvious reasons (sign problem), we perform our

calculations at purely imaginary baryon chemical potential
iμ̂IB, with μ̂IB ∈R. Exploiting all symmetries, we restrict
values for μ̂IB to half the period, i.e., μ̂IB ∈½0; π'. The
symmetries of the partition function generate specific
properties of the observables χBn . At imaginary chemical
potential, they are imaginary and odd functions of μ̂IB for
odd n and real and even functions of μ̂IB for even n . These
properties have been verified by us and can be seen from
Fig. 2, where we show results for the first three cumulants.

FIG. 2. Cumulants of the net baryon number fluctuations as a
function of a purely imaginary chemical potential, for three
different temperatures, obtained on 243 × 4 lattices. Shown are
Im[χB1 ] (top), Re½χB2 ' (middle), and Im[χB3 ]. Data points are
connected by dashed lines to guide the eye.
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Preliminary results were presented in [56]. The data are
tabulated in Appendix A.
Since this is an exploratory study, we leave the con-

tinuum extrapolation for later publications and perform the
calculations on rather course lattices, 243 × 4 and 363 × 6.
We note however that we have deliberately chosen rather
large spatial volumes (we have aspect ratio Nσ=Nτ ¼ 6) in
order to minimize finite size effects which are expected to
become large in the vicinity of a phase transition.

IV. RATIONAL FUNCTION APPROXIMATION
OF THE LATTICE DATA

A. Padé approximants

Padé approximants [57] are a popular subject in approxi-
mation theory. The main idea is to approximate a given
function fðxÞ with a rational function whose derivatives
agree with those of fðxÞ up to a given order. This can be
easily rephrased in terms of power series. To set up our
notations, we first consider a so-called single-point [m/n]
Padé. Suppose the Taylor expansion of fðxÞ about a single
point (in what follows, it is useful to take this point as
x ¼ 0) is known up to a certain order (say L),

fðxÞ ¼
XL

i¼0

cixi þOðxLþ1Þ: ð14Þ

We denote Rm
n ðxÞ the ½m=n&Padé approximant we are

looking for,

Rm
n ðxÞ ¼

PmðxÞ
Q̃n ðxÞ

¼ PmðxÞ
1þQn ðxÞ

¼
Pm

i¼0 aix
i

1þ
Pn

j¼1 bjx
j ; ð15Þ

which is the ratio of two polynomials (Pm and Q̃n ) of order
m and n , respectively. By discarding a nontrivial b0 and
writing Q̃n ðxÞ ¼ 1þQn ðxÞ, in Eq. (15) we have made a
definite choice for the coefficients fai; bjg our approximant
essentially depends on. Given our knowledge of the Taylor
expansion for fðxÞ, in principle, our choice can be for any
order ½m=n&such that mþ n þ 1 ¼ Lþ 1. Strictly speak-
ing, not all such ½m=n&approximants exist.
Rational functions are not the only viable solutions in

approximation theory; polynomial approximants are very
popular as well. We stress from the very beginning a main
virtue of rational functionswe are interested in; they provide a
natural handle to probing the singularities structure of fðxÞ.
Quite trivially, the singularities ofRm

n ðxÞ are coming from the
zeros of 1þQn ðxÞ. To make the latter statement more
precise, we need to more precisely state what we mean by
a ½m=n&approximant. Our attitude is quite pragmatic; we
consider aRm

n ðxÞ for a given choice of½m=n&and solve for the
fai; bjg coefficients given that the power series of fðxÞ is
known to a given order L such thatmþnþ1¼Lþ1. Given
our input, we are not guaranteed that Pm and 1þQn ðxÞ are
coprime polynomials [58]. If this is not the case (i.e., there is a

nontrivial greatest common divisor), singularities of Rm
n ðxÞ

are coming from those zeros of 1þQn ðxÞ which either are
not zeros ofPmðxÞ or are zeros of 1þQn ðxÞ of a higher order
than they are of PmðxÞ. While trivial, this very last statement
will be of some relevance in the following. We are also quite
concerned with yet another property of Rm

n ðxÞ. Poles are the
only singularitieswe can find in a rational function; still, there
are signatures of other singularities of fðxÞ (e.g., branch cuts)
which we can recognize inRm

n ðxÞ once the coefficients of the
latter have been determined to reconstruct the power series of
fðxÞ.Wediscuss this topic (which indeed is relevant in the our
analysis) in Appendix E.
The most direct way of solving for the unknown

coefficients is by approximation through order; we match
coefficients of different powers of x between the (unknown)
rational function and the (known) Taylor series by demand-
ing functional independence (up to order xL). That means
we rewrite

Xm

i¼0

aixi ¼ PmðxÞ ¼ fðxÞð1þQn ðxÞÞ

¼
!XL

i¼0

cixi
"!

1þ
Xn

j¼1

bjxj
"
;

and match

a0 ¼ c0;

a1 ¼ c1 þ b1c0;

a2 ¼ c2 þ b1c1 þ b2c0;

' ' ' : ð16Þ

Equation (16) defines a set of simultaneous, linear equa-
tions, which can be solved by a convenient linear solver.
We stress that most often the linear system is not singular
but ill-conditioned, which is a warning that determining the
solution can be hard. Most importantly, we should keep in
mind that our knowledge of the derivatives of fðxÞ is
coming from stochastic evaluation via Monte Carlo sim-
ulations. Despite this, we see that we can manage to find the
information we are aiming at.
Approximation through order somehow hides that the

information we are making use of is coming from deriv-
atives of fðxÞ. The solution encoded in Eq. (16) can of
course also be obtained by evaluating in x ¼ 0 the tower of
relationships

PmðxÞ − fðxÞQn ðxÞ ¼ fðxÞ;
P0
mðxÞ − f0ðxÞQn ðxÞ − fðxÞQ0

n ðxÞ ¼ f0ðxÞ;
P00
mðxÞ − f00ðxÞQn ðxÞ − fðxÞQ00

n ðxÞ
−2f0ðxÞQ0

n ðxÞ ¼ f00ðxÞ;
' ' ' : ð17Þ
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Yet another way of obtaining the unknown ai, bj is to solve
the set of equations dk

dxk R
m
n ðxÞ ¼ fðkÞðxÞ, i.e., [59]

a0 ¼ fð0Þ;
a1 − a0b1 ¼ f0ð0Þ;

2a2 − 2a1b1 þ a0ð2b21 − 2b2Þ ¼ f00ð0Þ;
% % % : ð18Þ

While Eqs. (16), (17), and (18) are equivalent, the
latter is somehow less convenient, not being linear and
typically requires the use of computer algebra tools like
Mathematica. In our particular problem, we explicitly
showed that the three return the same results (to a very
good approximation); Eq. (17) has been to a large extent
our preferred choice.
There exists a significant amount of literature on single-

point Padé approximants (about existence, uniqueness, and
convergence). This is not true for the so-called multipoint
Padé to the same extent. The construction of a multipoint
Padé can be extremely useful in situations when Taylor
coefficients for a function about a single point are not
known to higher orders, but instead either the function
values are known or a few Taylor coefficients are known
about (possibly) many points. Since this is precisely the
situation we face in our lattice studies of QCD at finite
chemical potential, it is useful to understand how to build
rational approximations from these multipoints.
Extending what we saw above to multipoints is straight-

forward; in particular, we extend the formalism encoded in
Eq. (17). A few Taylor coefficients (i.e., derivatives) of a
function fðxÞ known at a collection of points fxiji ¼
1…Ng are consistent with the approximation to f provided
by Eq. (15) if they satisfy the set of equations

Pmðx1Þ − fðx1ÞQnðx1Þ ¼ fðx1Þ;
P0
mðx1Þ − f0ðx1ÞQnðx1Þ − fðx1ÞQ0

nðx1Þ ¼ f0ðx1Þ;
% % % ;

Pmðx2Þ − fðx2ÞQnðx2Þ ¼ fðx2Þ;
P0
mðx2Þ − f0ðx2ÞQnðx2Þ − fðx2ÞQ0

nðx2Þ ¼ f0ðx2Þ;
% % % ;

PmðxNÞ − fðxNÞQnðxNÞ ¼ fðxNÞ;
P0
mðxNÞ − f0ðxNÞQnðxNÞ − fðxNÞQ0

nðxNÞ ¼ f0ðxNÞ;
% % % ; ð19Þ

which is once again a linear system in nþmþ 1
unknowns where now nþmþ 1 ¼

PN
i¼1ðLi þ 1Þ. In the

previous formula, the highest order of derivative which we
know (i.e., Li) can be different for different points.
Multipoints Padé will be our choice for the analysis of
this work. We now proceed to discuss a few technical

details of our implementation, referring the reader to
Appendixes B–F for extra remarks and comments.

B. Padé approximants for the QCD net baryon
number density from imaginary chemical potential

This is not the first time Padé approximants are applied
to the study of finite density (lattice) QCD [60–62].
A recent paper has, in particular, proposed to join Padé
analysis and Bayesian methods, with applications to the
study of the crossover line [63]. In a way that is close to the
spirit of this work, in recent times, Padé approximants have
been successfully used to probe the singularity structure of
simple theories in the context of the Lefschetz thimble
method [64]. To our knowledge, this work is in a sense the
first attempt at a systematic study of the QCD phase
diagram and, in particular, of Lee-Yang edge singularities,
building on Padé analysis. The function we want to
approximate by rational functions is the net baryon number
density χB1 ðT; V; μBÞ, with the cumulants χBn ðT; V; μBÞ
(n > 1) entering Eq. (19) as derivatives. Our main goal
is to get signatures of singularities of χB1 ðT; V; μBÞ in the
complex-μB (μB ¼ μIB þ iμRB) plane (at fixed values of T
and V). Ultimately we aim to understand the phase diagram
of the theory. In particular, we find clear evidence of the
Roberge-Weiss transition in the μIB − T plane. Most impor-
tantly, if at some point we could find evidence of singu-
larities eventually pinching the (real) μRB axis, then we
would be in the presence of a QCD critical point candidate.
We have already seen that Eq. (19) is not the only way to

solve for the coefficients entering the Padé approximants
(15). Not only, e.g., does the multipoints version of Eq. (18)
works as well, but also other formalisms could be (and
actually were) used in our analysis. In the construction of
these other formalisms, a key point is that the values of the
χBn , i.e., the function f and its derivatives in Eq. (19), are
known to a limited precision since they are evaluated by
Monte Carlo. Our Padé analysis was performed following
three different approaches, aiming at assessing their mutual
consistency.
(1) The solution of the linear system (19) has been

worked out in two different ways, namely,
(i) One can build the system by writing the most

general form for Rm
n ðxÞ, i.e., that of (15).

(ii) One can instead impose the form

Rm
n ðxÞ ¼

Pm0

i¼0 a2iþ1x2iþ1

1þ
Pn=2

j¼1 b2jx
2j
;

ðm ¼ 2m0 þ 1; a1 ¼ χB2 ðT; V; 0ÞÞ; ð20Þ

with the coefficients faig and fbjg that turn out
to be real. This form ensures the following:
(a) The function χB1 ðT; V; μBÞ has the right
parity (it is an odd function). (b) As a conse-
quence of the coefficients being real valued, for
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such scaling fits also to lattice QCD data, which is however
currently beyond the scope of this exploratory study.

D. Thermal singularities

The Lee-Yang edge singularities are not the only singu-
larities in the complexμB=T plane.At temperatures above the
QCD crossover (T > Tpc), we expect that quasifree quarks
are the relevant degrees of freedom in the system. Quarks are
distributed according to the Fermi-Dirac distribution
fpðT; μÞ ¼ 1=ðexp ðεp − μÞ=T þ 1Þ. The singularities of
this function are located at %iπT % εp. In particular, the
singularities which are closest to the origin are located at
%iπT % ϵ0, whereε0 ¼ m is the restmass of the particle. The
thermal singularities of quasifree quarks are modified by
residual interactions as long as we are not considering the
Stefan-Boltzmann limit (T → ∞). We expect that to leading
order these modifications are expressed through a substan-
tially larger thermal mass m̃ðTÞ ≫ m.
The analytic structure of the Fermi-Dirac distribution

function interferes with the scaling of the Lee-Yang edge
singularity of the Roberge-Weiss transition, as given in
Eqs. (4) and (5). It is a priori not clear which type of
singularities are closer to the origin/imaginary axis and can
thus be found by a Padé/rational approximation of the data.
As a result of this study, we find that the leading singularities
at Im½μB=T' ¼ %π follow the RW scaling, see Sec. VA.

III. LATTICE SETUP AND OBSERVABLES

The partition function of a (2þ 1)-flavor of highly
improved staggered quarks (HISQ) [50] with imaginary
chemical potential can be written as

Z ¼
Z

DU det½Mðml; iμIlÞ'2=4

× det½Mðms; iμIsÞ'1=4e−S GðUÞ; ð12Þ

where Mðm; iμIÞ represents the fermion matrix of a HISQ
flavor with mass m and chemical potential μ ¼ iμI . The
first determinant represents the two degenerate light flavors
(up and down quarks). For the gauge part S GðUÞ, we are
using the Symanzik improved Wilson action, which is
correct to Oða2Þ in the lattice spacing. For the gauge field
generation, we were using the SIMULATeQCD package
[51] with and implementation of the rational hybrid
Monte Carlo algorithm (RHMC) [52]. The lattice bare
parameters are used from various publications of HotQCD.
The lattice bare quark masses are varied with the lattice
coupling such that for each coupling physical meson
masses are obtained; i.e., we stay on the line of constant
physics (LCP). Here, we make use of the parametrization of
the LCP (for the physical value of the pion mass,
ml=m

phys
s ¼ 1=27) obtained and refined in previous works

[53–55]. The same holds true for the scale setting, where

we used the parametrization of the β function based on the
kaon decay constant. For simplicity, we fix the ratio of the
explored chemical potential in this study to μl=μs ¼ 1.
The observables we calculate are the cumulants of the net

baryon number density, given as

χBn ðT;V;μBÞ¼
! ∂
∂μ̂B

"
n lnZðT;V;μl;μsÞ

VT3

¼
!
1

3

∂
∂μ̂lþ

1

3

∂
∂μ̂s

"
n lnZðT;V;μl;μsÞ

VT3
; ð13Þ

with μ̂X ¼ μX=T, X ¼ B, l, s. Note that the normalization is
done with appropriate powers of the temperature, such that
the observables are dimensionless. The derivatives generate
traces of the type Tr½ðM−1∂M=∂μXÞn ', which we evaluate
with the random noise method, using Oð500Þ random
vectors. For more details on the required traces and the
method of evaluation, see, e.g., [3].
For obvious reasons (sign problem), we perform our

calculations at purely imaginary baryon chemical potential
iμ̂IB, with μ̂IB ∈R. Exploiting all symmetries, we restrict
values for μ̂IB to half the period, i.e., μ̂IB ∈½0; π'. The
symmetries of the partition function generate specific
properties of the observables χBn . At imaginary chemical
potential, they are imaginary and odd functions of μ̂IB for
odd n and real and even functions of μ̂IB for even n . These
properties have been verified by us and can be seen from
Fig. 2, where we show results for the first three cumulants.

FIG. 2. Cumulants of the net baryon number fluctuations as a
function of a purely imaginary chemical potential, for three
different temperatures, obtained on 243 × 4 lattices. Shown are
Im[χB1 ] (top), Re½χB2 ' (middle), and Im[χB3 ]. Data points are
connected by dashed lines to guide the eye.
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Preliminary results were presented in [56]. The data are
tabulated in Appendix A.
Since this is an exploratory study, we leave the con-

tinuum extrapolation for later publications and perform the
calculations on rather course lattices, 243 × 4 and 363 × 6.
We note however that we have deliberately chosen rather
large spatial volumes (we have aspect ratio Nσ=Nτ ¼ 6) in
order to minimize finite size effects which are expected to
become large in the vicinity of a phase transition.

IV. RATIONAL FUNCTION APPROXIMATION
OF THE LATTICE DATA

A. Padé approximants

Padé approximants [57] are a popular subject in approxi-
mation theory. The main idea is to approximate a given
function fðxÞ with a rational function whose derivatives
agree with those of fðxÞ up to a given order. This can be
easily rephrased in terms of power series. To set up our
notations, we first consider a so-called single-point [m/n]
Padé. Suppose the Taylor expansion of fðxÞ about a single
point (in what follows, it is useful to take this point as
x ¼ 0) is known up to a certain order (say L),

fðxÞ ¼
XL

i¼0

cixi þOðxLþ1Þ: ð14Þ

We denote Rm
n ðxÞ the ½m=n&Padé approximant we are

looking for,

Rm
n ðxÞ ¼

PmðxÞ
Q̃n ðxÞ

¼ PmðxÞ
1þQn ðxÞ

¼
Pm

i¼0 aix
i

1þ
Pn

j¼1 bjx
j ; ð15Þ

which is the ratio of two polynomials (Pm and Q̃n ) of order
m and n , respectively. By discarding a nontrivial b0 and
writing Q̃n ðxÞ ¼ 1þQn ðxÞ, in Eq. (15) we have made a
definite choice for the coefficients fai; bjg our approximant
essentially depends on. Given our knowledge of the Taylor
expansion for fðxÞ, in principle, our choice can be for any
order ½m=n&such that mþ n þ 1 ¼ Lþ 1. Strictly speak-
ing, not all such ½m=n&approximants exist.
Rational functions are not the only viable solutions in

approximation theory; polynomial approximants are very
popular as well. We stress from the very beginning a main
virtue of rational functionswe are interested in; they provide a
natural handle to probing the singularities structure of fðxÞ.
Quite trivially, the singularities ofRm

n ðxÞ are coming from the
zeros of 1þQn ðxÞ. To make the latter statement more
precise, we need to more precisely state what we mean by
a ½m=n&approximant. Our attitude is quite pragmatic; we
consider aRm

n ðxÞ for a given choice of½m=n&and solve for the
fai; bjg coefficients given that the power series of fðxÞ is
known to a given order L such thatmþnþ1¼Lþ1. Given
our input, we are not guaranteed that Pm and 1þQn ðxÞ are
coprime polynomials [58]. If this is not the case (i.e., there is a

nontrivial greatest common divisor), singularities of Rm
n ðxÞ

are coming from those zeros of 1þQn ðxÞ which either are
not zeros ofPmðxÞ or are zeros of 1þQn ðxÞ of a higher order
than they are of PmðxÞ. While trivial, this very last statement
will be of some relevance in the following. We are also quite
concerned with yet another property of Rm

n ðxÞ. Poles are the
only singularitieswe can find in a rational function; still, there
are signatures of other singularities of fðxÞ (e.g., branch cuts)
which we can recognize inRm

n ðxÞ once the coefficients of the
latter have been determined to reconstruct the power series of
fðxÞ.Wediscuss this topic (which indeed is relevant in the our
analysis) in Appendix E.
The most direct way of solving for the unknown

coefficients is by approximation through order; we match
coefficients of different powers of x between the (unknown)
rational function and the (known) Taylor series by demand-
ing functional independence (up to order xL). That means
we rewrite

Xm

i¼0

aixi ¼ PmðxÞ ¼ fðxÞð1þQn ðxÞÞ

¼
!XL

i¼0

cixi
"!

1þ
Xn

j¼1

bjxj
"
;

and match

a0 ¼ c0;

a1 ¼ c1 þ b1c0;

a2 ¼ c2 þ b1c1 þ b2c0;

' ' ' : ð16Þ

Equation (16) defines a set of simultaneous, linear equa-
tions, which can be solved by a convenient linear solver.
We stress that most often the linear system is not singular
but ill-conditioned, which is a warning that determining the
solution can be hard. Most importantly, we should keep in
mind that our knowledge of the derivatives of fðxÞ is
coming from stochastic evaluation via Monte Carlo sim-
ulations. Despite this, we see that we can manage to find the
information we are aiming at.
Approximation through order somehow hides that the

information we are making use of is coming from deriv-
atives of fðxÞ. The solution encoded in Eq. (16) can of
course also be obtained by evaluating in x ¼ 0 the tower of
relationships

PmðxÞ − fðxÞQn ðxÞ ¼ fðxÞ;
P0
mðxÞ − f0ðxÞQn ðxÞ − fðxÞQ0

n ðxÞ ¼ f0ðxÞ;
P00
mðxÞ − f00ðxÞQn ðxÞ − fðxÞQ00

n ðxÞ
−2f0ðxÞQ0

n ðxÞ ¼ f00ðxÞ;
' ' ' : ð17Þ
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Yet another way of obtaining the unknown ai, bj is to solve
the set of equations dk

dxk R
m
n ðxÞ ¼ fðkÞðxÞ, i.e., [59]

a0 ¼ fð0Þ;
a1 − a0b1 ¼ f0ð0Þ;

2a2 − 2a1b1 þ a0ð2b21 − 2b2Þ ¼ f00ð0Þ;
% % % : ð18Þ

While Eqs. (16), (17), and (18) are equivalent, the
latter is somehow less convenient, not being linear and
typically requires the use of computer algebra tools like
Mathematica. In our particular problem, we explicitly
showed that the three return the same results (to a very
good approximation); Eq. (17) has been to a large extent
our preferred choice.
There exists a significant amount of literature on single-

point Padé approximants (about existence, uniqueness, and
convergence). This is not true for the so-called multipoint
Padé to the same extent. The construction of a multipoint
Padé can be extremely useful in situations when Taylor
coefficients for a function about a single point are not
known to higher orders, but instead either the function
values are known or a few Taylor coefficients are known
about (possibly) many points. Since this is precisely the
situation we face in our lattice studies of QCD at finite
chemical potential, it is useful to understand how to build
rational approximations from these multipoints.
Extending what we saw above to multipoints is straight-

forward; in particular, we extend the formalism encoded in
Eq. (17). A few Taylor coefficients (i.e., derivatives) of a
function fðxÞ known at a collection of points fxiji ¼
1…Ng are consistent with the approximation to f provided
by Eq. (15) if they satisfy the set of equations

Pmðx1Þ − fðx1ÞQnðx1Þ ¼ fðx1Þ;
P0
mðx1Þ − f0ðx1ÞQnðx1Þ − fðx1ÞQ0

nðx1Þ ¼ f0ðx1Þ;
% % % ;

Pmðx2Þ − fðx2ÞQnðx2Þ ¼ fðx2Þ;
P0
mðx2Þ − f0ðx2ÞQnðx2Þ − fðx2ÞQ0

nðx2Þ ¼ f0ðx2Þ;
% % % ;

PmðxNÞ − fðxNÞQnðxNÞ ¼ fðxNÞ;
P0
mðxNÞ − f0ðxNÞQnðxNÞ − fðxNÞQ0

nðxNÞ ¼ f0ðxNÞ;
% % % ; ð19Þ

which is once again a linear system in nþmþ 1
unknowns where now nþmþ 1 ¼

PN
i¼1ðLi þ 1Þ. In the

previous formula, the highest order of derivative which we
know (i.e., Li) can be different for different points.
Multipoints Padé will be our choice for the analysis of
this work. We now proceed to discuss a few technical

details of our implementation, referring the reader to
Appendixes B–F for extra remarks and comments.

B. Padé approximants for the QCD net baryon
number density from imaginary chemical potential

This is not the first time Padé approximants are applied
to the study of finite density (lattice) QCD [60–62].
A recent paper has, in particular, proposed to join Padé
analysis and Bayesian methods, with applications to the
study of the crossover line [63]. In a way that is close to the
spirit of this work, in recent times, Padé approximants have
been successfully used to probe the singularity structure of
simple theories in the context of the Lefschetz thimble
method [64]. To our knowledge, this work is in a sense the
first attempt at a systematic study of the QCD phase
diagram and, in particular, of Lee-Yang edge singularities,
building on Padé analysis. The function we want to
approximate by rational functions is the net baryon number
density χB1 ðT; V; μBÞ, with the cumulants χBn ðT; V; μBÞ
(n > 1) entering Eq. (19) as derivatives. Our main goal
is to get signatures of singularities of χB1 ðT; V; μBÞ in the
complex-μB (μB ¼ μIB þ iμRB) plane (at fixed values of T
and V). Ultimately we aim to understand the phase diagram
of the theory. In particular, we find clear evidence of the
Roberge-Weiss transition in the μIB − T plane. Most impor-
tantly, if at some point we could find evidence of singu-
larities eventually pinching the (real) μRB axis, then we
would be in the presence of a QCD critical point candidate.
We have already seen that Eq. (19) is not the only way to

solve for the coefficients entering the Padé approximants
(15). Not only, e.g., does the multipoints version of Eq. (18)
works as well, but also other formalisms could be (and
actually were) used in our analysis. In the construction of
these other formalisms, a key point is that the values of the
χBn , i.e., the function f and its derivatives in Eq. (19), are
known to a limited precision since they are evaluated by
Monte Carlo. Our Padé analysis was performed following
three different approaches, aiming at assessing their mutual
consistency.
(1) The solution of the linear system (19) has been

worked out in two different ways, namely,
(i) One can build the system by writing the most

general form for Rm
n ðxÞ, i.e., that of (15).

(ii) One can instead impose the form

Rm
n ðxÞ ¼

Pm0

i¼0 a2iþ1x2iþ1

1þ
Pn=2

j¼1 b2jx
2j
;

ðm ¼ 2m0 þ 1; a1 ¼ χB2 ðT; V; 0ÞÞ; ð20Þ

with the coefficients faig and fbjg that turn out
to be real. This form ensures the following:
(a) The function χB1 ðT; V; μBÞ has the right
parity (it is an odd function). (b) As a conse-
quence of the coefficients being real valued, for
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which we want to hold at many points for a function           and its derivatives

Yet another way of obtaining the unknown ai, bj is to solve
the set of equations dk

dxk R
m
n ðxÞ ¼ fðkÞðxÞ, i.e., [59]

a0 ¼ fð0Þ;
a1 − a0b1 ¼ f0ð0Þ;

2a2 − 2a1b1 þ a0ð2b21 − 2b2Þ ¼ f00ð0Þ;
% % % : ð18Þ

While Eqs. (16), (17), and (18) are equivalent, the
latter is somehow less convenient, not being linear and
typically requires the use of computer algebra tools like
Mathematica. In our particular problem, we explicitly
showed that the three return the same results (to a very
good approximation); Eq. (17) has been to a large extent
our preferred choice.
There exists a significant amount of literature on single-

point Padé approximants (about existence, uniqueness, and
convergence). This is not true for the so-called multipoint
Padé to the same extent. The construction of a multipoint
Padé can be extremely useful in situations when Taylor
coefficients for a function about a single point are not
known to higher orders, but instead either the function
values are known or a few Taylor coefficients are known
about (possibly) many points. Since this is precisely the
situation we face in our lattice studies of QCD at finite
chemical potential, it is useful to understand how to build
rational approximations from these multipoints.
Extending what we saw above to multipoints is straight-

forward; in particular, we extend the formalism encoded in
Eq. (17). A few Taylor coefficients (i.e., derivatives) of a
function fðxÞ known at a collection of points fxiji ¼
1…Ng are consistent with the approximation to f provided
by Eq. (15) if they satisfy the set of equations

Pmðx1Þ − fðx1ÞQnðx1Þ ¼ fðx1Þ;
P0
mðx1Þ − f0ðx1ÞQnðx1Þ − fðx1ÞQ0

nðx1Þ ¼ f0ðx1Þ;
% % % ;

Pmðx2Þ − fðx2ÞQnðx2Þ ¼ fðx2Þ;
P0
mðx2Þ − f0ðx2ÞQnðx2Þ − fðx2ÞQ0

nðx2Þ ¼ f0ðx2Þ;
% % % ;

PmðxNÞ − fðxNÞQnðxNÞ ¼ fðxNÞ;
P0
mðxNÞ − f0ðxNÞQnðxNÞ − fðxNÞQ0

nðxNÞ ¼ f0ðxNÞ;
% % % ; ð19Þ

which is once again a linear system in nþmþ 1
unknowns where now nþmþ 1 ¼

PN
i¼1ðLi þ 1Þ. In the

previous formula, the highest order of derivative which we
know (i.e., Li) can be different for different points.
Multipoints Padé will be our choice for the analysis of
this work. We now proceed to discuss a few technical

details of our implementation, referring the reader to
Appendixes B–F for extra remarks and comments.

B. Padé approximants for the QCD net baryon
number density from imaginary chemical potential

This is not the first time Padé approximants are applied
to the study of finite density (lattice) QCD [60–62].
A recent paper has, in particular, proposed to join Padé
analysis and Bayesian methods, with applications to the
study of the crossover line [63]. In a way that is close to the
spirit of this work, in recent times, Padé approximants have
been successfully used to probe the singularity structure of
simple theories in the context of the Lefschetz thimble
method [64]. To our knowledge, this work is in a sense the
first attempt at a systematic study of the QCD phase
diagram and, in particular, of Lee-Yang edge singularities,
building on Padé analysis. The function we want to
approximate by rational functions is the net baryon number
density χB1 ðT; V; μBÞ, with the cumulants χBn ðT; V; μBÞ
(n > 1) entering Eq. (19) as derivatives. Our main goal
is to get signatures of singularities of χB1 ðT; V; μBÞ in the
complex-μB (μB ¼ μIB þ iμRB) plane (at fixed values of T
and V). Ultimately we aim to understand the phase diagram
of the theory. In particular, we find clear evidence of the
Roberge-Weiss transition in the μIB − T plane. Most impor-
tantly, if at some point we could find evidence of singu-
larities eventually pinching the (real) μRB axis, then we
would be in the presence of a QCD critical point candidate.
We have already seen that Eq. (19) is not the only way to

solve for the coefficients entering the Padé approximants
(15). Not only, e.g., does the multipoints version of Eq. (18)
works as well, but also other formalisms could be (and
actually were) used in our analysis. In the construction of
these other formalisms, a key point is that the values of the
χBn , i.e., the function f and its derivatives in Eq. (19), are
known to a limited precision since they are evaluated by
Monte Carlo. Our Padé analysis was performed following
three different approaches, aiming at assessing their mutual
consistency.
(1) The solution of the linear system (19) has been

worked out in two different ways, namely,
(i) One can build the system by writing the most

general form for Rm
n ðxÞ, i.e., that of (15).

(ii) One can instead impose the form

Rm
n ðxÞ ¼

Pm0

i¼0 a2iþ1x2iþ1

1þ
Pn=2

j¼1 b2jx
2j
;

ðm ¼ 2m0 þ 1; a1 ¼ χB2 ðT; V; 0ÞÞ; ð20Þ

with the coefficients faig and fbjg that turn out
to be real. This form ensures the following:
(a) The function χB1 ðT; V; μBÞ has the right
parity (it is an odd function). (b) As a conse-
quence of the coefficients being real valued, for
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such scaling fits also to lattice QCD data, which is however
currently beyond the scope of this exploratory study.

D. Thermal singularities

The Lee-Yang edge singularities are not the only singu-
larities in the complexμB=T plane.At temperatures above the
QCD crossover (T > Tpc), we expect that quasifree quarks
are the relevant degrees of freedom in the system. Quarks are
distributed according to the Fermi-Dirac distribution
fpðT; μÞ ¼ 1=ðexp ðεp − μÞ=T þ 1Þ. The singularities of
this function are located at %iπT % εp. In particular, the
singularities which are closest to the origin are located at
%iπT % ϵ0, whereε0 ¼ m is the restmass of the particle. The
thermal singularities of quasifree quarks are modified by
residual interactions as long as we are not considering the
Stefan-Boltzmann limit (T → ∞). We expect that to leading
order these modifications are expressed through a substan-
tially larger thermal mass m̃ðTÞ ≫ m.
The analytic structure of the Fermi-Dirac distribution

function interferes with the scaling of the Lee-Yang edge
singularity of the Roberge-Weiss transition, as given in
Eqs. (4) and (5). It is a priori not clear which type of
singularities are closer to the origin/imaginary axis and can
thus be found by a Padé/rational approximation of the data.
As a result of this study, we find that the leading singularities
at Im½μB=T' ¼ %π follow the RW scaling, see Sec. VA.

III. LATTICE SETUP AND OBSERVABLES

The partition function of a (2þ 1)-flavor of highly
improved staggered quarks (HISQ) [50] with imaginary
chemical potential can be written as

Z ¼
Z

DU det½Mðml; iμIlÞ'2=4

× det½Mðms; iμIsÞ'1=4e−S GðUÞ; ð12Þ

where Mðm; iμIÞ represents the fermion matrix of a HISQ
flavor with mass m and chemical potential μ ¼ iμI . The
first determinant represents the two degenerate light flavors
(up and down quarks). For the gauge part S GðUÞ, we are
using the Symanzik improved Wilson action, which is
correct to Oða2Þ in the lattice spacing. For the gauge field
generation, we were using the SIMULATeQCD package
[51] with and implementation of the rational hybrid
Monte Carlo algorithm (RHMC) [52]. The lattice bare
parameters are used from various publications of HotQCD.
The lattice bare quark masses are varied with the lattice
coupling such that for each coupling physical meson
masses are obtained; i.e., we stay on the line of constant
physics (LCP). Here, we make use of the parametrization of
the LCP (for the physical value of the pion mass,
ml=m

phys
s ¼ 1=27) obtained and refined in previous works

[53–55]. The same holds true for the scale setting, where

we used the parametrization of the β function based on the
kaon decay constant. For simplicity, we fix the ratio of the
explored chemical potential in this study to μl=μs ¼ 1.
The observables we calculate are the cumulants of the net

baryon number density, given as

χBn ðT;V;μBÞ¼
! ∂
∂μ̂B

"
n lnZðT;V;μl;μsÞ

VT3

¼
!
1

3

∂
∂μ̂lþ

1

3

∂
∂μ̂s

"
n lnZðT;V;μl;μsÞ

VT3
; ð13Þ

with μ̂X ¼ μX=T, X ¼ B, l, s. Note that the normalization is
done with appropriate powers of the temperature, such that
the observables are dimensionless. The derivatives generate
traces of the type Tr½ðM−1∂M=∂μXÞn ', which we evaluate
with the random noise method, using Oð500Þ random
vectors. For more details on the required traces and the
method of evaluation, see, e.g., [3].
For obvious reasons (sign problem), we perform our

calculations at purely imaginary baryon chemical potential
iμ̂IB, with μ̂IB ∈R. Exploiting all symmetries, we restrict
values for μ̂IB to half the period, i.e., μ̂IB ∈½0; π'. The
symmetries of the partition function generate specific
properties of the observables χBn . At imaginary chemical
potential, they are imaginary and odd functions of μ̂IB for
odd n and real and even functions of μ̂IB for even n . These
properties have been verified by us and can be seen from
Fig. 2, where we show results for the first three cumulants.

FIG. 2. Cumulants of the net baryon number fluctuations as a
function of a purely imaginary chemical potential, for three
different temperatures, obtained on 243 × 4 lattices. Shown are
Im[χB1 ] (top), Re½χB2 ' (middle), and Im[χB3 ]. Data points are
connected by dashed lines to guide the eye.
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Preliminary results were presented in [56]. The data are
tabulated in Appendix A.
Since this is an exploratory study, we leave the con-

tinuum extrapolation for later publications and perform the
calculations on rather course lattices, 243 × 4 and 363 × 6.
We note however that we have deliberately chosen rather
large spatial volumes (we have aspect ratio Nσ=Nτ ¼ 6) in
order to minimize finite size effects which are expected to
become large in the vicinity of a phase transition.

IV. RATIONAL FUNCTION APPROXIMATION
OF THE LATTICE DATA

A. Padé approximants

Padé approximants [57] are a popular subject in approxi-
mation theory. The main idea is to approximate a given
function fðxÞ with a rational function whose derivatives
agree with those of fðxÞ up to a given order. This can be
easily rephrased in terms of power series. To set up our
notations, we first consider a so-called single-point [m/n]
Padé. Suppose the Taylor expansion of fðxÞ about a single
point (in what follows, it is useful to take this point as
x ¼ 0) is known up to a certain order (say L),

fðxÞ ¼
XL

i¼0

cixi þOðxLþ1Þ: ð14Þ

We denote Rm
n ðxÞ the ½m=n&Padé approximant we are

looking for,

Rm
n ðxÞ ¼

PmðxÞ
Q̃n ðxÞ

¼ PmðxÞ
1þQn ðxÞ

¼
Pm

i¼0 aix
i

1þ
Pn

j¼1 bjx
j ; ð15Þ

which is the ratio of two polynomials (Pm and Q̃n ) of order
m and n , respectively. By discarding a nontrivial b0 and
writing Q̃n ðxÞ ¼ 1þQn ðxÞ, in Eq. (15) we have made a
definite choice for the coefficients fai; bjg our approximant
essentially depends on. Given our knowledge of the Taylor
expansion for fðxÞ, in principle, our choice can be for any
order ½m=n&such that mþ n þ 1 ¼ Lþ 1. Strictly speak-
ing, not all such ½m=n&approximants exist.
Rational functions are not the only viable solutions in

approximation theory; polynomial approximants are very
popular as well. We stress from the very beginning a main
virtue of rational functionswe are interested in; they provide a
natural handle to probing the singularities structure of fðxÞ.
Quite trivially, the singularities ofRm

n ðxÞ are coming from the
zeros of 1þQn ðxÞ. To make the latter statement more
precise, we need to more precisely state what we mean by
a ½m=n&approximant. Our attitude is quite pragmatic; we
consider aRm

n ðxÞ for a given choice of½m=n&and solve for the
fai; bjg coefficients given that the power series of fðxÞ is
known to a given order L such thatmþnþ1¼Lþ1. Given
our input, we are not guaranteed that Pm and 1þQn ðxÞ are
coprime polynomials [58]. If this is not the case (i.e., there is a

nontrivial greatest common divisor), singularities of Rm
n ðxÞ

are coming from those zeros of 1þQn ðxÞ which either are
not zeros ofPmðxÞ or are zeros of 1þQn ðxÞ of a higher order
than they are of PmðxÞ. While trivial, this very last statement
will be of some relevance in the following. We are also quite
concerned with yet another property of Rm

n ðxÞ. Poles are the
only singularitieswe can find in a rational function; still, there
are signatures of other singularities of fðxÞ (e.g., branch cuts)
which we can recognize inRm

n ðxÞ once the coefficients of the
latter have been determined to reconstruct the power series of
fðxÞ.Wediscuss this topic (which indeed is relevant in the our
analysis) in Appendix E.
The most direct way of solving for the unknown

coefficients is by approximation through order; we match
coefficients of different powers of x between the (unknown)
rational function and the (known) Taylor series by demand-
ing functional independence (up to order xL). That means
we rewrite

Xm

i¼0

aixi ¼ PmðxÞ ¼ fðxÞð1þQn ðxÞÞ

¼
!XL

i¼0

cixi
"!

1þ
Xn

j¼1

bjxj
"
;

and match

a0 ¼ c0;

a1 ¼ c1 þ b1c0;

a2 ¼ c2 þ b1c1 þ b2c0;

' ' ' : ð16Þ

Equation (16) defines a set of simultaneous, linear equa-
tions, which can be solved by a convenient linear solver.
We stress that most often the linear system is not singular
but ill-conditioned, which is a warning that determining the
solution can be hard. Most importantly, we should keep in
mind that our knowledge of the derivatives of fðxÞ is
coming from stochastic evaluation via Monte Carlo sim-
ulations. Despite this, we see that we can manage to find the
information we are aiming at.
Approximation through order somehow hides that the

information we are making use of is coming from deriv-
atives of fðxÞ. The solution encoded in Eq. (16) can of
course also be obtained by evaluating in x ¼ 0 the tower of
relationships

PmðxÞ − fðxÞQn ðxÞ ¼ fðxÞ;
P0
mðxÞ − f0ðxÞQn ðxÞ − fðxÞQ0

n ðxÞ ¼ f0ðxÞ;
P00
mðxÞ − f00ðxÞQn ðxÞ − fðxÞQ00

n ðxÞ
−2f0ðxÞQ0

n ðxÞ ¼ f00ðxÞ;
' ' ' : ð17Þ
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such scaling fits also to lattice QCD data, which is however
currently beyond the scope of this exploratory study.

D. Thermal singularities

The Lee-Yang edge singularities are not the only singu-
larities in the complexμB=T plane.At temperatures above the
QCD crossover (T > Tpc), we expect that quasifree quarks
are the relevant degrees of freedom in the system. Quarks are
distributed according to the Fermi-Dirac distribution
fpðT; μÞ ¼ 1=ðexp ðεp − μÞ=T þ 1Þ. The singularities of
this function are located at %iπT % εp. In particular, the
singularities which are closest to the origin are located at
%iπT % ϵ0, whereε0 ¼ m is the restmass of the particle. The
thermal singularities of quasifree quarks are modified by
residual interactions as long as we are not considering the
Stefan-Boltzmann limit (T → ∞). We expect that to leading
order these modifications are expressed through a substan-
tially larger thermal mass m̃ðTÞ ≫ m.
The analytic structure of the Fermi-Dirac distribution

function interferes with the scaling of the Lee-Yang edge
singularity of the Roberge-Weiss transition, as given in
Eqs. (4) and (5). It is a priori not clear which type of
singularities are closer to the origin/imaginary axis and can
thus be found by a Padé/rational approximation of the data.
As a result of this study, we find that the leading singularities
at Im½μB=T' ¼ %π follow the RW scaling, see Sec. VA.

III. LATTICE SETUP AND OBSERVABLES

The partition function of a (2þ 1)-flavor of highly
improved staggered quarks (HISQ) [50] with imaginary
chemical potential can be written as

Z ¼
Z

DU det½Mðml; iμIlÞ'2=4

× det½Mðms; iμIsÞ'1=4e−S GðUÞ; ð12Þ

where Mðm; iμIÞ represents the fermion matrix of a HISQ
flavor with mass m and chemical potential μ ¼ iμI . The
first determinant represents the two degenerate light flavors
(up and down quarks). For the gauge part S GðUÞ, we are
using the Symanzik improved Wilson action, which is
correct to Oða2Þ in the lattice spacing. For the gauge field
generation, we were using the SIMULATeQCD package
[51] with and implementation of the rational hybrid
Monte Carlo algorithm (RHMC) [52]. The lattice bare
parameters are used from various publications of HotQCD.
The lattice bare quark masses are varied with the lattice
coupling such that for each coupling physical meson
masses are obtained; i.e., we stay on the line of constant
physics (LCP). Here, we make use of the parametrization of
the LCP (for the physical value of the pion mass,
ml=m

phys
s ¼ 1=27) obtained and refined in previous works

[53–55]. The same holds true for the scale setting, where

we used the parametrization of the β function based on the
kaon decay constant. For simplicity, we fix the ratio of the
explored chemical potential in this study to μl=μs ¼ 1.
The observables we calculate are the cumulants of the net

baryon number density, given as

χBn ðT;V;μBÞ¼
! ∂
∂μ̂B

"
n lnZðT;V;μl;μsÞ

VT3

¼
!
1

3

∂
∂μ̂lþ

1

3

∂
∂μ̂s

"
n lnZðT;V;μl;μsÞ

VT3
; ð13Þ

with μ̂X ¼ μX=T, X ¼ B, l, s. Note that the normalization is
done with appropriate powers of the temperature, such that
the observables are dimensionless. The derivatives generate
traces of the type Tr½ðM−1∂M=∂μXÞn ', which we evaluate
with the random noise method, using Oð500Þ random
vectors. For more details on the required traces and the
method of evaluation, see, e.g., [3].
For obvious reasons (sign problem), we perform our

calculations at purely imaginary baryon chemical potential
iμ̂IB, with μ̂IB ∈R. Exploiting all symmetries, we restrict
values for μ̂IB to half the period, i.e., μ̂IB ∈½0; π'. The
symmetries of the partition function generate specific
properties of the observables χBn . At imaginary chemical
potential, they are imaginary and odd functions of μ̂IB for
odd n and real and even functions of μ̂IB for even n . These
properties have been verified by us and can be seen from
Fig. 2, where we show results for the first three cumulants.

FIG. 2. Cumulants of the net baryon number fluctuations as a
function of a purely imaginary chemical potential, for three
different temperatures, obtained on 243 × 4 lattices. Shown are
Im[χB1 ] (top), Re½χB2 ' (middle), and Im[χB3 ]. Data points are
connected by dashed lines to guide the eye.
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Preliminary results were presented in [56]. The data are
tabulated in Appendix A.
Since this is an exploratory study, we leave the con-

tinuum extrapolation for later publications and perform the
calculations on rather course lattices, 243 × 4 and 363 × 6.
We note however that we have deliberately chosen rather
large spatial volumes (we have aspect ratio Nσ=Nτ ¼ 6) in
order to minimize finite size effects which are expected to
become large in the vicinity of a phase transition.

IV. RATIONAL FUNCTION APPROXIMATION
OF THE LATTICE DATA

A. Padé approximants

Padé approximants [57] are a popular subject in approxi-
mation theory. The main idea is to approximate a given
function fðxÞ with a rational function whose derivatives
agree with those of fðxÞ up to a given order. This can be
easily rephrased in terms of power series. To set up our
notations, we first consider a so-called single-point [m/n]
Padé. Suppose the Taylor expansion of fðxÞ about a single
point (in what follows, it is useful to take this point as
x ¼ 0) is known up to a certain order (say L),

fðxÞ ¼
XL

i¼0

cixi þOðxLþ1Þ: ð14Þ

We denote Rm
n ðxÞ the ½m=n&Padé approximant we are

looking for,

Rm
n ðxÞ ¼

PmðxÞ
Q̃n ðxÞ

¼ PmðxÞ
1þQn ðxÞ

¼
Pm

i¼0 aix
i

1þ
Pn

j¼1 bjx
j ; ð15Þ

which is the ratio of two polynomials (Pm and Q̃n ) of order
m and n , respectively. By discarding a nontrivial b0 and
writing Q̃n ðxÞ ¼ 1þQn ðxÞ, in Eq. (15) we have made a
definite choice for the coefficients fai; bjg our approximant
essentially depends on. Given our knowledge of the Taylor
expansion for fðxÞ, in principle, our choice can be for any
order ½m=n&such that mþ n þ 1 ¼ Lþ 1. Strictly speak-
ing, not all such ½m=n&approximants exist.
Rational functions are not the only viable solutions in

approximation theory; polynomial approximants are very
popular as well. We stress from the very beginning a main
virtue of rational functionswe are interested in; they provide a
natural handle to probing the singularities structure of fðxÞ.
Quite trivially, the singularities ofRm

n ðxÞ are coming from the
zeros of 1þQn ðxÞ. To make the latter statement more
precise, we need to more precisely state what we mean by
a ½m=n&approximant. Our attitude is quite pragmatic; we
consider aRm

n ðxÞ for a given choice of½m=n&and solve for the
fai; bjg coefficients given that the power series of fðxÞ is
known to a given order L such thatmþnþ1¼Lþ1. Given
our input, we are not guaranteed that Pm and 1þQn ðxÞ are
coprime polynomials [58]. If this is not the case (i.e., there is a

nontrivial greatest common divisor), singularities of Rm
n ðxÞ

are coming from those zeros of 1þQn ðxÞ which either are
not zeros ofPmðxÞ or are zeros of 1þQn ðxÞ of a higher order
than they are of PmðxÞ. While trivial, this very last statement
will be of some relevance in the following. We are also quite
concerned with yet another property of Rm

n ðxÞ. Poles are the
only singularitieswe can find in a rational function; still, there
are signatures of other singularities of fðxÞ (e.g., branch cuts)
which we can recognize inRm

n ðxÞ once the coefficients of the
latter have been determined to reconstruct the power series of
fðxÞ.Wediscuss this topic (which indeed is relevant in the our
analysis) in Appendix E.
The most direct way of solving for the unknown

coefficients is by approximation through order; we match
coefficients of different powers of x between the (unknown)
rational function and the (known) Taylor series by demand-
ing functional independence (up to order xL). That means
we rewrite

Xm

i¼0

aixi ¼ PmðxÞ ¼ fðxÞð1þQn ðxÞÞ

¼
!XL

i¼0

cixi
"!

1þ
Xn

j¼1

bjxj
"
;

and match

a0 ¼ c0;

a1 ¼ c1 þ b1c0;

a2 ¼ c2 þ b1c1 þ b2c0;

' ' ' : ð16Þ

Equation (16) defines a set of simultaneous, linear equa-
tions, which can be solved by a convenient linear solver.
We stress that most often the linear system is not singular
but ill-conditioned, which is a warning that determining the
solution can be hard. Most importantly, we should keep in
mind that our knowledge of the derivatives of fðxÞ is
coming from stochastic evaluation via Monte Carlo sim-
ulations. Despite this, we see that we can manage to find the
information we are aiming at.
Approximation through order somehow hides that the

information we are making use of is coming from deriv-
atives of fðxÞ. The solution encoded in Eq. (16) can of
course also be obtained by evaluating in x ¼ 0 the tower of
relationships

PmðxÞ − fðxÞQn ðxÞ ¼ fðxÞ;
P0
mðxÞ − f0ðxÞQn ðxÞ − fðxÞQ0

n ðxÞ ¼ f0ðxÞ;
P00
mðxÞ − f00ðxÞQn ðxÞ − fðxÞQ00

n ðxÞ
−2f0ðxÞQ0

n ðxÞ ¼ f00ðxÞ;
' ' ' : ð17Þ
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Yet another way of obtaining the unknown ai, bj is to solve
the set of equations dk

dxk R
m
n ðxÞ ¼ fðkÞðxÞ, i.e., [59]

a0 ¼ fð0Þ;
a1 − a0b1 ¼ f0ð0Þ;

2a2 − 2a1b1 þ a0ð2b21 − 2b2Þ ¼ f00ð0Þ;
% % % : ð18Þ

While Eqs. (16), (17), and (18) are equivalent, the
latter is somehow less convenient, not being linear and
typically requires the use of computer algebra tools like
Mathematica. In our particular problem, we explicitly
showed that the three return the same results (to a very
good approximation); Eq. (17) has been to a large extent
our preferred choice.
There exists a significant amount of literature on single-

point Padé approximants (about existence, uniqueness, and
convergence). This is not true for the so-called multipoint
Padé to the same extent. The construction of a multipoint
Padé can be extremely useful in situations when Taylor
coefficients for a function about a single point are not
known to higher orders, but instead either the function
values are known or a few Taylor coefficients are known
about (possibly) many points. Since this is precisely the
situation we face in our lattice studies of QCD at finite
chemical potential, it is useful to understand how to build
rational approximations from these multipoints.
Extending what we saw above to multipoints is straight-

forward; in particular, we extend the formalism encoded in
Eq. (17). A few Taylor coefficients (i.e., derivatives) of a
function fðxÞ known at a collection of points fxiji ¼
1…Ng are consistent with the approximation to f provided
by Eq. (15) if they satisfy the set of equations

Pmðx1Þ − fðx1ÞQnðx1Þ ¼ fðx1Þ;
P0
mðx1Þ − f0ðx1ÞQnðx1Þ − fðx1ÞQ0

nðx1Þ ¼ f0ðx1Þ;
% % % ;

Pmðx2Þ − fðx2ÞQnðx2Þ ¼ fðx2Þ;
P0
mðx2Þ − f0ðx2ÞQnðx2Þ − fðx2ÞQ0

nðx2Þ ¼ f0ðx2Þ;
% % % ;

PmðxNÞ − fðxNÞQnðxNÞ ¼ fðxNÞ;
P0
mðxNÞ − f0ðxNÞQnðxNÞ − fðxNÞQ0

nðxNÞ ¼ f0ðxNÞ;
% % % ; ð19Þ

which is once again a linear system in nþmþ 1
unknowns where now nþmþ 1 ¼

PN
i¼1ðLi þ 1Þ. In the

previous formula, the highest order of derivative which we
know (i.e., Li) can be different for different points.
Multipoints Padé will be our choice for the analysis of
this work. We now proceed to discuss a few technical

details of our implementation, referring the reader to
Appendixes B–F for extra remarks and comments.

B. Padé approximants for the QCD net baryon
number density from imaginary chemical potential

This is not the first time Padé approximants are applied
to the study of finite density (lattice) QCD [60–62].
A recent paper has, in particular, proposed to join Padé
analysis and Bayesian methods, with applications to the
study of the crossover line [63]. In a way that is close to the
spirit of this work, in recent times, Padé approximants have
been successfully used to probe the singularity structure of
simple theories in the context of the Lefschetz thimble
method [64]. To our knowledge, this work is in a sense the
first attempt at a systematic study of the QCD phase
diagram and, in particular, of Lee-Yang edge singularities,
building on Padé analysis. The function we want to
approximate by rational functions is the net baryon number
density χB1 ðT; V; μBÞ, with the cumulants χBn ðT; V; μBÞ
(n > 1) entering Eq. (19) as derivatives. Our main goal
is to get signatures of singularities of χB1 ðT; V; μBÞ in the
complex-μB (μB ¼ μIB þ iμRB) plane (at fixed values of T
and V). Ultimately we aim to understand the phase diagram
of the theory. In particular, we find clear evidence of the
Roberge-Weiss transition in the μIB − T plane. Most impor-
tantly, if at some point we could find evidence of singu-
larities eventually pinching the (real) μRB axis, then we
would be in the presence of a QCD critical point candidate.
We have already seen that Eq. (19) is not the only way to

solve for the coefficients entering the Padé approximants
(15). Not only, e.g., does the multipoints version of Eq. (18)
works as well, but also other formalisms could be (and
actually were) used in our analysis. In the construction of
these other formalisms, a key point is that the values of the
χBn , i.e., the function f and its derivatives in Eq. (19), are
known to a limited precision since they are evaluated by
Monte Carlo. Our Padé analysis was performed following
three different approaches, aiming at assessing their mutual
consistency.
(1) The solution of the linear system (19) has been

worked out in two different ways, namely,
(i) One can build the system by writing the most

general form for Rm
n ðxÞ, i.e., that of (15).

(ii) One can instead impose the form

Rm
n ðxÞ ¼

Pm0

i¼0 a2iþ1x2iþ1

1þ
Pn=2

j¼1 b2jx
2j
;

ðm ¼ 2m0 þ 1; a1 ¼ χB2 ðT; V; 0ÞÞ; ð20Þ

with the coefficients faig and fbjg that turn out
to be real. This form ensures the following:
(a) The function χB1 ðT; V; μBÞ has the right
parity (it is an odd function). (b) As a conse-
quence of the coefficients being real valued, for
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such scaling fits also to lattice QCD data, which is however
currently beyond the scope of this exploratory study.

D. Thermal singularities

The Lee-Yang edge singularities are not the only singu-
larities in the complexμB=T plane.At temperatures above the
QCD crossover (T > Tpc), we expect that quasifree quarks
are the relevant degrees of freedom in the system. Quarks are
distributed according to the Fermi-Dirac distribution
fpðT; μÞ ¼ 1=ðexp ðεp − μÞ=T þ 1Þ. The singularities of
this function are located at %iπT % εp. In particular, the
singularities which are closest to the origin are located at
%iπT % ϵ0, whereε0 ¼ m is the restmass of the particle. The
thermal singularities of quasifree quarks are modified by
residual interactions as long as we are not considering the
Stefan-Boltzmann limit (T → ∞). We expect that to leading
order these modifications are expressed through a substan-
tially larger thermal mass m̃ðTÞ ≫ m.
The analytic structure of the Fermi-Dirac distribution

function interferes with the scaling of the Lee-Yang edge
singularity of the Roberge-Weiss transition, as given in
Eqs. (4) and (5). It is a priori not clear which type of
singularities are closer to the origin/imaginary axis and can
thus be found by a Padé/rational approximation of the data.
As a result of this study, we find that the leading singularities
at Im½μB=T' ¼ %π follow the RW scaling, see Sec. VA.

III. LATTICE SETUP AND OBSERVABLES

The partition function of a (2þ 1)-flavor of highly
improved staggered quarks (HISQ) [50] with imaginary
chemical potential can be written as

Z ¼
Z

DU det½Mðml; iμIlÞ'2=4

× det½Mðms; iμIsÞ'1=4e−S GðUÞ; ð12Þ

where Mðm; iμIÞ represents the fermion matrix of a HISQ
flavor with mass m and chemical potential μ ¼ iμI . The
first determinant represents the two degenerate light flavors
(up and down quarks). For the gauge part S GðUÞ, we are
using the Symanzik improved Wilson action, which is
correct to Oða2Þ in the lattice spacing. For the gauge field
generation, we were using the SIMULATeQCD package
[51] with and implementation of the rational hybrid
Monte Carlo algorithm (RHMC) [52]. The lattice bare
parameters are used from various publications of HotQCD.
The lattice bare quark masses are varied with the lattice
coupling such that for each coupling physical meson
masses are obtained; i.e., we stay on the line of constant
physics (LCP). Here, we make use of the parametrization of
the LCP (for the physical value of the pion mass,
ml=m

phys
s ¼ 1=27) obtained and refined in previous works

[53–55]. The same holds true for the scale setting, where

we used the parametrization of the β function based on the
kaon decay constant. For simplicity, we fix the ratio of the
explored chemical potential in this study to μl=μs ¼ 1.
The observables we calculate are the cumulants of the net

baryon number density, given as

χBn ðT;V;μBÞ¼
! ∂
∂μ̂B

"
n lnZðT;V;μl;μsÞ

VT3

¼
!
1

3

∂
∂μ̂lþ

1

3

∂
∂μ̂s

"
n lnZðT;V;μl;μsÞ

VT3
; ð13Þ

with μ̂X ¼ μX=T, X ¼ B, l, s. Note that the normalization is
done with appropriate powers of the temperature, such that
the observables are dimensionless. The derivatives generate
traces of the type Tr½ðM−1∂M=∂μXÞn ', which we evaluate
with the random noise method, using Oð500Þ random
vectors. For more details on the required traces and the
method of evaluation, see, e.g., [3].
For obvious reasons (sign problem), we perform our

calculations at purely imaginary baryon chemical potential
iμ̂IB, with μ̂IB ∈R. Exploiting all symmetries, we restrict
values for μ̂IB to half the period, i.e., μ̂IB ∈½0; π'. The
symmetries of the partition function generate specific
properties of the observables χBn . At imaginary chemical
potential, they are imaginary and odd functions of μ̂IB for
odd n and real and even functions of μ̂IB for even n . These
properties have been verified by us and can be seen from
Fig. 2, where we show results for the first three cumulants.

FIG. 2. Cumulants of the net baryon number fluctuations as a
function of a purely imaginary chemical potential, for three
different temperatures, obtained on 243 × 4 lattices. Shown are
Im[χB1 ] (top), Re½χB2 ' (middle), and Im[χB3 ]. Data points are
connected by dashed lines to guide the eye.

P. DIMOPOULOS et al. PHYS. REV. D 105, 034513 (2022)

034513-4

Preliminary results were presented in [56]. The data are
tabulated in Appendix A.
Since this is an exploratory study, we leave the con-

tinuum extrapolation for later publications and perform the
calculations on rather course lattices, 243 × 4 and 363 × 6.
We note however that we have deliberately chosen rather
large spatial volumes (we have aspect ratio Nσ=Nτ ¼ 6) in
order to minimize finite size effects which are expected to
become large in the vicinity of a phase transition.

IV. RATIONAL FUNCTION APPROXIMATION
OF THE LATTICE DATA

A. Padé approximants

Padé approximants [57] are a popular subject in approxi-
mation theory. The main idea is to approximate a given
function fðxÞ with a rational function whose derivatives
agree with those of fðxÞ up to a given order. This can be
easily rephrased in terms of power series. To set up our
notations, we first consider a so-called single-point [m/n]
Padé. Suppose the Taylor expansion of fðxÞ about a single
point (in what follows, it is useful to take this point as
x ¼ 0) is known up to a certain order (say L),

fðxÞ ¼
XL

i¼0

cixi þOðxLþ1Þ: ð14Þ

We denote Rm
n ðxÞ the ½m=n&Padé approximant we are

looking for,

Rm
n ðxÞ ¼

PmðxÞ
Q̃n ðxÞ

¼ PmðxÞ
1þQn ðxÞ

¼
Pm

i¼0 aix
i

1þ
Pn

j¼1 bjx
j ; ð15Þ

which is the ratio of two polynomials (Pm and Q̃n ) of order
m and n , respectively. By discarding a nontrivial b0 and
writing Q̃n ðxÞ ¼ 1þQn ðxÞ, in Eq. (15) we have made a
definite choice for the coefficients fai; bjg our approximant
essentially depends on. Given our knowledge of the Taylor
expansion for fðxÞ, in principle, our choice can be for any
order ½m=n&such that mþ n þ 1 ¼ Lþ 1. Strictly speak-
ing, not all such ½m=n&approximants exist.
Rational functions are not the only viable solutions in

approximation theory; polynomial approximants are very
popular as well. We stress from the very beginning a main
virtue of rational functionswe are interested in; they provide a
natural handle to probing the singularities structure of fðxÞ.
Quite trivially, the singularities ofRm

n ðxÞ are coming from the
zeros of 1þQn ðxÞ. To make the latter statement more
precise, we need to more precisely state what we mean by
a ½m=n&approximant. Our attitude is quite pragmatic; we
consider aRm

n ðxÞ for a given choice of½m=n&and solve for the
fai; bjg coefficients given that the power series of fðxÞ is
known to a given order L such thatmþnþ1¼Lþ1. Given
our input, we are not guaranteed that Pm and 1þQn ðxÞ are
coprime polynomials [58]. If this is not the case (i.e., there is a

nontrivial greatest common divisor), singularities of Rm
n ðxÞ

are coming from those zeros of 1þQn ðxÞ which either are
not zeros ofPmðxÞ or are zeros of 1þQn ðxÞ of a higher order
than they are of PmðxÞ. While trivial, this very last statement
will be of some relevance in the following. We are also quite
concerned with yet another property of Rm

n ðxÞ. Poles are the
only singularitieswe can find in a rational function; still, there
are signatures of other singularities of fðxÞ (e.g., branch cuts)
which we can recognize inRm

n ðxÞ once the coefficients of the
latter have been determined to reconstruct the power series of
fðxÞ.Wediscuss this topic (which indeed is relevant in the our
analysis) in Appendix E.
The most direct way of solving for the unknown

coefficients is by approximation through order; we match
coefficients of different powers of x between the (unknown)
rational function and the (known) Taylor series by demand-
ing functional independence (up to order xL). That means
we rewrite

Xm

i¼0

aixi ¼ PmðxÞ ¼ fðxÞð1þQn ðxÞÞ

¼
!XL

i¼0

cixi
"!

1þ
Xn

j¼1

bjxj
"
;

and match

a0 ¼ c0;

a1 ¼ c1 þ b1c0;

a2 ¼ c2 þ b1c1 þ b2c0;

' ' ' : ð16Þ

Equation (16) defines a set of simultaneous, linear equa-
tions, which can be solved by a convenient linear solver.
We stress that most often the linear system is not singular
but ill-conditioned, which is a warning that determining the
solution can be hard. Most importantly, we should keep in
mind that our knowledge of the derivatives of fðxÞ is
coming from stochastic evaluation via Monte Carlo sim-
ulations. Despite this, we see that we can manage to find the
information we are aiming at.
Approximation through order somehow hides that the

information we are making use of is coming from deriv-
atives of fðxÞ. The solution encoded in Eq. (16) can of
course also be obtained by evaluating in x ¼ 0 the tower of
relationships

PmðxÞ − fðxÞQn ðxÞ ¼ fðxÞ;
P0
mðxÞ − f0ðxÞQn ðxÞ − fðxÞQ0

n ðxÞ ¼ f0ðxÞ;
P00
mðxÞ − f00ðxÞQn ðxÞ − fðxÞQ00

n ðxÞ
−2f0ðxÞQ0

n ðxÞ ¼ f00ðxÞ;
' ' ' : ð17Þ
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A few alternatives…

Yet another way of obtaining the unknown ai, bj is to solve
the set of equations dk

dxk R
m
n ðxÞ ¼ fðkÞðxÞ, i.e., [59]

a0 ¼ fð0Þ;
a1 − a0b1 ¼ f0ð0Þ;

2a2 − 2a1b1 þ a0ð2b21 − 2b2Þ ¼ f00ð0Þ;
% % % : ð18Þ

While Eqs. (16), (17), and (18) are equivalent, the
latter is somehow less convenient, not being linear and
typically requires the use of computer algebra tools like
Mathematica. In our particular problem, we explicitly
showed that the three return the same results (to a very
good approximation); Eq. (17) has been to a large extent
our preferred choice.
There exists a significant amount of literature on single-

point Padé approximants (about existence, uniqueness, and
convergence). This is not true for the so-called multipoint
Padé to the same extent. The construction of a multipoint
Padé can be extremely useful in situations when Taylor
coefficients for a function about a single point are not
known to higher orders, but instead either the function
values are known or a few Taylor coefficients are known
about (possibly) many points. Since this is precisely the
situation we face in our lattice studies of QCD at finite
chemical potential, it is useful to understand how to build
rational approximations from these multipoints.
Extending what we saw above to multipoints is straight-

forward; in particular, we extend the formalism encoded in
Eq. (17). A few Taylor coefficients (i.e., derivatives) of a
function fðxÞ known at a collection of points fxiji ¼
1…Ng are consistent with the approximation to f provided
by Eq. (15) if they satisfy the set of equations

Pmðx1Þ − fðx1ÞQnðx1Þ ¼ fðx1Þ;
P0
mðx1Þ − f0ðx1ÞQnðx1Þ − fðx1ÞQ0

nðx1Þ ¼ f0ðx1Þ;
% % % ;

Pmðx2Þ − fðx2ÞQnðx2Þ ¼ fðx2Þ;
P0
mðx2Þ − f0ðx2ÞQnðx2Þ − fðx2ÞQ0

nðx2Þ ¼ f0ðx2Þ;
% % % ;

PmðxNÞ − fðxNÞQnðxNÞ ¼ fðxNÞ;
P0
mðxNÞ − f0ðxNÞQnðxNÞ − fðxNÞQ0

nðxNÞ ¼ f0ðxNÞ;
% % % ; ð19Þ

which is once again a linear system in nþmþ 1
unknowns where now nþmþ 1 ¼

PN
i¼1ðLi þ 1Þ. In the

previous formula, the highest order of derivative which we
know (i.e., Li) can be different for different points.
Multipoints Padé will be our choice for the analysis of
this work. We now proceed to discuss a few technical

details of our implementation, referring the reader to
Appendixes B–F for extra remarks and comments.

B. Padé approximants for the QCD net baryon
number density from imaginary chemical potential

This is not the first time Padé approximants are applied
to the study of finite density (lattice) QCD [60–62].
A recent paper has, in particular, proposed to join Padé
analysis and Bayesian methods, with applications to the
study of the crossover line [63]. In a way that is close to the
spirit of this work, in recent times, Padé approximants have
been successfully used to probe the singularity structure of
simple theories in the context of the Lefschetz thimble
method [64]. To our knowledge, this work is in a sense the
first attempt at a systematic study of the QCD phase
diagram and, in particular, of Lee-Yang edge singularities,
building on Padé analysis. The function we want to
approximate by rational functions is the net baryon number
density χB1 ðT; V; μBÞ, with the cumulants χBn ðT; V; μBÞ
(n > 1) entering Eq. (19) as derivatives. Our main goal
is to get signatures of singularities of χB1 ðT; V; μBÞ in the
complex-μB (μB ¼ μIB þ iμRB) plane (at fixed values of T
and V). Ultimately we aim to understand the phase diagram
of the theory. In particular, we find clear evidence of the
Roberge-Weiss transition in the μIB − T plane. Most impor-
tantly, if at some point we could find evidence of singu-
larities eventually pinching the (real) μRB axis, then we
would be in the presence of a QCD critical point candidate.
We have already seen that Eq. (19) is not the only way to

solve for the coefficients entering the Padé approximants
(15). Not only, e.g., does the multipoints version of Eq. (18)
works as well, but also other formalisms could be (and
actually were) used in our analysis. In the construction of
these other formalisms, a key point is that the values of the
χBn , i.e., the function f and its derivatives in Eq. (19), are
known to a limited precision since they are evaluated by
Monte Carlo. Our Padé analysis was performed following
three different approaches, aiming at assessing their mutual
consistency.
(1) The solution of the linear system (19) has been

worked out in two different ways, namely,
(i) One can build the system by writing the most

general form for Rm
n ðxÞ, i.e., that of (15).

(ii) One can instead impose the form

Rm
n ðxÞ ¼

Pm0

i¼0 a2iþ1x2iþ1

1þ
Pn=2

j¼1 b2jx
2j
;

ðm ¼ 2m0 þ 1; a1 ¼ χB2 ðT; V; 0ÞÞ; ð20Þ

with the coefficients faig and fbjg that turn out
to be real. This form ensures the following:
(a) The function χB1 ðT; V; μBÞ has the right
parity (it is an odd function). (b) As a conse-
quence of the coefficients being real valued, for
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odd function…

imaginary μB ¼ μIB, the odd cumulants
χB2nþ1ðT; V; μIBÞ are imaginary valued, while
the even χB2nðT; V; μIBÞ are real valued, as it
must be. (c) When Eq. (20) is computed for real
μB ¼ μRB, the cumulants are real; i.e., the ana-
lytic continuation one is typically interested in
is guaranteed to be meaningful.

Notice that taking into account different functional
forms for Rm

n is not the end of the story. Another
alternative which can (and actually was) taken into
account is whether one
(i) performs the Padé analysis in the (original)

complex-μB plane or
(ii) goes through a conformal map μB ¼ ϕðνÞ and

performs the Padé analysis in the complex-ν
plane.

This is in the spirit of [27,65,66].
(2) Because of the cumulants being known to finite

precision, the minimization of a generalized χ2 is
an obvious alternative to the solution of (19).
Suppose we want Rm

nðxÞ to be a Padé approximant
for the function fðxÞ whose values and derivatives
we know at given points fxjjj ¼ 1…Ng, i.e.,

cðkÞj ≡ ∂jf
∂xj ðxkÞ ≃

∂jRm
n

∂xj ðxkÞ, with the cðkÞj known with

errors ΔcðkÞj . Then, the coefficients fai; bjg the
Rm
n depends on can be fixed minimizing the

generalized χ2,

χ̃2 ¼
X

j;k

j∂
jRm

n
∂xj ðxkÞ − cðkÞj j2

jΔcðkÞj j2
: ð21Þ

Of course, all the alternatives that we commented in
1 (namely, different functional forms for Rm

n, use of
conformal maps) can be also implemented in this
approach.

(3) Both 1 and 2 make use of the knowledge of fðxÞ
(and its derivatives) at given points; i.e., the only
information on fðxÞ we have is at a finite (possibly
small) number of points. One could instead compute
a smooth interpolation of fðxÞ before entering the
Padé analysis.

C. Results of Padé analysis of net baryon
number density

The focus of our analysis is on singularities of the net
baryon number density. Still, before proceeding to this, we
make a short digression on a feature which is worth
discussing. In investigating the phase diagram of QCD
in the (imaginary chemical potential–temperature) μIB − T
plane, and, in particular, in the study of the Roberge-Weiss
transition, a prominent role is played by the free energy as
a function of μ̂IB (at given values of the temperature T); a
cartoon for this quantity is often plotted. Since we have a

function Rm
nðμ̂IBÞ approximating the net baryon density, we

can obtain the free energy Fðμ̂IBÞ by (numerical) integra-
tion. In Fig. 3, we display the free energy Fðμ̂IBÞ at three
different temperatures; the profile clearly gets closer to a
cusp as the temperature gets closer to T ¼ TRW (to the
extent that the transition can be detected on a finite
volume).
We now inspect how well our rational approximants

describe the data. On top of that, we are interested in the
analytic continuation of results from imaginary to real
values of the baryonic chemical potential (this is in the end
a key issue in any imaginary-μB study of finite density
lattice QCD). Finally, we present the relevant singularity
pattern which emerges from our analysis. In Fig. 4, we
display what we get both for imaginary and for real
baryonic chemical potential. For three of the temperatures
we probed on Nτ ¼ 4, we plot the results we got from the
solution of Eq. (19) for both functional forms (15) and (20).
For imaginary values of the baryonic chemical potential,
the two solutions are de facto indistinguishable. For real
values (analytic continuation), the real parts are quite close
to each other, a significant discrepancy between the two
different Ansätze being there only at T ¼ TRW and for
μ̂RB > π. As for imaginary parts, Eq. (20) is guaranteed to
return zero; it is interesting to notice that also the solution
we got for the Ansatz (15) has a quite tiny imaginary part (at
least up to μ̂RB ∼ π). All this can be taken as an indication of
reasonably tiny systematic effects as far as the dependence
on the precise form of the Padé approximants is concerned.
All in all, the indeterminations we have to live with when
we analytically continue our results to real baryonic
chemical potential seem to be competitive when we
compare to other methods. This is true despite the fact
that, inspecting Fig. 4, a few spikes are clearly visible; we

FIG. 3. The free energy as a function of μ̂IB at three different
temperatures.
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must be. (c) When Eq. (20) is computed for real
μB ¼ μRB, the cumulants are real; i.e., the ana-
lytic continuation one is typically interested in
is guaranteed to be meaningful.

Notice that taking into account different functional
forms for Rm

n is not the end of the story. Another
alternative which can (and actually was) taken into
account is whether one
(i) performs the Padé analysis in the (original)

complex-μB plane or
(ii) goes through a conformal map μB ¼ ϕðνÞ and

performs the Padé analysis in the complex-ν
plane.

This is in the spirit of [27,65,66].
(2) Because of the cumulants being known to finite

precision, the minimization of a generalized χ2 is
an obvious alternative to the solution of (19).
Suppose we want Rm

nðxÞ to be a Padé approximant
for the function fðxÞ whose values and derivatives
we know at given points fxjjj ¼ 1…Ng, i.e.,

cðkÞj ≡ ∂jf
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∂xj ðxkÞ, with the cðkÞj known with
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n depends on can be fixed minimizing the
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χ̃2 ¼
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j;k
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n
∂xj ðxkÞ − cðkÞj j2

jΔcðkÞj j2
: ð21Þ

Of course, all the alternatives that we commented in
1 (namely, different functional forms for Rm

n, use of
conformal maps) can be also implemented in this
approach.

(3) Both 1 and 2 make use of the knowledge of fðxÞ
(and its derivatives) at given points; i.e., the only
information on fðxÞ we have is at a finite (possibly
small) number of points. One could instead compute
a smooth interpolation of fðxÞ before entering the
Padé analysis.

C. Results of Padé analysis of net baryon
number density

The focus of our analysis is on singularities of the net
baryon number density. Still, before proceeding to this, we
make a short digression on a feature which is worth
discussing. In investigating the phase diagram of QCD
in the (imaginary chemical potential–temperature) μIB − T
plane, and, in particular, in the study of the Roberge-Weiss
transition, a prominent role is played by the free energy as
a function of μ̂IB (at given values of the temperature T); a
cartoon for this quantity is often plotted. Since we have a
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can obtain the free energy Fðμ̂IBÞ by (numerical) integra-
tion. In Fig. 3, we display the free energy Fðμ̂IBÞ at three
different temperatures; the profile clearly gets closer to a
cusp as the temperature gets closer to T ¼ TRW (to the
extent that the transition can be detected on a finite
volume).
We now inspect how well our rational approximants

describe the data. On top of that, we are interested in the
analytic continuation of results from imaginary to real
values of the baryonic chemical potential (this is in the end
a key issue in any imaginary-μB study of finite density
lattice QCD). Finally, we present the relevant singularity
pattern which emerges from our analysis. In Fig. 4, we
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we probed on Nτ ¼ 4, we plot the results we got from the
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we got for the Ansatz (15) has a quite tiny imaginary part (at
least up to μ̂RB ∼ π). All this can be taken as an indication of
reasonably tiny systematic effects as far as the dependence
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such scaling fits also to lattice QCD data, which is however
currently beyond the scope of this exploratory study.

D. Thermal singularities

The Lee-Yang edge singularities are not the only singu-
larities in the complexμB=T plane.At temperatures above the
QCD crossover (T > Tpc), we expect that quasifree quarks
are the relevant degrees of freedom in the system. Quarks are
distributed according to the Fermi-Dirac distribution
fpðT; μÞ ¼ 1=ðexp ðεp − μÞ=T þ 1Þ. The singularities of
this function are located at %iπT % εp. In particular, the
singularities which are closest to the origin are located at
%iπT % ϵ0, whereε0 ¼ m is the restmass of the particle. The
thermal singularities of quasifree quarks are modified by
residual interactions as long as we are not considering the
Stefan-Boltzmann limit (T → ∞). We expect that to leading
order these modifications are expressed through a substan-
tially larger thermal mass m̃ðTÞ ≫ m.
The analytic structure of the Fermi-Dirac distribution

function interferes with the scaling of the Lee-Yang edge
singularity of the Roberge-Weiss transition, as given in
Eqs. (4) and (5). It is a priori not clear which type of
singularities are closer to the origin/imaginary axis and can
thus be found by a Padé/rational approximation of the data.
As a result of this study, we find that the leading singularities
at Im½μB=T' ¼ %π follow the RW scaling, see Sec. VA.

III. LATTICE SETUP AND OBSERVABLES

The partition function of a (2þ 1)-flavor of highly
improved staggered quarks (HISQ) [50] with imaginary
chemical potential can be written as

Z ¼
Z

DU det½Mðml; iμIlÞ'2=4

× det½Mðms; iμIsÞ'1=4e−S GðUÞ; ð12Þ

where Mðm; iμIÞ represents the fermion matrix of a HISQ
flavor with mass m and chemical potential μ ¼ iμI . The
first determinant represents the two degenerate light flavors
(up and down quarks). For the gauge part S GðUÞ, we are
using the Symanzik improved Wilson action, which is
correct to Oða2Þ in the lattice spacing. For the gauge field
generation, we were using the SIMULATeQCD package
[51] with and implementation of the rational hybrid
Monte Carlo algorithm (RHMC) [52]. The lattice bare
parameters are used from various publications of HotQCD.
The lattice bare quark masses are varied with the lattice
coupling such that for each coupling physical meson
masses are obtained; i.e., we stay on the line of constant
physics (LCP). Here, we make use of the parametrization of
the LCP (for the physical value of the pion mass,
ml=m

phys
s ¼ 1=27) obtained and refined in previous works

[53–55]. The same holds true for the scale setting, where

we used the parametrization of the β function based on the
kaon decay constant. For simplicity, we fix the ratio of the
explored chemical potential in this study to μl=μs ¼ 1.
The observables we calculate are the cumulants of the net

baryon number density, given as

χBn ðT;V;μBÞ¼
! ∂
∂μ̂B

"
n lnZðT;V;μl;μsÞ

VT3

¼
!
1

3

∂
∂μ̂lþ

1

3

∂
∂μ̂s

"
n lnZðT;V;μl;μsÞ

VT3
; ð13Þ

with μ̂X ¼ μX=T, X ¼ B, l, s. Note that the normalization is
done with appropriate powers of the temperature, such that
the observables are dimensionless. The derivatives generate
traces of the type Tr½ðM−1∂M=∂μXÞn ', which we evaluate
with the random noise method, using Oð500Þ random
vectors. For more details on the required traces and the
method of evaluation, see, e.g., [3].
For obvious reasons (sign problem), we perform our

calculations at purely imaginary baryon chemical potential
iμ̂IB, with μ̂IB ∈R. Exploiting all symmetries, we restrict
values for μ̂IB to half the period, i.e., μ̂IB ∈½0; π'. The
symmetries of the partition function generate specific
properties of the observables χBn . At imaginary chemical
potential, they are imaginary and odd functions of μ̂IB for
odd n and real and even functions of μ̂IB for even n . These
properties have been verified by us and can be seen from
Fig. 2, where we show results for the first three cumulants.

FIG. 2. Cumulants of the net baryon number fluctuations as a
function of a purely imaginary chemical potential, for three
different temperatures, obtained on 243 × 4 lattices. Shown are
Im[χB1 ] (top), Re½χB2 ' (middle), and Im[χB3 ]. Data points are
connected by dashed lines to guide the eye.
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I. INTRODUCTION

The phase diagram of quantum chromodynamics (QCD)
belongs to the most pressing open issues in high energy
physics. With large scale experimental programs at RHIC
and LHC, the phase diagram is scanned for hints of a
critical point or a first order phase transition. In addition,
many ab initio calculations of lattice QCD are performed to
infer on the QCD phase diagram.
Unfortunately, the notorious sign problem hampers

numerical studies of the QCD phase diagram. At vanishing
baryon chemical potential (μB ≡ 0), lattice QCD calcula-
tions rely onMonte Carlo methods for an efficient sampling
of the QCD partition sum. At nonvanishing baryon chemi-
cal potentials (μB > 0), standard Monte Carlo methods
cease working as the fermion determinant becomes genu-
inely complex. Hence, the kernel of the QCD partition sum
is strongly oscillating with increasing lattice volumes.
Over the last decades, manymethods have been developed

which potentially circumvent or solve theQCDsign problem.
These methods include reweighting [1,2], Taylor expansions
[3–5], analytic continuation from purely imaginary chemical
potentials [6,7], canonical partition functions [8,9], strong
coupling/dual methods [10–13], the density of states method
[14–16], and complex Langevin dynamics [17–20]. Related

to the latter is also the Lefschetz thimble method [21–23],
which is based on a deformation of the integration manifold
into complex field space. Recent developments are reviewed,
e.g., in [24–26]. However, all these methods face severe
limitations that restrict their applicability toward the thermo-
dynamic and/or continuum limits.
With this study, we systematically investigate singularities

of the grand canonical potential in the complex chemical
potential plane, which we identify from an (analytically
continued) rational approximation of lattice data obtained at
purely imaginary chemical potentials. The rational approxi-
mation of the net baryon number density is done in
consistency with the second, third, and fourth order cumu-
lants of the baryon number density. In this sense, our method
could be seen as a combination of the Taylor expansion
approach and the imaginary chemical potential method. The
position of those singularities provides very valuable infor-
mation on the QCD phase diagram. We find that they are in
agreement with the critical scaling of the Lee-Yang edge
singularities in the vicinity of the Roberge-Weiss transition
and the chiral transition. We also discuss the scaling of the
Lee-Yang edge singularity in the vicinity of a hypothetical
critical end point. Finally, we point out that the position of the
singularities can be used to estimate the radius of conver-
gence of any analytic expansion and to extract nonuniversal
parameters that map QCD to the universal scaling function.
Among the latter might also be the position of the QCD
critical end point, which was demonstrated recently in the
case of the Gross-Neveu model [27]. Genuine Lee-Yang
zeros have been recently also studied in other works [28,29].
This paper is organized as follows. In Sec. II, we

introduce the scaling theory of the Lee-Yang edge
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I. INTRODUCTION

The phase diagram of quantum chromodynamics (QCD)
belongs to the most pressing open issues in high energy
physics. With large scale experimental programs at RHIC
and LHC, the phase diagram is scanned for hints of a
critical point or a first order phase transition. In addition,
many ab initio calculations of lattice QCD are performed to
infer on the QCD phase diagram.
Unfortunately, the notorious sign problem hampers

numerical studies of the QCD phase diagram. At vanishing
baryon chemical potential (μB ≡ 0), lattice QCD calcula-
tions rely onMonte Carlo methods for an efficient sampling
of the QCD partition sum. At nonvanishing baryon chemi-
cal potentials (μB > 0), standard Monte Carlo methods
cease working as the fermion determinant becomes genu-
inely complex. Hence, the kernel of the QCD partition sum
is strongly oscillating with increasing lattice volumes.
Over the last decades, manymethods have been developed

which potentially circumvent or solve theQCDsign problem.
These methods include reweighting [1,2], Taylor expansions
[3–5], analytic continuation from purely imaginary chemical
potentials [6,7], canonical partition functions [8,9], strong
coupling/dual methods [10–13], the density of states method
[14–16], and complex Langevin dynamics [17–20]. Related

to the latter is also the Lefschetz thimble method [21–23],
which is based on a deformation of the integration manifold
into complex field space. Recent developments are reviewed,
e.g., in [24–26]. However, all these methods face severe
limitations that restrict their applicability toward the thermo-
dynamic and/or continuum limits.
With this study, we systematically investigate singularities

of the grand canonical potential in the complex chemical
potential plane, which we identify from an (analytically
continued) rational approximation of lattice data obtained at
purely imaginary chemical potentials. The rational approxi-
mation of the net baryon number density is done in
consistency with the second, third, and fourth order cumu-
lants of the baryon number density. In this sense, our method
could be seen as a combination of the Taylor expansion
approach and the imaginary chemical potential method. The
position of those singularities provides very valuable infor-
mation on the QCD phase diagram. We find that they are in
agreement with the critical scaling of the Lee-Yang edge
singularities in the vicinity of the Roberge-Weiss transition
and the chiral transition. We also discuss the scaling of the
Lee-Yang edge singularity in the vicinity of a hypothetical
critical end point. Finally, we point out that the position of the
singularities can be used to estimate the radius of conver-
gence of any analytic expansion and to extract nonuniversal
parameters that map QCD to the universal scaling function.
Among the latter might also be the position of the QCD
critical end point, which was demonstrated recently in the
case of the Gross-Neveu model [27]. Genuine Lee-Yang
zeros have been recently also studied in other works [28,29].
This paper is organized as follows. In Sec. II, we

introduce the scaling theory of the Lee-Yang edge
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see in what sense they do not come as a surprise and are in
fact harmless.
In Fig. 5, we plot the singularity pattern we get at three of

the temperatures we probed on Nτ ¼ 4. We once again
present results we get for both functional forms (15) and
(20). A few remarks are in order, which we invite the reader
to consider taking into account the points that we make in
Appendixes C, E, and F.

(i) Thermal singularities are expected to show up at
μ̂IB ¼ π and indeed to a very good accuracy they do.

(ii) The signature for a branch cut is clearly visible at
T ¼ TRW ¼ 201.4 MeV, for both Ansätze (15) (see
upper row) and (20) (lower row). Notice that the
latter is by construction sensitive to all the four
replicas of the same singularity, as expected for
symmetry reasons: if we find a singularity in z, then

also −z and −z̄ must be singular points. This is a
general feature, which is clear at all temperatures;
(15) instead only captures singularities in the upper
half plane (i.e., we see one of the two symmetries).

(iii) At T ¼ 186.3 MeV (this is the next to highest
temperature that we probed), plots apparently allude
to a branch cut as well, while at T ¼ 167.4 MeV the
singularity shows up as a simple pole. Much the
same happens at the remaining temperatures (i.e.,
T ¼ 176.6 MeV and T ¼ 160.4 MeV are consistent
with the appearance of simple poles).

(iv) While the pattern of the relevant pieces of informa-
tion (i.e., true poles and zeros) is the same for
different functional forms, the pattern of other zeros
and poles depends on the functional form. Notice
that the mechanism of zero-pole cancellations is
manifest; these cancellations are due to numerical
noise. In a sense, we see fake information, which
would not be there for exact data, but since noise is
not that much, this fake information is close to
disappearing.

(v) While the zero-pole cancellations seem almost
perfect in Fig. 5, Fig. 4 is warning us that this is
not really the case, and this is the reason for the
spikes which we see there. We encourage the reader
to spot which singular points are responsible for the
spikes. Again, the almost perfect cancellations in
Fig. 5 reveal that these spikes are harmless.

(vi) As should be clear, the big spike at μ̂B ¼ iπ for
T ¼ TRW is a different story: this is indeed the
Roberge-Weiss transition showing up.

We repeated our analysis hunting for singular points in the
complex-fugacity plane; after mapping our measurements
to this plane, we performed Padé analysis in the z ¼ eμ̂B
variable. There are at least two reasons for such an
(additional) analysis. First of all, we want to make sure
that the information which we get is stable and does not
disappear once we change the variable. Also, the linear
systems which we have to solve are typically ill-condi-
tioned. Due to the nature of the conformal map, this feature
disappears (in a sense, we can trust results to a higher level
of confidence). In Fig. 6, we present the singularity pattern
in the complex-fugacity plane.

(i) Since our original data are taken on the imaginary
axis (μB ¼ iμIB), in the complex fugacity plane, we
end up on the unit circle jzj ¼ 1. In view of the
observations that we make in Appendix D, notice
that this is a very convenient location with respect to
the location of the singularities that we detect.

(ii) Since singularities are expected at μ̂IB ¼ π, in the
fugacity plane, they should show up on the real axis,
and indeed, they do. Due to the relative positions
with respect to the input data (jzj ¼ 1), we are not
sensitive to any (symmetry) replica (that is, one
single singularity shows up).

FIG. 4. Top: the net baryon number density as a function of μ̂IB
at three different temperatures; for each, (15) and (20) fall on top
of each other. Bottom: the analytic continuation of the baryon
number density for three different temperatures. Again, we plot
both (15) and (20); for the latter, the imaginary part is guaranteed
to be zero.
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I. INTRODUCTION

The phase diagram of quantum chromodynamics (QCD)
belongs to the most pressing open issues in high energy
physics. With large scale experimental programs at RHIC
and LHC, the phase diagram is scanned for hints of a
critical point or a first order phase transition. In addition,
many ab initio calculations of lattice QCD are performed to
infer on the QCD phase diagram.
Unfortunately, the notorious sign problem hampers

numerical studies of the QCD phase diagram. At vanishing
baryon chemical potential (μB ≡ 0), lattice QCD calcula-
tions rely onMonte Carlo methods for an efficient sampling
of the QCD partition sum. At nonvanishing baryon chemi-
cal potentials (μB > 0), standard Monte Carlo methods
cease working as the fermion determinant becomes genu-
inely complex. Hence, the kernel of the QCD partition sum
is strongly oscillating with increasing lattice volumes.
Over the last decades, manymethods have been developed

which potentially circumvent or solve theQCDsign problem.
These methods include reweighting [1,2], Taylor expansions
[3–5], analytic continuation from purely imaginary chemical
potentials [6,7], canonical partition functions [8,9], strong
coupling/dual methods [10–13], the density of states method
[14–16], and complex Langevin dynamics [17–20]. Related

to the latter is also the Lefschetz thimble method [21–23],
which is based on a deformation of the integration manifold
into complex field space. Recent developments are reviewed,
e.g., in [24–26]. However, all these methods face severe
limitations that restrict their applicability toward the thermo-
dynamic and/or continuum limits.
With this study, we systematically investigate singularities

of the grand canonical potential in the complex chemical
potential plane, which we identify from an (analytically
continued) rational approximation of lattice data obtained at
purely imaginary chemical potentials. The rational approxi-
mation of the net baryon number density is done in
consistency with the second, third, and fourth order cumu-
lants of the baryon number density. In this sense, our method
could be seen as a combination of the Taylor expansion
approach and the imaginary chemical potential method. The
position of those singularities provides very valuable infor-
mation on the QCD phase diagram. We find that they are in
agreement with the critical scaling of the Lee-Yang edge
singularities in the vicinity of the Roberge-Weiss transition
and the chiral transition. We also discuss the scaling of the
Lee-Yang edge singularity in the vicinity of a hypothetical
critical end point. Finally, we point out that the position of the
singularities can be used to estimate the radius of conver-
gence of any analytic expansion and to extract nonuniversal
parameters that map QCD to the universal scaling function.
Among the latter might also be the position of the QCD
critical end point, which was demonstrated recently in the
case of the Gross-Neveu model [27]. Genuine Lee-Yang
zeros have been recently also studied in other works [28,29].
This paper is organized as follows. In Sec. II, we

introduce the scaling theory of the Lee-Yang edge
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see in what sense they do not come as a surprise and are in
fact harmless.
In Fig. 5, we plot the singularity pattern we get at three of

the temperatures we probed on Nτ ¼ 4. We once again
present results we get for both functional forms (15) and
(20). A few remarks are in order, which we invite the reader
to consider taking into account the points that we make in
Appendixes C, E, and F.

(i) Thermal singularities are expected to show up at
μ̂IB ¼ π and indeed to a very good accuracy they do.

(ii) The signature for a branch cut is clearly visible at
T ¼ TRW ¼ 201.4 MeV, for both Ansätze (15) (see
upper row) and (20) (lower row). Notice that the
latter is by construction sensitive to all the four
replicas of the same singularity, as expected for
symmetry reasons: if we find a singularity in z, then

also −z and −z̄ must be singular points. This is a
general feature, which is clear at all temperatures;
(15) instead only captures singularities in the upper
half plane (i.e., we see one of the two symmetries).

(iii) At T ¼ 186.3 MeV (this is the next to highest
temperature that we probed), plots apparently allude
to a branch cut as well, while at T ¼ 167.4 MeV the
singularity shows up as a simple pole. Much the
same happens at the remaining temperatures (i.e.,
T ¼ 176.6 MeV and T ¼ 160.4 MeV are consistent
with the appearance of simple poles).

(iv) While the pattern of the relevant pieces of informa-
tion (i.e., true poles and zeros) is the same for
different functional forms, the pattern of other zeros
and poles depends on the functional form. Notice
that the mechanism of zero-pole cancellations is
manifest; these cancellations are due to numerical
noise. In a sense, we see fake information, which
would not be there for exact data, but since noise is
not that much, this fake information is close to
disappearing.

(v) While the zero-pole cancellations seem almost
perfect in Fig. 5, Fig. 4 is warning us that this is
not really the case, and this is the reason for the
spikes which we see there. We encourage the reader
to spot which singular points are responsible for the
spikes. Again, the almost perfect cancellations in
Fig. 5 reveal that these spikes are harmless.

(vi) As should be clear, the big spike at μ̂B ¼ iπ for
T ¼ TRW is a different story: this is indeed the
Roberge-Weiss transition showing up.

We repeated our analysis hunting for singular points in the
complex-fugacity plane; after mapping our measurements
to this plane, we performed Padé analysis in the z ¼ eμ̂B
variable. There are at least two reasons for such an
(additional) analysis. First of all, we want to make sure
that the information which we get is stable and does not
disappear once we change the variable. Also, the linear
systems which we have to solve are typically ill-condi-
tioned. Due to the nature of the conformal map, this feature
disappears (in a sense, we can trust results to a higher level
of confidence). In Fig. 6, we present the singularity pattern
in the complex-fugacity plane.

(i) Since our original data are taken on the imaginary
axis (μB ¼ iμIB), in the complex fugacity plane, we
end up on the unit circle jzj ¼ 1. In view of the
observations that we make in Appendix D, notice
that this is a very convenient location with respect to
the location of the singularities that we detect.

(ii) Since singularities are expected at μ̂IB ¼ π, in the
fugacity plane, they should show up on the real axis,
and indeed, they do. Due to the relative positions
with respect to the input data (jzj ¼ 1), we are not
sensitive to any (symmetry) replica (that is, one
single singularity shows up).

FIG. 4. Top: the net baryon number density as a function of μ̂IB
at three different temperatures; for each, (15) and (20) fall on top
of each other. Bottom: the analytic continuation of the baryon
number density for three different temperatures. Again, we plot
both (15) and (20); for the latter, the imaginary part is guaranteed
to be zero.
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imaginary μB ¼ μIB, the odd cumulants
χB2nþ1ðT; V; μIBÞ are imaginary valued, while
the even χB2nðT; V; μIBÞ are real valued, as it
must be. (c) When Eq. (20) is computed for real
μB ¼ μRB, the cumulants are real; i.e., the ana-
lytic continuation one is typically interested in
is guaranteed to be meaningful.

Notice that taking into account different functional
forms for Rm

n is not the end of the story. Another
alternative which can (and actually was) taken into
account is whether one
(i) performs the Padé analysis in the (original)

complex-μB plane or
(ii) goes through a conformal map μB ¼ ϕðνÞ and

performs the Padé analysis in the complex-ν
plane.

This is in the spirit of [27,65,66].
(2) Because of the cumulants being known to finite

precision, the minimization of a generalized χ2 is
an obvious alternative to the solution of (19).
Suppose we want Rm

nðxÞ to be a Padé approximant
for the function fðxÞ whose values and derivatives
we know at given points fxjjj ¼ 1…Ng, i.e.,

cðkÞj ≡ ∂jf
∂xj ðxkÞ ≃

∂jRm
n

∂xj ðxkÞ, with the cðkÞj known with

errors ΔcðkÞj . Then, the coefficients fai; bjg the
Rm
n depends on can be fixed minimizing the

generalized χ2,

χ̃2 ¼
X

j;k

j∂
jRm

n
∂xj ðxkÞ − cðkÞj j2

jΔcðkÞj j2
: ð21Þ

Of course, all the alternatives that we commented in
1 (namely, different functional forms for Rm

n, use of
conformal maps) can be also implemented in this
approach.

(3) Both 1 and 2 make use of the knowledge of fðxÞ
(and its derivatives) at given points; i.e., the only
information on fðxÞ we have is at a finite (possibly
small) number of points. One could instead compute
a smooth interpolation of fðxÞ before entering the
Padé analysis.

C. Results of Padé analysis of net baryon
number density

The focus of our analysis is on singularities of the net
baryon number density. Still, before proceeding to this, we
make a short digression on a feature which is worth
discussing. In investigating the phase diagram of QCD
in the (imaginary chemical potential–temperature) μIB − T
plane, and, in particular, in the study of the Roberge-Weiss
transition, a prominent role is played by the free energy as
a function of μ̂IB (at given values of the temperature T); a
cartoon for this quantity is often plotted. Since we have a

function Rm
nðμ̂IBÞ approximating the net baryon density, we

can obtain the free energy Fðμ̂IBÞ by (numerical) integra-
tion. In Fig. 3, we display the free energy Fðμ̂IBÞ at three
different temperatures; the profile clearly gets closer to a
cusp as the temperature gets closer to T ¼ TRW (to the
extent that the transition can be detected on a finite
volume).
We now inspect how well our rational approximants

describe the data. On top of that, we are interested in the
analytic continuation of results from imaginary to real
values of the baryonic chemical potential (this is in the end
a key issue in any imaginary-μB study of finite density
lattice QCD). Finally, we present the relevant singularity
pattern which emerges from our analysis. In Fig. 4, we
display what we get both for imaginary and for real
baryonic chemical potential. For three of the temperatures
we probed on Nτ ¼ 4, we plot the results we got from the
solution of Eq. (19) for both functional forms (15) and (20).
For imaginary values of the baryonic chemical potential,
the two solutions are de facto indistinguishable. For real
values (analytic continuation), the real parts are quite close
to each other, a significant discrepancy between the two
different Ansätze being there only at T ¼ TRW and for
μ̂RB > π. As for imaginary parts, Eq. (20) is guaranteed to
return zero; it is interesting to notice that also the solution
we got for the Ansatz (15) has a quite tiny imaginary part (at
least up to μ̂RB ∼ π). All this can be taken as an indication of
reasonably tiny systematic effects as far as the dependence
on the precise form of the Padé approximants is concerned.
All in all, the indeterminations we have to live with when
we analytically continue our results to real baryonic
chemical potential seem to be competitive when we
compare to other methods. This is true despite the fact
that, inspecting Fig. 4, a few spikes are clearly visible; we

FIG. 3. The free energy as a function of μ̂IB at three different
temperatures.
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I. INTRODUCTION

The phase diagram of quantum chromodynamics (QCD)
belongs to the most pressing open issues in high energy
physics. With large scale experimental programs at RHIC
and LHC, the phase diagram is scanned for hints of a
critical point or a first order phase transition. In addition,
many ab initio calculations of lattice QCD are performed to
infer on the QCD phase diagram.
Unfortunately, the notorious sign problem hampers

numerical studies of the QCD phase diagram. At vanishing
baryon chemical potential (μB ≡ 0), lattice QCD calcula-
tions rely onMonte Carlo methods for an efficient sampling
of the QCD partition sum. At nonvanishing baryon chemi-
cal potentials (μB > 0), standard Monte Carlo methods
cease working as the fermion determinant becomes genu-
inely complex. Hence, the kernel of the QCD partition sum
is strongly oscillating with increasing lattice volumes.
Over the last decades, manymethods have been developed

which potentially circumvent or solve theQCDsign problem.
These methods include reweighting [1,2], Taylor expansions
[3–5], analytic continuation from purely imaginary chemical
potentials [6,7], canonical partition functions [8,9], strong
coupling/dual methods [10–13], the density of states method
[14–16], and complex Langevin dynamics [17–20]. Related

to the latter is also the Lefschetz thimble method [21–23],
which is based on a deformation of the integration manifold
into complex field space. Recent developments are reviewed,
e.g., in [24–26]. However, all these methods face severe
limitations that restrict their applicability toward the thermo-
dynamic and/or continuum limits.
With this study, we systematically investigate singularities

of the grand canonical potential in the complex chemical
potential plane, which we identify from an (analytically
continued) rational approximation of lattice data obtained at
purely imaginary chemical potentials. The rational approxi-
mation of the net baryon number density is done in
consistency with the second, third, and fourth order cumu-
lants of the baryon number density. In this sense, our method
could be seen as a combination of the Taylor expansion
approach and the imaginary chemical potential method. The
position of those singularities provides very valuable infor-
mation on the QCD phase diagram. We find that they are in
agreement with the critical scaling of the Lee-Yang edge
singularities in the vicinity of the Roberge-Weiss transition
and the chiral transition. We also discuss the scaling of the
Lee-Yang edge singularity in the vicinity of a hypothetical
critical end point. Finally, we point out that the position of the
singularities can be used to estimate the radius of conver-
gence of any analytic expansion and to extract nonuniversal
parameters that map QCD to the universal scaling function.
Among the latter might also be the position of the QCD
critical end point, which was demonstrated recently in the
case of the Gross-Neveu model [27]. Genuine Lee-Yang
zeros have been recently also studied in other works [28,29].
This paper is organized as follows. In Sec. II, we

introduce the scaling theory of the Lee-Yang edge
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see in what sense they do not come as a surprise and are in
fact harmless.
In Fig. 5, we plot the singularity pattern we get at three of

the temperatures we probed on Nτ ¼ 4. We once again
present results we get for both functional forms (15) and
(20). A few remarks are in order, which we invite the reader
to consider taking into account the points that we make in
Appendixes C, E, and F.

(i) Thermal singularities are expected to show up at
μ̂IB ¼ π and indeed to a very good accuracy they do.

(ii) The signature for a branch cut is clearly visible at
T ¼ TRW ¼ 201.4 MeV, for both Ansätze (15) (see
upper row) and (20) (lower row). Notice that the
latter is by construction sensitive to all the four
replicas of the same singularity, as expected for
symmetry reasons: if we find a singularity in z, then

also −z and −z̄ must be singular points. This is a
general feature, which is clear at all temperatures;
(15) instead only captures singularities in the upper
half plane (i.e., we see one of the two symmetries).

(iii) At T ¼ 186.3 MeV (this is the next to highest
temperature that we probed), plots apparently allude
to a branch cut as well, while at T ¼ 167.4 MeV the
singularity shows up as a simple pole. Much the
same happens at the remaining temperatures (i.e.,
T ¼ 176.6 MeV and T ¼ 160.4 MeV are consistent
with the appearance of simple poles).

(iv) While the pattern of the relevant pieces of informa-
tion (i.e., true poles and zeros) is the same for
different functional forms, the pattern of other zeros
and poles depends on the functional form. Notice
that the mechanism of zero-pole cancellations is
manifest; these cancellations are due to numerical
noise. In a sense, we see fake information, which
would not be there for exact data, but since noise is
not that much, this fake information is close to
disappearing.

(v) While the zero-pole cancellations seem almost
perfect in Fig. 5, Fig. 4 is warning us that this is
not really the case, and this is the reason for the
spikes which we see there. We encourage the reader
to spot which singular points are responsible for the
spikes. Again, the almost perfect cancellations in
Fig. 5 reveal that these spikes are harmless.

(vi) As should be clear, the big spike at μ̂B ¼ iπ for
T ¼ TRW is a different story: this is indeed the
Roberge-Weiss transition showing up.

We repeated our analysis hunting for singular points in the
complex-fugacity plane; after mapping our measurements
to this plane, we performed Padé analysis in the z ¼ eμ̂B
variable. There are at least two reasons for such an
(additional) analysis. First of all, we want to make sure
that the information which we get is stable and does not
disappear once we change the variable. Also, the linear
systems which we have to solve are typically ill-condi-
tioned. Due to the nature of the conformal map, this feature
disappears (in a sense, we can trust results to a higher level
of confidence). In Fig. 6, we present the singularity pattern
in the complex-fugacity plane.

(i) Since our original data are taken on the imaginary
axis (μB ¼ iμIB), in the complex fugacity plane, we
end up on the unit circle jzj ¼ 1. In view of the
observations that we make in Appendix D, notice
that this is a very convenient location with respect to
the location of the singularities that we detect.

(ii) Since singularities are expected at μ̂IB ¼ π, in the
fugacity plane, they should show up on the real axis,
and indeed, they do. Due to the relative positions
with respect to the input data (jzj ¼ 1), we are not
sensitive to any (symmetry) replica (that is, one
single singularity shows up).

FIG. 4. Top: the net baryon number density as a function of μ̂IB
at three different temperatures; for each, (15) and (20) fall on top
of each other. Bottom: the analytic continuation of the baryon
number density for three different temperatures. Again, we plot
both (15) and (20); for the latter, the imaginary part is guaranteed
to be zero.

P. DIMOPOULOS et al. PHYS. REV. D 105, 034513 (2022)

034513-8

Rational approximations 

describing data

see in what sense they do not come as a surprise and are in
fact harmless.
In Fig. 5, we plot the singularity pattern we get at three of

the temperatures we probed on Nτ ¼ 4. We once again
present results we get for both functional forms (15) and
(20). A few remarks are in order, which we invite the reader
to consider taking into account the points that we make in
Appendixes C, E, and F.

(i) Thermal singularities are expected to show up at
μ̂IB ¼ π and indeed to a very good accuracy they do.

(ii) The signature for a branch cut is clearly visible at
T ¼ TRW ¼ 201.4 MeV, for both Ansätze (15) (see
upper row) and (20) (lower row). Notice that the
latter is by construction sensitive to all the four
replicas of the same singularity, as expected for
symmetry reasons: if we find a singularity in z, then

also −z and −z̄ must be singular points. This is a
general feature, which is clear at all temperatures;
(15) instead only captures singularities in the upper
half plane (i.e., we see one of the two symmetries).

(iii) At T ¼ 186.3 MeV (this is the next to highest
temperature that we probed), plots apparently allude
to a branch cut as well, while at T ¼ 167.4 MeV the
singularity shows up as a simple pole. Much the
same happens at the remaining temperatures (i.e.,
T ¼ 176.6 MeV and T ¼ 160.4 MeV are consistent
with the appearance of simple poles).

(iv) While the pattern of the relevant pieces of informa-
tion (i.e., true poles and zeros) is the same for
different functional forms, the pattern of other zeros
and poles depends on the functional form. Notice
that the mechanism of zero-pole cancellations is
manifest; these cancellations are due to numerical
noise. In a sense, we see fake information, which
would not be there for exact data, but since noise is
not that much, this fake information is close to
disappearing.

(v) While the zero-pole cancellations seem almost
perfect in Fig. 5, Fig. 4 is warning us that this is
not really the case, and this is the reason for the
spikes which we see there. We encourage the reader
to spot which singular points are responsible for the
spikes. Again, the almost perfect cancellations in
Fig. 5 reveal that these spikes are harmless.

(vi) As should be clear, the big spike at μ̂B ¼ iπ for
T ¼ TRW is a different story: this is indeed the
Roberge-Weiss transition showing up.

We repeated our analysis hunting for singular points in the
complex-fugacity plane; after mapping our measurements
to this plane, we performed Padé analysis in the z ¼ eμ̂B
variable. There are at least two reasons for such an
(additional) analysis. First of all, we want to make sure
that the information which we get is stable and does not
disappear once we change the variable. Also, the linear
systems which we have to solve are typically ill-condi-
tioned. Due to the nature of the conformal map, this feature
disappears (in a sense, we can trust results to a higher level
of confidence). In Fig. 6, we present the singularity pattern
in the complex-fugacity plane.

(i) Since our original data are taken on the imaginary
axis (μB ¼ iμIB), in the complex fugacity plane, we
end up on the unit circle jzj ¼ 1. In view of the
observations that we make in Appendix D, notice
that this is a very convenient location with respect to
the location of the singularities that we detect.

(ii) Since singularities are expected at μ̂IB ¼ π, in the
fugacity plane, they should show up on the real axis,
and indeed, they do. Due to the relative positions
with respect to the input data (jzj ¼ 1), we are not
sensitive to any (symmetry) replica (that is, one
single singularity shows up).

FIG. 4. Top: the net baryon number density as a function of μ̂IB
at three different temperatures; for each, (15) and (20) fall on top
of each other. Bottom: the analytic continuation of the baryon
number density for three different temperatures. Again, we plot
both (15) and (20); for the latter, the imaginary part is guaranteed
to be zero.
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I. INTRODUCTION

The phase diagram of quantum chromodynamics (QCD)
belongs to the most pressing open issues in high energy
physics. With large scale experimental programs at RHIC
and LHC, the phase diagram is scanned for hints of a
critical point or a first order phase transition. In addition,
many ab initio calculations of lattice QCD are performed to
infer on the QCD phase diagram.
Unfortunately, the notorious sign problem hampers

numerical studies of the QCD phase diagram. At vanishing
baryon chemical potential (μB ≡ 0), lattice QCD calcula-
tions rely onMonte Carlo methods for an efficient sampling
of the QCD partition sum. At nonvanishing baryon chemi-
cal potentials (μB > 0), standard Monte Carlo methods
cease working as the fermion determinant becomes genu-
inely complex. Hence, the kernel of the QCD partition sum
is strongly oscillating with increasing lattice volumes.
Over the last decades, manymethods have been developed

which potentially circumvent or solve theQCDsign problem.
These methods include reweighting [1,2], Taylor expansions
[3–5], analytic continuation from purely imaginary chemical
potentials [6,7], canonical partition functions [8,9], strong
coupling/dual methods [10–13], the density of states method
[14–16], and complex Langevin dynamics [17–20]. Related

to the latter is also the Lefschetz thimble method [21–23],
which is based on a deformation of the integration manifold
into complex field space. Recent developments are reviewed,
e.g., in [24–26]. However, all these methods face severe
limitations that restrict their applicability toward the thermo-
dynamic and/or continuum limits.
With this study, we systematically investigate singularities

of the grand canonical potential in the complex chemical
potential plane, which we identify from an (analytically
continued) rational approximation of lattice data obtained at
purely imaginary chemical potentials. The rational approxi-
mation of the net baryon number density is done in
consistency with the second, third, and fourth order cumu-
lants of the baryon number density. In this sense, our method
could be seen as a combination of the Taylor expansion
approach and the imaginary chemical potential method. The
position of those singularities provides very valuable infor-
mation on the QCD phase diagram. We find that they are in
agreement with the critical scaling of the Lee-Yang edge
singularities in the vicinity of the Roberge-Weiss transition
and the chiral transition. We also discuss the scaling of the
Lee-Yang edge singularity in the vicinity of a hypothetical
critical end point. Finally, we point out that the position of the
singularities can be used to estimate the radius of conver-
gence of any analytic expansion and to extract nonuniversal
parameters that map QCD to the universal scaling function.
Among the latter might also be the position of the QCD
critical end point, which was demonstrated recently in the
case of the Gross-Neveu model [27]. Genuine Lee-Yang
zeros have been recently also studied in other works [28,29].
This paper is organized as follows. In Sec. II, we

introduce the scaling theory of the Lee-Yang edge
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see in what sense they do not come as a surprise and are in
fact harmless.
In Fig. 5, we plot the singularity pattern we get at three of

the temperatures we probed on Nτ ¼ 4. We once again
present results we get for both functional forms (15) and
(20). A few remarks are in order, which we invite the reader
to consider taking into account the points that we make in
Appendixes C, E, and F.

(i) Thermal singularities are expected to show up at
μ̂IB ¼ π and indeed to a very good accuracy they do.

(ii) The signature for a branch cut is clearly visible at
T ¼ TRW ¼ 201.4 MeV, for both Ansätze (15) (see
upper row) and (20) (lower row). Notice that the
latter is by construction sensitive to all the four
replicas of the same singularity, as expected for
symmetry reasons: if we find a singularity in z, then

also −z and −z̄ must be singular points. This is a
general feature, which is clear at all temperatures;
(15) instead only captures singularities in the upper
half plane (i.e., we see one of the two symmetries).

(iii) At T ¼ 186.3 MeV (this is the next to highest
temperature that we probed), plots apparently allude
to a branch cut as well, while at T ¼ 167.4 MeV the
singularity shows up as a simple pole. Much the
same happens at the remaining temperatures (i.e.,
T ¼ 176.6 MeV and T ¼ 160.4 MeV are consistent
with the appearance of simple poles).

(iv) While the pattern of the relevant pieces of informa-
tion (i.e., true poles and zeros) is the same for
different functional forms, the pattern of other zeros
and poles depends on the functional form. Notice
that the mechanism of zero-pole cancellations is
manifest; these cancellations are due to numerical
noise. In a sense, we see fake information, which
would not be there for exact data, but since noise is
not that much, this fake information is close to
disappearing.

(v) While the zero-pole cancellations seem almost
perfect in Fig. 5, Fig. 4 is warning us that this is
not really the case, and this is the reason for the
spikes which we see there. We encourage the reader
to spot which singular points are responsible for the
spikes. Again, the almost perfect cancellations in
Fig. 5 reveal that these spikes are harmless.

(vi) As should be clear, the big spike at μ̂B ¼ iπ for
T ¼ TRW is a different story: this is indeed the
Roberge-Weiss transition showing up.

We repeated our analysis hunting for singular points in the
complex-fugacity plane; after mapping our measurements
to this plane, we performed Padé analysis in the z ¼ eμ̂B
variable. There are at least two reasons for such an
(additional) analysis. First of all, we want to make sure
that the information which we get is stable and does not
disappear once we change the variable. Also, the linear
systems which we have to solve are typically ill-condi-
tioned. Due to the nature of the conformal map, this feature
disappears (in a sense, we can trust results to a higher level
of confidence). In Fig. 6, we present the singularity pattern
in the complex-fugacity plane.

(i) Since our original data are taken on the imaginary
axis (μB ¼ iμIB), in the complex fugacity plane, we
end up on the unit circle jzj ¼ 1. In view of the
observations that we make in Appendix D, notice
that this is a very convenient location with respect to
the location of the singularities that we detect.

(ii) Since singularities are expected at μ̂IB ¼ π, in the
fugacity plane, they should show up on the real axis,
and indeed, they do. Due to the relative positions
with respect to the input data (jzj ¼ 1), we are not
sensitive to any (symmetry) replica (that is, one
single singularity shows up).

FIG. 4. Top: the net baryon number density as a function of μ̂IB
at three different temperatures; for each, (15) and (20) fall on top
of each other. Bottom: the analytic continuation of the baryon
number density for three different temperatures. Again, we plot
both (15) and (20); for the latter, the imaginary part is guaranteed
to be zero.
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complex plane can be determined from them. We compare our results of the singularities in the chemical
potential plane to the theoretically expected positions of the Lee-Yang edge singularity in the vicinity of the
Roberge-Weiss and chiral phase transitions. We find a temperature scaling that is in accordance with the
expected power law behavior.
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I. INTRODUCTION

The phase diagram of quantum chromodynamics (QCD)
belongs to the most pressing open issues in high energy
physics. With large scale experimental programs at RHIC
and LHC, the phase diagram is scanned for hints of a
critical point or a first order phase transition. In addition,
many ab initio calculations of lattice QCD are performed to
infer on the QCD phase diagram.
Unfortunately, the notorious sign problem hampers

numerical studies of the QCD phase diagram. At vanishing
baryon chemical potential (μB ≡ 0), lattice QCD calcula-
tions rely onMonte Carlo methods for an efficient sampling
of the QCD partition sum. At nonvanishing baryon chemi-
cal potentials (μB > 0), standard Monte Carlo methods
cease working as the fermion determinant becomes genu-
inely complex. Hence, the kernel of the QCD partition sum
is strongly oscillating with increasing lattice volumes.
Over the last decades, manymethods have been developed

which potentially circumvent or solve theQCDsign problem.
These methods include reweighting [1,2], Taylor expansions
[3–5], analytic continuation from purely imaginary chemical
potentials [6,7], canonical partition functions [8,9], strong
coupling/dual methods [10–13], the density of states method
[14–16], and complex Langevin dynamics [17–20]. Related

to the latter is also the Lefschetz thimble method [21–23],
which is based on a deformation of the integration manifold
into complex field space. Recent developments are reviewed,
e.g., in [24–26]. However, all these methods face severe
limitations that restrict their applicability toward the thermo-
dynamic and/or continuum limits.
With this study, we systematically investigate singularities

of the grand canonical potential in the complex chemical
potential plane, which we identify from an (analytically
continued) rational approximation of lattice data obtained at
purely imaginary chemical potentials. The rational approxi-
mation of the net baryon number density is done in
consistency with the second, third, and fourth order cumu-
lants of the baryon number density. In this sense, our method
could be seen as a combination of the Taylor expansion
approach and the imaginary chemical potential method. The
position of those singularities provides very valuable infor-
mation on the QCD phase diagram. We find that they are in
agreement with the critical scaling of the Lee-Yang edge
singularities in the vicinity of the Roberge-Weiss transition
and the chiral transition. We also discuss the scaling of the
Lee-Yang edge singularity in the vicinity of a hypothetical
critical end point. Finally, we point out that the position of the
singularities can be used to estimate the radius of conver-
gence of any analytic expansion and to extract nonuniversal
parameters that map QCD to the universal scaling function.
Among the latter might also be the position of the QCD
critical end point, which was demonstrated recently in the
case of the Gross-Neveu model [27]. Genuine Lee-Yang
zeros have been recently also studied in other works [28,29].
This paper is organized as follows. In Sec. II, we

introduce the scaling theory of the Lee-Yang edge
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(iii) All the other features (e.g., zero-pole cancellations)
show up much the same as they do in the original
μB plane.

In Table I, we collect all the findings that we discussed so
far. In particular, for each temperature that we probed at
Nτ ¼ 4, we list the nearest singularities as obtained (a) from
the solution of the linear system (19) in the μB=T plane
(method I), (b) from the minimization of the generalized χ2

(21) (method II), and (c) from the solution of the linear
system (19) in fugacity plane, both mapping back results in
the original plane and inspecting them in the fugacity plane
(methods III* and III). The errors are computed out of a
bootstrap procedure in which we repeat our Padé analysis

letting the input data (i.e., the results of our Monte Carlo
measurements) vary within errors. As one can see, results
are well consistent.
The singularities which we have been discussing so far

(and that are listed in Table I) are not the only ones on
display in Fig. 1. Results obtained on Nτ ¼ 6 at T ¼
145 MeV apparently point at a singular point that could be
consistent with a chiral singularity. While this result is
intriguing, in this case extra care is in order.

(i) In this case, we have a (far) enhanced dependence
on the interval our Padé analysis takes into account.
In particular, this singularity shows up if we limit our
analysis to μ̂IB ∈ ½0; π#.

FIG. 5. Singularity structure in the μ̂B plane for three different temperatures (from left to right T ¼ 201.4, 186.3, 167.4). Upper row:
Ansatz (15); lower row: Ansatz (20).

FIG. 6. Singularity structure in the fugacity (z ¼ e
μB
T ) plane for three different temperatures (from left to right T ¼ 201.4, 186.3,

167.4).
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I. INTRODUCTION

The phase diagram of quantum chromodynamics (QCD)
belongs to the most pressing open issues in high energy
physics. With large scale experimental programs at RHIC
and LHC, the phase diagram is scanned for hints of a
critical point or a first order phase transition. In addition,
many ab initio calculations of lattice QCD are performed to
infer on the QCD phase diagram.
Unfortunately, the notorious sign problem hampers

numerical studies of the QCD phase diagram. At vanishing
baryon chemical potential (μB ≡ 0), lattice QCD calcula-
tions rely onMonte Carlo methods for an efficient sampling
of the QCD partition sum. At nonvanishing baryon chemi-
cal potentials (μB > 0), standard Monte Carlo methods
cease working as the fermion determinant becomes genu-
inely complex. Hence, the kernel of the QCD partition sum
is strongly oscillating with increasing lattice volumes.
Over the last decades, manymethods have been developed

which potentially circumvent or solve theQCDsign problem.
These methods include reweighting [1,2], Taylor expansions
[3–5], analytic continuation from purely imaginary chemical
potentials [6,7], canonical partition functions [8,9], strong
coupling/dual methods [10–13], the density of states method
[14–16], and complex Langevin dynamics [17–20]. Related

to the latter is also the Lefschetz thimble method [21–23],
which is based on a deformation of the integration manifold
into complex field space. Recent developments are reviewed,
e.g., in [24–26]. However, all these methods face severe
limitations that restrict their applicability toward the thermo-
dynamic and/or continuum limits.
With this study, we systematically investigate singularities

of the grand canonical potential in the complex chemical
potential plane, which we identify from an (analytically
continued) rational approximation of lattice data obtained at
purely imaginary chemical potentials. The rational approxi-
mation of the net baryon number density is done in
consistency with the second, third, and fourth order cumu-
lants of the baryon number density. In this sense, our method
could be seen as a combination of the Taylor expansion
approach and the imaginary chemical potential method. The
position of those singularities provides very valuable infor-
mation on the QCD phase diagram. We find that they are in
agreement with the critical scaling of the Lee-Yang edge
singularities in the vicinity of the Roberge-Weiss transition
and the chiral transition. We also discuss the scaling of the
Lee-Yang edge singularity in the vicinity of a hypothetical
critical end point. Finally, we point out that the position of the
singularities can be used to estimate the radius of conver-
gence of any analytic expansion and to extract nonuniversal
parameters that map QCD to the universal scaling function.
Among the latter might also be the position of the QCD
critical end point, which was demonstrated recently in the
case of the Gross-Neveu model [27]. Genuine Lee-Yang
zeros have been recently also studied in other works [28,29].
This paper is organized as follows. In Sec. II, we

introduce the scaling theory of the Lee-Yang edge
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(iii) All the other features (e.g., zero-pole cancellations)
show up much the same as they do in the original
μB plane.

In Table I, we collect all the findings that we discussed so
far. In particular, for each temperature that we probed at
Nτ ¼ 4, we list the nearest singularities as obtained (a) from
the solution of the linear system (19) in the μB=T plane
(method I), (b) from the minimization of the generalized χ2

(21) (method II), and (c) from the solution of the linear
system (19) in fugacity plane, both mapping back results in
the original plane and inspecting them in the fugacity plane
(methods III* and III). The errors are computed out of a
bootstrap procedure in which we repeat our Padé analysis

letting the input data (i.e., the results of our Monte Carlo
measurements) vary within errors. As one can see, results
are well consistent.
The singularities which we have been discussing so far

(and that are listed in Table I) are not the only ones on
display in Fig. 1. Results obtained on Nτ ¼ 6 at T ¼
145 MeV apparently point at a singular point that could be
consistent with a chiral singularity. While this result is
intriguing, in this case extra care is in order.

(i) In this case, we have a (far) enhanced dependence
on the interval our Padé analysis takes into account.
In particular, this singularity shows up if we limit our
analysis to μ̂IB ∈ ½0; π#.

FIG. 5. Singularity structure in the μ̂B plane for three different temperatures (from left to right T ¼ 201.4, 186.3, 167.4). Upper row:
Ansatz (15); lower row: Ansatz (20).

FIG. 6. Singularity structure in the fugacity (z ¼ e
μB
T ) plane for three different temperatures (from left to right T ¼ 201.4, 186.3,

167.4).
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chemical potential, obtained with highly improved staggered quarks at temporal lattice extent of Nτ ¼ 4, 6.
We construct various rational function approximations of the lattice data and discuss how poles in the
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Roberge-Weiss and chiral phase transitions. We find a temperature scaling that is in accordance with the
expected power law behavior.
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I. INTRODUCTION

The phase diagram of quantum chromodynamics (QCD)
belongs to the most pressing open issues in high energy
physics. With large scale experimental programs at RHIC
and LHC, the phase diagram is scanned for hints of a
critical point or a first order phase transition. In addition,
many ab initio calculations of lattice QCD are performed to
infer on the QCD phase diagram.
Unfortunately, the notorious sign problem hampers

numerical studies of the QCD phase diagram. At vanishing
baryon chemical potential (μB ≡ 0), lattice QCD calcula-
tions rely onMonte Carlo methods for an efficient sampling
of the QCD partition sum. At nonvanishing baryon chemi-
cal potentials (μB > 0), standard Monte Carlo methods
cease working as the fermion determinant becomes genu-
inely complex. Hence, the kernel of the QCD partition sum
is strongly oscillating with increasing lattice volumes.
Over the last decades, manymethods have been developed

which potentially circumvent or solve theQCDsign problem.
These methods include reweighting [1,2], Taylor expansions
[3–5], analytic continuation from purely imaginary chemical
potentials [6,7], canonical partition functions [8,9], strong
coupling/dual methods [10–13], the density of states method
[14–16], and complex Langevin dynamics [17–20]. Related

to the latter is also the Lefschetz thimble method [21–23],
which is based on a deformation of the integration manifold
into complex field space. Recent developments are reviewed,
e.g., in [24–26]. However, all these methods face severe
limitations that restrict their applicability toward the thermo-
dynamic and/or continuum limits.
With this study, we systematically investigate singularities

of the grand canonical potential in the complex chemical
potential plane, which we identify from an (analytically
continued) rational approximation of lattice data obtained at
purely imaginary chemical potentials. The rational approxi-
mation of the net baryon number density is done in
consistency with the second, third, and fourth order cumu-
lants of the baryon number density. In this sense, our method
could be seen as a combination of the Taylor expansion
approach and the imaginary chemical potential method. The
position of those singularities provides very valuable infor-
mation on the QCD phase diagram. We find that they are in
agreement with the critical scaling of the Lee-Yang edge
singularities in the vicinity of the Roberge-Weiss transition
and the chiral transition. We also discuss the scaling of the
Lee-Yang edge singularity in the vicinity of a hypothetical
critical end point. Finally, we point out that the position of the
singularities can be used to estimate the radius of conver-
gence of any analytic expansion and to extract nonuniversal
parameters that map QCD to the universal scaling function.
Among the latter might also be the position of the QCD
critical end point, which was demonstrated recently in the
case of the Gross-Neveu model [27]. Genuine Lee-Yang
zeros have been recently also studied in other works [28,29].
This paper is organized as follows. In Sec. II, we

introduce the scaling theory of the Lee-Yang edge
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(iii) All the other features (e.g., zero-pole cancellations)
show up much the same as they do in the original
μB plane.

In Table I, we collect all the findings that we discussed so
far. In particular, for each temperature that we probed at
Nτ ¼ 4, we list the nearest singularities as obtained (a) from
the solution of the linear system (19) in the μB=T plane
(method I), (b) from the minimization of the generalized χ2

(21) (method II), and (c) from the solution of the linear
system (19) in fugacity plane, both mapping back results in
the original plane and inspecting them in the fugacity plane
(methods III* and III). The errors are computed out of a
bootstrap procedure in which we repeat our Padé analysis

letting the input data (i.e., the results of our Monte Carlo
measurements) vary within errors. As one can see, results
are well consistent.
The singularities which we have been discussing so far

(and that are listed in Table I) are not the only ones on
display in Fig. 1. Results obtained on Nτ ¼ 6 at T ¼
145 MeV apparently point at a singular point that could be
consistent with a chiral singularity. While this result is
intriguing, in this case extra care is in order.

(i) In this case, we have a (far) enhanced dependence
on the interval our Padé analysis takes into account.
In particular, this singularity shows up if we limit our
analysis to μ̂IB ∈ ½0; π#.

FIG. 5. Singularity structure in the μ̂B plane for three different temperatures (from left to right T ¼ 201.4, 186.3, 167.4). Upper row:
Ansatz (15); lower row: Ansatz (20).

FIG. 6. Singularity structure in the fugacity (z ¼ e
μB
T ) plane for three different temperatures (from left to right T ¼ 201.4, 186.3,

167.4).

CONTRIBUTION TO UNDERSTANDING THE PHASE STRUCTURE … PHYS. REV. D 105, 034513 (2022)

034513-9

The same in the fugacity plane

SHALL WE TRUST ALL THIS?



2+1 HISQ, first around Roberge Weiss transition temperature, Nt=4,6

Fit II, N⌧ = 4

Fit II, N⌧ = 6

µ̂R
LY : Method II, N⌧ = 4

µ̂R
LY : Method II, N⌧ = 6

singularities and apply them to the cases of the Roberge-
Weiss transition and the chiral transition of QCD. We also
discuss the case of the QCD critical end point. In Sec. III,
we provide details of our lattice QCD calculations, and in
Sec. IV, we discuss our strategy for determining rational
approximations to our lattice data. We present our findings
of the extracted singularities in Sec. V. We summarize and
conclude in Sec. VI. In order to consolidate our findings,
we compiled a number of the Appendixes (B–F), where we
discuss numerical issues related to our rational approx-
imations, which are based on a multipoint Padé method.

II. EXPECTED SINGULARITIES

The grand canonical partition function in lattice QCD,
ZGC ¼ ZðV; T; μBÞ has the form of a (high dimensional)
polynomial at any finite volume V and is positive for real
values of the temperature T and baryon chemical potential
μB. However, following Lee, Yang [30,31], and Fischer
[32], we point out that ZGC exhibits many zeros in the
complex chemical potential plane, which can be used to
extract valuable information on the phase transitions that
may occur in the system. A physical phase transition in the
thermodynamic limit can be identified when for V → ∞
one of the complex zeros approaches a point with real
parameters T; μB.
The grand canonical potential logðZGCÞ diverges when

one approaches a zero of ZGC. Singularities of the grand
canonical potential and its derivatives will limit any
analytic expansion performed at zero or purely imaginary
chemical potentials. The positions of the zeros of ZGC can
thus also be used to estimate the radius of convergence of
the Taylor expansion method.
In different ðT; μBÞ regions, the QCD partition function

can be approximately described by effective theories. At
high temperatures, far above the QCD transition, we might
be able to use a free Fermi gas to describe the thermody-
namic behavior of the quarks. Below the QCD crossover
temperature Tpc, the Hadron resonance gas is known to
describe the bulk thermodynamics of QCD matter quite
well [33–35]. However, we can also consider universal
behavior in the vicinity of the Roberge-Weiss, the chiral
transition, or even in the vicinity of the QCD critical end
point (if existing). In particular, we can predict the positions
of singularities in the complex μB plane, by applying
suitable mappings from the parameter space of QCD to
the relevant scaling fields in the vicinity of a critical point.
In the following, we make extensive use of the fact that the
scaling function of the order parameter fGðzÞ exhibits a
branch cut singularity at z ¼ zc, where the scaling variable
z is expressed in terms of the reduced temperature t and
symmetry breaking field h as z ¼ t=jhj1=βδ. The universal
position zc of the universal singularity, known as the Lee-
Yang edge singularity, has been recently determined for
different universality classes [36]. The three distinct scaling
approaches are visualized in Fig. 1. At this point not all of

the nonuniversal normalization constants that fix the above
mentioned mappings are known. We thus vary some of the
parameters to give an impression of the functional depend-
ence, which is discussed in more detail below. Also shown
are identified Lee-Yang-edge singularities from our lattice
QCD calculations on Nτ ¼ 4, 6 lattices. The determination
of the data points is discussed in Sec. V.

A. Singularities in the vicinity of the
Roberge-Weiss (RW) transition

The RW critical point (μB=T ¼ iπ) is a remnant of the
Zð3Þ symmetry in the quenched ðmq→ ∞Þ limit of QCD,
where mq specifies the quark masses, and the QCD
partition function has a reflection symmetry around
μB=T ¼ iπ [37]. The nature of the RW end point could
be either a first order triple point or a second order Zð2Þ
critical point depending on the value of the quark masses
[38]. In (2þ 1)-flavor QCD with a physical value of the
light quark masses with improved lattice discretization,
which is discussed here, one finds a second order Zð2Þ
critical point [39–41]. The order parameter in the vicinity of
a second order transition can be written as the sum of a
universal and a regular part,

M ¼ h1=δfGðzÞ þMreg; z≡ t=jhj1=βδ; ð1Þ

where t, h are scaling fields, and β, δ are critical exponents.
Also, fG is the universal scaling function for the order
parameter, whereasMreg accounts for regular contributions.

FIG. 1. Overview of the expected scaling behavior of the Lee-
Yang edge singularities in the complex plane of the baryon
chemical potential (μB=T). Universal scaling in the vicinity of the
Roberge-Weiss transition, the chiral transition, and the critical
end point is shown in yellow, green, and red, respectively. The
width of the bands indicate uncertainties in the nonuniversal
parameters. See the text for a detailed discussion. Data points
depict identified Lee-Yang edge singularities (method II) at
different temperatures, from lattice QCD calculations on lattices
with temporal extent Nτ ¼ 4, 6.
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scaling function of the order parameter fGðzÞ exhibits a
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z is expressed in terms of the reduced temperature t and
symmetry breaking field h as z ¼ t=jhj1=βδ. The universal
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approaches are visualized in Fig. 1. At this point not all of

the nonuniversal normalization constants that fix the above
mentioned mappings are known. We thus vary some of the
parameters to give an impression of the functional depend-
ence, which is discussed in more detail below. Also shown
are identified Lee-Yang-edge singularities from our lattice
QCD calculations on Nτ ¼ 4, 6 lattices. The determination
of the data points is discussed in Sec. V.

A. Singularities in the vicinity of the
Roberge-Weiss (RW) transition

The RW critical point (μB=T ¼ iπ) is a remnant of the
Zð3Þ symmetry in the quenched ðmq→ ∞Þ limit of QCD,
where mq specifies the quark masses, and the QCD
partition function has a reflection symmetry around
μB=T ¼ iπ [37]. The nature of the RW end point could
be either a first order triple point or a second order Zð2Þ
critical point depending on the value of the quark masses
[38]. In (2þ 1)-flavor QCD with a physical value of the
light quark masses with improved lattice discretization,
which is discussed here, one finds a second order Zð2Þ
critical point [39–41]. The order parameter in the vicinity of
a second order transition can be written as the sum of a
universal and a regular part,

M ¼ h1=δfGðzÞ þMreg; z≡ t=jhj1=βδ; ð1Þ

where t, h are scaling fields, and β, δ are critical exponents.
Also, fG is the universal scaling function for the order
parameter, whereasMreg accounts for regular contributions.

FIG. 1. Overview of the expected scaling behavior of the Lee-
Yang edge singularities in the complex plane of the baryon
chemical potential (μB=T). Universal scaling in the vicinity of the
Roberge-Weiss transition, the chiral transition, and the critical
end point is shown in yellow, green, and red, respectively. The
width of the bands indicate uncertainties in the nonuniversal
parameters. See the text for a detailed discussion. Data points
depict identified Lee-Yang edge singularities (method II) at
different temperatures, from lattice QCD calculations on lattices
with temporal extent Nτ ¼ 4, 6.
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The relevant scaling fields for a Zð2Þ-symmetric second
order RW transition can be defined as

t ¼ t−10

!
TRW − T
TRW

"
; ð2Þ

h ¼ h−10

!
μ̂B − iπ

iπ

"
; ð3Þ

where μ̂B ¼ μB=T and t0, h0, and TRW are nonuniversal
parameters. TRW is the RW transition temperature, which is
known for our particular lattice setup [41]. We now can
solve t=h1=βδ ≡ zc ¼ jzcjei

π
2βδ for μ̂B to obtain

μ̂RLY ¼ $π

!
z0
jzcj

"
βδ
!
TRW − T
TRW

"
βδ
; ð4Þ

μ̂ILY ¼ $π; ð5Þ

where the normalization constant z0 is defined as z0 ¼
h1=βδ0 =t0. Equations (4) and (5) thus define the temperature
scaling of the Lee-Yang edge singularity, associated with
the Roberge-Weiss critical point.

B. Chiral singularities

In the chiral limit of (2þ 1)-flavor QCD, we expect a
second order transition in the universality class of the 3d O
(4)-symmetric spin model [42]. In recent lattice QCD
simulations by the HotQCD Collaboration [43,44], con-
sistency with this expected universal behavior could be
demonstrated, even though a first order transition at very
small pion mass (mπ ≲ 55 MeV) cannot be excluded with
the accuracy of the present data. For simulations with
staggered fermions on coarse lattices, away from the
continuum limit, the universal scaling is expected to be
in the universality class of the 3d O(2) model, as staggered
fermions preserve only a subgroup of the original chiral
symmetry. The full chiral symmetry is expected to be
restored in the continuum limit. In the vicinity of the chiral
transition, the scaling fields can be expressed as

t ¼ 1

t0

#
T − Tc

Tc
þ κB2

!
μB
T

"
2
$
; ð6Þ

h ¼ 1

h0

ml

mphys
s

: ð7Þ

Here, the light quark mass ml in units of the physical
strange quark mass mphys

s takes the role of the symmetry
breaking field ðml=m

phys
s ∝ hÞ. In addition, this relation

involves three nonuniversal parameters z0; Tc; κB2 . The
latter two are prominent numbers that quantify the QCD
phase diagram and have been determined to quite some
precision [44–47]. The normalization constant z0 is known

with less precision but it can, in principle, be inferred from
scaling fits of QCD observables to the magnetic equation
of state.
The solution for z ¼ zc now reads

μ̂LY ¼
#
1

κB2

!
zc
z0

!
ml

mphys
s

"
1=βδ

−
T − Tc

Tc

"$
1=2

; ð8Þ

where z0 ¼ h1=βδ0 =t0. This solution has also been used in
[48] to derive an estimate of the radius of convergence.
Equation (8) is visualized in Fig. 1 as green band, where we
chose ml=m

phys
s ¼ 1=27 (physical mass ratio) and Tc ¼

147 MeVwhich is our best estimate for the chiral transition
temperature for Nτ ¼ 6. It is however obvious that Tc does
not alter the line of constant z ¼ zc much; it mainly alters
the normalization of the temperature behavior. The curva-
ture κB2 is chosen as κB2 ¼ 0.012. We vary z0 from 1.5 to 2.5
which generates the width of the green band. Our best
estimate for Nτ ¼ 6 is z0 ¼ 2.35, which stems from scaling
fits to the magnetic equation of state.

C. The QCD critical point

The same kind of scaling is expected to hold close to the
QCD critical point. Unfortunately, the mapping to the
universal theory with Zð2Þ symmetry is unknown.
A frequently used Ansatz for the scaling fields is based
on a linear mapping,

t ¼ αtðT − TcepÞ þ βtðμB − μBcepÞ; ð9Þ

h ¼ αhðT − TcepÞ þ βhðμB − μBcepÞ; ð10Þ

where the critical point is located at (Tcep, μcep). This Ansatz
leads to [49]

μLY ¼ μcep − c1ðT − TcepÞ þ ic2jzcj−βδðT − TcepÞβδ; ð11Þ

where c1 is given by the slope of the transition line at the
critical point, and c2 is related to the angle between the
(t ¼ 0) and (h ¼ 0) lines. For the red band in Fig. 1,
we chose c1 ¼ −2κB2 ¼ −0.024, assuming that the tran-
sition line is a quadratic function all the way down to the
critical point. We vary μcep from 500 to 630 MeV, which
generates the width of the red band. For Tcep, we chose in
accordance with the Ansatz for the transition line: Tcep ¼
Tcð1 − κB2 ðμcep=TcÞ2Þ, with Tc ¼ 156.5 MeV. The prefac-
tor c2jzcj−βδ was chosen to be 0.5. In principle, we need at
least four data points in the scaling region of the critical
point to determine all the unknown nonuniversal param-
eters, including the location of the QCD critical point Tcep,
μcep. For the Gross-Neveu model, it has been recently
shown that Tcep; μcep; c1; c2 can be determined from a fit to
the above Ansatz [27]. It will be very interesting to apply
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Weiss transition and the chiral transition of QCD. We also
discuss the case of the QCD critical end point. In Sec. III,
we provide details of our lattice QCD calculations, and in
Sec. IV, we discuss our strategy for determining rational
approximations to our lattice data. We present our findings
of the extracted singularities in Sec. V. We summarize and
conclude in Sec. VI. In order to consolidate our findings,
we compiled a number of the Appendixes (B–F), where we
discuss numerical issues related to our rational approx-
imations, which are based on a multipoint Padé method.

II. EXPECTED SINGULARITIES

The grand canonical partition function in lattice QCD,
ZGC ¼ ZðV; T; μBÞ has the form of a (high dimensional)
polynomial at any finite volume V and is positive for real
values of the temperature T and baryon chemical potential
μB. However, following Lee, Yang [30,31], and Fischer
[32], we point out that ZGC exhibits many zeros in the
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high temperatures, far above the QCD transition, we might
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describe the bulk thermodynamics of QCD matter quite
well [33–35]. However, we can also consider universal
behavior in the vicinity of the Roberge-Weiss, the chiral
transition, or even in the vicinity of the QCD critical end
point (if existing). In particular, we can predict the positions
of singularities in the complex μB plane, by applying
suitable mappings from the parameter space of QCD to
the relevant scaling fields in the vicinity of a critical point.
In the following, we make extensive use of the fact that the
scaling function of the order parameter fGðzÞ exhibits a
branch cut singularity at z ¼ zc, where the scaling variable
z is expressed in terms of the reduced temperature t and
symmetry breaking field h as z ¼ t=jhj1=βδ. The universal
position zc of the universal singularity, known as the Lee-
Yang edge singularity, has been recently determined for
different universality classes [36]. The three distinct scaling
approaches are visualized in Fig. 1. At this point not all of

the nonuniversal normalization constants that fix the above
mentioned mappings are known. We thus vary some of the
parameters to give an impression of the functional depend-
ence, which is discussed in more detail below. Also shown
are identified Lee-Yang-edge singularities from our lattice
QCD calculations on Nτ ¼ 4, 6 lattices. The determination
of the data points is discussed in Sec. V.

A. Singularities in the vicinity of the
Roberge-Weiss (RW) transition

The RW critical point (μB=T ¼ iπ) is a remnant of the
Zð3Þ symmetry in the quenched ðmq→ ∞Þ limit of QCD,
where mq specifies the quark masses, and the QCD
partition function has a reflection symmetry around
μB=T ¼ iπ [37]. The nature of the RW end point could
be either a first order triple point or a second order Zð2Þ
critical point depending on the value of the quark masses
[38]. In (2þ 1)-flavor QCD with a physical value of the
light quark masses with improved lattice discretization,
which is discussed here, one finds a second order Zð2Þ
critical point [39–41]. The order parameter in the vicinity of
a second order transition can be written as the sum of a
universal and a regular part,

M ¼ h1=δfGðzÞ þMreg; z≡ t=jhj1=βδ; ð1Þ

where t, h are scaling fields, and β, δ are critical exponents.
Also, fG is the universal scaling function for the order
parameter, whereasMreg accounts for regular contributions.

FIG. 1. Overview of the expected scaling behavior of the Lee-
Yang edge singularities in the complex plane of the baryon
chemical potential (μB=T). Universal scaling in the vicinity of the
Roberge-Weiss transition, the chiral transition, and the critical
end point is shown in yellow, green, and red, respectively. The
width of the bands indicate uncertainties in the nonuniversal
parameters. See the text for a detailed discussion. Data points
depict identified Lee-Yang edge singularities (method II) at
different temperatures, from lattice QCD calculations on lattices
with temporal extent Nτ ¼ 4, 6.
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The relevant scaling fields for a Zð2Þ-symmetric second
order RW transition can be defined as

t ¼ t−10

!
TRW − T
TRW

"
; ð2Þ

h ¼ h−10

!
μ̂B − iπ

iπ

"
; ð3Þ

where μ̂B ¼ μB=T and t0, h0, and TRW are nonuniversal
parameters. TRW is the RW transition temperature, which is
known for our particular lattice setup [41]. We now can
solve t=h1=βδ ≡ zc ¼ jzcjei

π
2βδ for μ̂B to obtain

μ̂RLY ¼ $π

!
z0
jzcj

"
βδ
!
TRW − T
TRW

"
βδ
; ð4Þ

μ̂ILY ¼ $π; ð5Þ

where the normalization constant z0 is defined as z0 ¼
h1=βδ0 =t0. Equations (4) and (5) thus define the temperature
scaling of the Lee-Yang edge singularity, associated with
the Roberge-Weiss critical point.

B. Chiral singularities

In the chiral limit of (2þ 1)-flavor QCD, we expect a
second order transition in the universality class of the 3d O
(4)-symmetric spin model [42]. In recent lattice QCD
simulations by the HotQCD Collaboration [43,44], con-
sistency with this expected universal behavior could be
demonstrated, even though a first order transition at very
small pion mass (mπ ≲ 55 MeV) cannot be excluded with
the accuracy of the present data. For simulations with
staggered fermions on coarse lattices, away from the
continuum limit, the universal scaling is expected to be
in the universality class of the 3d O(2) model, as staggered
fermions preserve only a subgroup of the original chiral
symmetry. The full chiral symmetry is expected to be
restored in the continuum limit. In the vicinity of the chiral
transition, the scaling fields can be expressed as

t ¼ 1

t0

#
T − Tc

Tc
þ κB2

!
μB
T

"
2
$
; ð6Þ

h ¼ 1

h0

ml

mphys
s

: ð7Þ

Here, the light quark mass ml in units of the physical
strange quark mass mphys

s takes the role of the symmetry
breaking field ðml=m

phys
s ∝ hÞ. In addition, this relation

involves three nonuniversal parameters z0; Tc; κB2 . The
latter two are prominent numbers that quantify the QCD
phase diagram and have been determined to quite some
precision [44–47]. The normalization constant z0 is known

with less precision but it can, in principle, be inferred from
scaling fits of QCD observables to the magnetic equation
of state.
The solution for z ¼ zc now reads

μ̂LY ¼
#
1

κB2

!
zc
z0

!
ml

mphys
s

"
1=βδ

−
T − Tc

Tc

"$
1=2

; ð8Þ

where z0 ¼ h1=βδ0 =t0. This solution has also been used in
[48] to derive an estimate of the radius of convergence.
Equation (8) is visualized in Fig. 1 as green band, where we
chose ml=m

phys
s ¼ 1=27 (physical mass ratio) and Tc ¼

147 MeVwhich is our best estimate for the chiral transition
temperature for Nτ ¼ 6. It is however obvious that Tc does
not alter the line of constant z ¼ zc much; it mainly alters
the normalization of the temperature behavior. The curva-
ture κB2 is chosen as κB2 ¼ 0.012. We vary z0 from 1.5 to 2.5
which generates the width of the green band. Our best
estimate for Nτ ¼ 6 is z0 ¼ 2.35, which stems from scaling
fits to the magnetic equation of state.

C. The QCD critical point

The same kind of scaling is expected to hold close to the
QCD critical point. Unfortunately, the mapping to the
universal theory with Zð2Þ symmetry is unknown.
A frequently used Ansatz for the scaling fields is based
on a linear mapping,

t ¼ αtðT − TcepÞ þ βtðμB − μBcepÞ; ð9Þ

h ¼ αhðT − TcepÞ þ βhðμB − μBcepÞ; ð10Þ

where the critical point is located at (Tcep, μcep). This Ansatz
leads to [49]

μLY ¼ μcep − c1ðT − TcepÞ þ ic2jzcj−βδðT − TcepÞβδ; ð11Þ

where c1 is given by the slope of the transition line at the
critical point, and c2 is related to the angle between the
(t ¼ 0) and (h ¼ 0) lines. For the red band in Fig. 1,
we chose c1 ¼ −2κB2 ¼ −0.024, assuming that the tran-
sition line is a quadratic function all the way down to the
critical point. We vary μcep from 500 to 630 MeV, which
generates the width of the red band. For Tcep, we chose in
accordance with the Ansatz for the transition line: Tcep ¼
Tcð1 − κB2 ðμcep=TcÞ2Þ, with Tc ¼ 156.5 MeV. The prefac-
tor c2jzcj−βδ was chosen to be 0.5. In principle, we need at
least four data points in the scaling region of the critical
point to determine all the unknown nonuniversal param-
eters, including the location of the QCD critical point Tcep,
μcep. For the Gross-Neveu model, it has been recently
shown that Tcep; μcep; c1; c2 can be determined from a fit to
the above Ansatz [27]. It will be very interesting to apply
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Tcð1 − κB2 ðμcep=TcÞ2Þ, with Tc ¼ 156.5 MeV. The prefac-
tor c2jzcj−βδ was chosen to be 0.5. In principle, we need at
least four data points in the scaling region of the critical
point to determine all the unknown nonuniversal param-
eters, including the location of the QCD critical point Tcep,
μcep. For the Gross-Neveu model, it has been recently
shown that Tcep; μcep; c1; c2 can be determined from a fit to
the above Ansatz [27]. It will be very interesting to apply
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From the fit we get

= 206.7(2.6) MeV

        = 208.705(0.002) MeV

The relevant scaling fields for a Zð2Þ-symmetric second
order RW transition can be defined as

t ¼ t−10

!
TRW − T
TRW

"
; ð2Þ

h ¼ h−10

!
μ̂B − iπ

iπ

"
; ð3Þ
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h1=βδ0 =t0. Equations (4) and (5) thus define the temperature
scaling of the Lee-Yang edge singularity, associated with
the Roberge-Weiss critical point.
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second order transition in the universality class of the 3d O
(4)-symmetric spin model [42]. In recent lattice QCD
simulations by the HotQCD Collaboration [43,44], con-
sistency with this expected universal behavior could be
demonstrated, even though a first order transition at very
small pion mass (mπ ≲ 55 MeV) cannot be excluded with
the accuracy of the present data. For simulations with
staggered fermions on coarse lattices, away from the
continuum limit, the universal scaling is expected to be
in the universality class of the 3d O(2) model, as staggered
fermions preserve only a subgroup of the original chiral
symmetry. The full chiral symmetry is expected to be
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s takes the role of the symmetry
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s ∝ hÞ. In addition, this relation
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latter two are prominent numbers that quantify the QCD
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C. The QCD critical point
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QCD critical point. Unfortunately, the mapping to the
universal theory with Zð2Þ symmetry is unknown.
A frequently used Ansatz for the scaling fields is based
on a linear mapping,
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where c1 is given by the slope of the transition line at the
critical point, and c2 is related to the angle between the
(t ¼ 0) and (h ¼ 0) lines. For the red band in Fig. 1,
we chose c1 ¼ −2κB2 ¼ −0.024, assuming that the tran-
sition line is a quadratic function all the way down to the
critical point. We vary μcep from 500 to 630 MeV, which
generates the width of the red band. For Tcep, we chose in
accordance with the Ansatz for the transition line: Tcep ¼
Tcð1 − κB2 ðμcep=TcÞ2Þ, with Tc ¼ 156.5 MeV. The prefac-
tor c2jzcj−βδ was chosen to be 0.5. In principle, we need at
least four data points in the scaling region of the critical
point to determine all the unknown nonuniversal param-
eters, including the location of the QCD critical point Tcep,
μcep. For the Gross-Neveu model, it has been recently
shown that Tcep; μcep; c1; c2 can be determined from a fit to
the above Ansatz [27]. It will be very interesting to apply
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singularities and apply them to the cases of the Roberge-
Weiss transition and the chiral transition of QCD. We also
discuss the case of the QCD critical end point. In Sec. III,
we provide details of our lattice QCD calculations, and in
Sec. IV, we discuss our strategy for determining rational
approximations to our lattice data. We present our findings
of the extracted singularities in Sec. V. We summarize and
conclude in Sec. VI. In order to consolidate our findings,
we compiled a number of the Appendixes (B–F), where we
discuss numerical issues related to our rational approx-
imations, which are based on a multipoint Padé method.

II. EXPECTED SINGULARITIES

The grand canonical partition function in lattice QCD,
ZGC ¼ ZðV; T; μBÞ has the form of a (high dimensional)
polynomial at any finite volume V and is positive for real
values of the temperature T and baryon chemical potential
μB. However, following Lee, Yang [30,31], and Fischer
[32], we point out that ZGC exhibits many zeros in the
complex chemical potential plane, which can be used to
extract valuable information on the phase transitions that
may occur in the system. A physical phase transition in the
thermodynamic limit can be identified when for V → ∞
one of the complex zeros approaches a point with real
parameters T; μB.
The grand canonical potential logðZGCÞ diverges when

one approaches a zero of ZGC. Singularities of the grand
canonical potential and its derivatives will limit any
analytic expansion performed at zero or purely imaginary
chemical potentials. The positions of the zeros of ZGC can
thus also be used to estimate the radius of convergence of
the Taylor expansion method.
In different ðT; μBÞ regions, the QCD partition function

can be approximately described by effective theories. At
high temperatures, far above the QCD transition, we might
be able to use a free Fermi gas to describe the thermody-
namic behavior of the quarks. Below the QCD crossover
temperature Tpc, the Hadron resonance gas is known to
describe the bulk thermodynamics of QCD matter quite
well [33–35]. However, we can also consider universal
behavior in the vicinity of the Roberge-Weiss, the chiral
transition, or even in the vicinity of the QCD critical end
point (if existing). In particular, we can predict the positions
of singularities in the complex μB plane, by applying
suitable mappings from the parameter space of QCD to
the relevant scaling fields in the vicinity of a critical point.
In the following, we make extensive use of the fact that the
scaling function of the order parameter fGðzÞ exhibits a
branch cut singularity at z ¼ zc, where the scaling variable
z is expressed in terms of the reduced temperature t and
symmetry breaking field h as z ¼ t=jhj1=βδ. The universal
position zc of the universal singularity, known as the Lee-
Yang edge singularity, has been recently determined for
different universality classes [36]. The three distinct scaling
approaches are visualized in Fig. 1. At this point not all of

the nonuniversal normalization constants that fix the above
mentioned mappings are known. We thus vary some of the
parameters to give an impression of the functional depend-
ence, which is discussed in more detail below. Also shown
are identified Lee-Yang-edge singularities from our lattice
QCD calculations on Nτ ¼ 4, 6 lattices. The determination
of the data points is discussed in Sec. V.

A. Singularities in the vicinity of the
Roberge-Weiss (RW) transition

The RW critical point (μB=T ¼ iπ) is a remnant of the
Zð3Þ symmetry in the quenched ðmq→ ∞Þ limit of QCD,
where mq specifies the quark masses, and the QCD
partition function has a reflection symmetry around
μB=T ¼ iπ [37]. The nature of the RW end point could
be either a first order triple point or a second order Zð2Þ
critical point depending on the value of the quark masses
[38]. In (2þ 1)-flavor QCD with a physical value of the
light quark masses with improved lattice discretization,
which is discussed here, one finds a second order Zð2Þ
critical point [39–41]. The order parameter in the vicinity of
a second order transition can be written as the sum of a
universal and a regular part,

M ¼ h1=δfGðzÞ þMreg; z≡ t=jhj1=βδ; ð1Þ

where t, h are scaling fields, and β, δ are critical exponents.
Also, fG is the universal scaling function for the order
parameter, whereasMreg accounts for regular contributions.

FIG. 1. Overview of the expected scaling behavior of the Lee-
Yang edge singularities in the complex plane of the baryon
chemical potential (μB=T). Universal scaling in the vicinity of the
Roberge-Weiss transition, the chiral transition, and the critical
end point is shown in yellow, green, and red, respectively. The
width of the bands indicate uncertainties in the nonuniversal
parameters. See the text for a detailed discussion. Data points
depict identified Lee-Yang edge singularities (method II) at
different temperatures, from lattice QCD calculations on lattices
with temporal extent Nτ ¼ 4, 6.
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well [33–35]. However, we can also consider universal
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transition, or even in the vicinity of the QCD critical end
point (if existing). In particular, we can predict the positions
of singularities in the complex μB plane, by applying
suitable mappings from the parameter space of QCD to
the relevant scaling fields in the vicinity of a critical point.
In the following, we make extensive use of the fact that the
scaling function of the order parameter fGðzÞ exhibits a
branch cut singularity at z ¼ zc, where the scaling variable
z is expressed in terms of the reduced temperature t and
symmetry breaking field h as z ¼ t=jhj1=βδ. The universal
position zc of the universal singularity, known as the Lee-
Yang edge singularity, has been recently determined for
different universality classes [36]. The three distinct scaling
approaches are visualized in Fig. 1. At this point not all of

the nonuniversal normalization constants that fix the above
mentioned mappings are known. We thus vary some of the
parameters to give an impression of the functional depend-
ence, which is discussed in more detail below. Also shown
are identified Lee-Yang-edge singularities from our lattice
QCD calculations on Nτ ¼ 4, 6 lattices. The determination
of the data points is discussed in Sec. V.

A. Singularities in the vicinity of the
Roberge-Weiss (RW) transition

The RW critical point (μB=T ¼ iπ) is a remnant of the
Zð3Þ symmetry in the quenched ðmq→ ∞Þ limit of QCD,
where mq specifies the quark masses, and the QCD
partition function has a reflection symmetry around
μB=T ¼ iπ [37]. The nature of the RW end point could
be either a first order triple point or a second order Zð2Þ
critical point depending on the value of the quark masses
[38]. In (2þ 1)-flavor QCD with a physical value of the
light quark masses with improved lattice discretization,
which is discussed here, one finds a second order Zð2Þ
critical point [39–41]. The order parameter in the vicinity of
a second order transition can be written as the sum of a
universal and a regular part,

M ¼ h1=δfGðzÞ þMreg; z≡ t=jhj1=βδ; ð1Þ

where t, h are scaling fields, and β, δ are critical exponents.
Also, fG is the universal scaling function for the order
parameter, whereasMreg accounts for regular contributions.

FIG. 1. Overview of the expected scaling behavior of the Lee-
Yang edge singularities in the complex plane of the baryon
chemical potential (μB=T). Universal scaling in the vicinity of the
Roberge-Weiss transition, the chiral transition, and the critical
end point is shown in yellow, green, and red, respectively. The
width of the bands indicate uncertainties in the nonuniversal
parameters. See the text for a detailed discussion. Data points
depict identified Lee-Yang edge singularities (method II) at
different temperatures, from lattice QCD calculations on lattices
with temporal extent Nτ ¼ 4, 6.
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The relevant scaling fields for a Zð2Þ-symmetric second
order RW transition can be defined as

t ¼ t−10

!
TRW − T
TRW

"
; ð2Þ

h ¼ h−10

!
μ̂B − iπ

iπ

"
; ð3Þ

where μ̂B ¼ μB=T and t0, h0, and TRW are nonuniversal
parameters. TRW is the RW transition temperature, which is
known for our particular lattice setup [41]. We now can
solve t=h1=βδ ≡ zc ¼ jzcjei

π
2βδ for μ̂B to obtain

μ̂RLY ¼ $π

!
z0
jzcj

"
βδ
!
TRW − T
TRW

"
βδ
; ð4Þ

μ̂ILY ¼ $π; ð5Þ

where the normalization constant z0 is defined as z0 ¼
h1=βδ0 =t0. Equations (4) and (5) thus define the temperature
scaling of the Lee-Yang edge singularity, associated with
the Roberge-Weiss critical point.

B. Chiral singularities

In the chiral limit of (2þ 1)-flavor QCD, we expect a
second order transition in the universality class of the 3d O
(4)-symmetric spin model [42]. In recent lattice QCD
simulations by the HotQCD Collaboration [43,44], con-
sistency with this expected universal behavior could be
demonstrated, even though a first order transition at very
small pion mass (mπ ≲ 55 MeV) cannot be excluded with
the accuracy of the present data. For simulations with
staggered fermions on coarse lattices, away from the
continuum limit, the universal scaling is expected to be
in the universality class of the 3d O(2) model, as staggered
fermions preserve only a subgroup of the original chiral
symmetry. The full chiral symmetry is expected to be
restored in the continuum limit. In the vicinity of the chiral
transition, the scaling fields can be expressed as

t ¼ 1

t0

#
T − Tc

Tc
þ κB2

!
μB
T

"
2
$
; ð6Þ

h ¼ 1

h0

ml

mphys
s

: ð7Þ

Here, the light quark mass ml in units of the physical
strange quark mass mphys

s takes the role of the symmetry
breaking field ðml=m

phys
s ∝ hÞ. In addition, this relation

involves three nonuniversal parameters z0; Tc; κB2 . The
latter two are prominent numbers that quantify the QCD
phase diagram and have been determined to quite some
precision [44–47]. The normalization constant z0 is known

with less precision but it can, in principle, be inferred from
scaling fits of QCD observables to the magnetic equation
of state.
The solution for z ¼ zc now reads

μ̂LY ¼
#
1

κB2

!
zc
z0

!
ml

mphys
s

"
1=βδ

−
T − Tc

Tc

"$
1=2

; ð8Þ

where z0 ¼ h1=βδ0 =t0. This solution has also been used in
[48] to derive an estimate of the radius of convergence.
Equation (8) is visualized in Fig. 1 as green band, where we
chose ml=m

phys
s ¼ 1=27 (physical mass ratio) and Tc ¼

147 MeVwhich is our best estimate for the chiral transition
temperature for Nτ ¼ 6. It is however obvious that Tc does
not alter the line of constant z ¼ zc much; it mainly alters
the normalization of the temperature behavior. The curva-
ture κB2 is chosen as κB2 ¼ 0.012. We vary z0 from 1.5 to 2.5
which generates the width of the green band. Our best
estimate for Nτ ¼ 6 is z0 ¼ 2.35, which stems from scaling
fits to the magnetic equation of state.

C. The QCD critical point

The same kind of scaling is expected to hold close to the
QCD critical point. Unfortunately, the mapping to the
universal theory with Zð2Þ symmetry is unknown.
A frequently used Ansatz for the scaling fields is based
on a linear mapping,

t ¼ αtðT − TcepÞ þ βtðμB − μBcepÞ; ð9Þ

h ¼ αhðT − TcepÞ þ βhðμB − μBcepÞ; ð10Þ

where the critical point is located at (Tcep, μcep). This Ansatz
leads to [49]

μLY ¼ μcep − c1ðT − TcepÞ þ ic2jzcj−βδðT − TcepÞβδ; ð11Þ

where c1 is given by the slope of the transition line at the
critical point, and c2 is related to the angle between the
(t ¼ 0) and (h ¼ 0) lines. For the red band in Fig. 1,
we chose c1 ¼ −2κB2 ¼ −0.024, assuming that the tran-
sition line is a quadratic function all the way down to the
critical point. We vary μcep from 500 to 630 MeV, which
generates the width of the red band. For Tcep, we chose in
accordance with the Ansatz for the transition line: Tcep ¼
Tcð1 − κB2 ðμcep=TcÞ2Þ, with Tc ¼ 156.5 MeV. The prefac-
tor c2jzcj−βδ was chosen to be 0.5. In principle, we need at
least four data points in the scaling region of the critical
point to determine all the unknown nonuniversal param-
eters, including the location of the QCD critical point Tcep,
μcep. For the Gross-Neveu model, it has been recently
shown that Tcep; μcep; c1; c2 can be determined from a fit to
the above Ansatz [27]. It will be very interesting to apply
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where μ̂B ¼ μB=T and t0, h0, and TRW are nonuniversal
parameters. TRW is the RW transition temperature, which is
known for our particular lattice setup [41]. We now can
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where the normalization constant z0 is defined as z0 ¼
h1=βδ0 =t0. Equations (4) and (5) thus define the temperature
scaling of the Lee-Yang edge singularity, associated with
the Roberge-Weiss critical point.

B. Chiral singularities

In the chiral limit of (2þ 1)-flavor QCD, we expect a
second order transition in the universality class of the 3d O
(4)-symmetric spin model [42]. In recent lattice QCD
simulations by the HotQCD Collaboration [43,44], con-
sistency with this expected universal behavior could be
demonstrated, even though a first order transition at very
small pion mass (mπ ≲ 55 MeV) cannot be excluded with
the accuracy of the present data. For simulations with
staggered fermions on coarse lattices, away from the
continuum limit, the universal scaling is expected to be
in the universality class of the 3d O(2) model, as staggered
fermions preserve only a subgroup of the original chiral
symmetry. The full chiral symmetry is expected to be
restored in the continuum limit. In the vicinity of the chiral
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Here, the light quark mass ml in units of the physical
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breaking field ðml=m
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s ∝ hÞ. In addition, this relation

involves three nonuniversal parameters z0; Tc; κB2 . The
latter two are prominent numbers that quantify the QCD
phase diagram and have been determined to quite some
precision [44–47]. The normalization constant z0 is known
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where z0 ¼ h1=βδ0 =t0. This solution has also been used in
[48] to derive an estimate of the radius of convergence.
Equation (8) is visualized in Fig. 1 as green band, where we
chose ml=m

phys
s ¼ 1=27 (physical mass ratio) and Tc ¼

147 MeVwhich is our best estimate for the chiral transition
temperature for Nτ ¼ 6. It is however obvious that Tc does
not alter the line of constant z ¼ zc much; it mainly alters
the normalization of the temperature behavior. The curva-
ture κB2 is chosen as κB2 ¼ 0.012. We vary z0 from 1.5 to 2.5
which generates the width of the green band. Our best
estimate for Nτ ¼ 6 is z0 ¼ 2.35, which stems from scaling
fits to the magnetic equation of state.

C. The QCD critical point

The same kind of scaling is expected to hold close to the
QCD critical point. Unfortunately, the mapping to the
universal theory with Zð2Þ symmetry is unknown.
A frequently used Ansatz for the scaling fields is based
on a linear mapping,

t ¼ αtðT − TcepÞ þ βtðμB − μBcepÞ; ð9Þ

h ¼ αhðT − TcepÞ þ βhðμB − μBcepÞ; ð10Þ

where the critical point is located at (Tcep, μcep). This Ansatz
leads to [49]

μLY ¼ μcep − c1ðT − TcepÞ þ ic2jzcj−βδðT − TcepÞβδ; ð11Þ

where c1 is given by the slope of the transition line at the
critical point, and c2 is related to the angle between the
(t ¼ 0) and (h ¼ 0) lines. For the red band in Fig. 1,
we chose c1 ¼ −2κB2 ¼ −0.024, assuming that the tran-
sition line is a quadratic function all the way down to the
critical point. We vary μcep from 500 to 630 MeV, which
generates the width of the red band. For Tcep, we chose in
accordance with the Ansatz for the transition line: Tcep ¼
Tcð1 − κB2 ðμcep=TcÞ2Þ, with Tc ¼ 156.5 MeV. The prefac-
tor c2jzcj−βδ was chosen to be 0.5. In principle, we need at
least four data points in the scaling region of the critical
point to determine all the unknown nonuniversal param-
eters, including the location of the QCD critical point Tcep,
μcep. For the Gross-Neveu model, it has been recently
shown that Tcep; μcep; c1; c2 can be determined from a fit to
the above Ansatz [27]. It will be very interesting to apply
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where the normalization constant z0 is defined as z0 ¼
h1=βδ0 =t0. Equations (4) and (5) thus define the temperature
scaling of the Lee-Yang edge singularity, associated with
the Roberge-Weiss critical point.

B. Chiral singularities
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second order transition in the universality class of the 3d O
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sistency with this expected universal behavior could be
demonstrated, even though a first order transition at very
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the accuracy of the present data. For simulations with
staggered fermions on coarse lattices, away from the
continuum limit, the universal scaling is expected to be
in the universality class of the 3d O(2) model, as staggered
fermions preserve only a subgroup of the original chiral
symmetry. The full chiral symmetry is expected to be
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Here, the light quark mass ml in units of the physical
strange quark mass mphys

s takes the role of the symmetry
breaking field ðml=m

phys
s ∝ hÞ. In addition, this relation

involves three nonuniversal parameters z0; Tc; κB2 . The
latter two are prominent numbers that quantify the QCD
phase diagram and have been determined to quite some
precision [44–47]. The normalization constant z0 is known

with less precision but it can, in principle, be inferred from
scaling fits of QCD observables to the magnetic equation
of state.
The solution for z ¼ zc now reads
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−
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Tc
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where z0 ¼ h1=βδ0 =t0. This solution has also been used in
[48] to derive an estimate of the radius of convergence.
Equation (8) is visualized in Fig. 1 as green band, where we
chose ml=m

phys
s ¼ 1=27 (physical mass ratio) and Tc ¼

147 MeVwhich is our best estimate for the chiral transition
temperature for Nτ ¼ 6. It is however obvious that Tc does
not alter the line of constant z ¼ zc much; it mainly alters
the normalization of the temperature behavior. The curva-
ture κB2 is chosen as κB2 ¼ 0.012. We vary z0 from 1.5 to 2.5
which generates the width of the green band. Our best
estimate for Nτ ¼ 6 is z0 ¼ 2.35, which stems from scaling
fits to the magnetic equation of state.

C. The QCD critical point

The same kind of scaling is expected to hold close to the
QCD critical point. Unfortunately, the mapping to the
universal theory with Zð2Þ symmetry is unknown.
A frequently used Ansatz for the scaling fields is based
on a linear mapping,

t ¼ αtðT − TcepÞ þ βtðμB − μBcepÞ; ð9Þ

h ¼ αhðT − TcepÞ þ βhðμB − μBcepÞ; ð10Þ

where the critical point is located at (Tcep, μcep). This Ansatz
leads to [49]

μLY ¼ μcep − c1ðT − TcepÞ þ ic2jzcj−βδðT − TcepÞβδ; ð11Þ

where c1 is given by the slope of the transition line at the
critical point, and c2 is related to the angle between the
(t ¼ 0) and (h ¼ 0) lines. For the red band in Fig. 1,
we chose c1 ¼ −2κB2 ¼ −0.024, assuming that the tran-
sition line is a quadratic function all the way down to the
critical point. We vary μcep from 500 to 630 MeV, which
generates the width of the red band. For Tcep, we chose in
accordance with the Ansatz for the transition line: Tcep ¼
Tcð1 − κB2 ðμcep=TcÞ2Þ, with Tc ¼ 156.5 MeV. The prefac-
tor c2jzcj−βδ was chosen to be 0.5. In principle, we need at
least four data points in the scaling region of the critical
point to determine all the unknown nonuniversal param-
eters, including the location of the QCD critical point Tcep,
μcep. For the Gross-Neveu model, it has been recently
shown that Tcep; μcep; c1; c2 can be determined from a fit to
the above Ansatz [27]. It will be very interesting to apply
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Order parameter near a 2nd order phase transition

scaling fields
The relevant scaling fields for a Zð2Þ-symmetric second

order RW transition can be defined as
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where μ̂B ¼ μB=T and t0, h0, and TRW are nonuniversal
parameters. TRW is the RW transition temperature, which is
known for our particular lattice setup [41]. We now can
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μ̂ILY ¼ $π; ð5Þ

where the normalization constant z0 is defined as z0 ¼
h1=βδ0 =t0. Equations (4) and (5) thus define the temperature
scaling of the Lee-Yang edge singularity, associated with
the Roberge-Weiss critical point.

B. Chiral singularities

In the chiral limit of (2þ 1)-flavor QCD, we expect a
second order transition in the universality class of the 3d O
(4)-symmetric spin model [42]. In recent lattice QCD
simulations by the HotQCD Collaboration [43,44], con-
sistency with this expected universal behavior could be
demonstrated, even though a first order transition at very
small pion mass (mπ ≲ 55 MeV) cannot be excluded with
the accuracy of the present data. For simulations with
staggered fermions on coarse lattices, away from the
continuum limit, the universal scaling is expected to be
in the universality class of the 3d O(2) model, as staggered
fermions preserve only a subgroup of the original chiral
symmetry. The full chiral symmetry is expected to be
restored in the continuum limit. In the vicinity of the chiral
transition, the scaling fields can be expressed as
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involves three nonuniversal parameters z0; Tc; κB2 . The
latter two are prominent numbers that quantify the QCD
phase diagram and have been determined to quite some
precision [44–47]. The normalization constant z0 is known

with less precision but it can, in principle, be inferred from
scaling fits of QCD observables to the magnetic equation
of state.
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where z0 ¼ h1=βδ0 =t0. This solution has also been used in
[48] to derive an estimate of the radius of convergence.
Equation (8) is visualized in Fig. 1 as green band, where we
chose ml=m

phys
s ¼ 1=27 (physical mass ratio) and Tc ¼

147 MeVwhich is our best estimate for the chiral transition
temperature for Nτ ¼ 6. It is however obvious that Tc does
not alter the line of constant z ¼ zc much; it mainly alters
the normalization of the temperature behavior. The curva-
ture κB2 is chosen as κB2 ¼ 0.012. We vary z0 from 1.5 to 2.5
which generates the width of the green band. Our best
estimate for Nτ ¼ 6 is z0 ¼ 2.35, which stems from scaling
fits to the magnetic equation of state.

C. The QCD critical point

The same kind of scaling is expected to hold close to the
QCD critical point. Unfortunately, the mapping to the
universal theory with Zð2Þ symmetry is unknown.
A frequently used Ansatz for the scaling fields is based
on a linear mapping,

t ¼ αtðT − TcepÞ þ βtðμB − μBcepÞ; ð9Þ

h ¼ αhðT − TcepÞ þ βhðμB − μBcepÞ; ð10Þ

where the critical point is located at (Tcep, μcep). This Ansatz
leads to [49]

μLY ¼ μcep − c1ðT − TcepÞ þ ic2jzcj−βδðT − TcepÞβδ; ð11Þ

where c1 is given by the slope of the transition line at the
critical point, and c2 is related to the angle between the
(t ¼ 0) and (h ¼ 0) lines. For the red band in Fig. 1,
we chose c1 ¼ −2κB2 ¼ −0.024, assuming that the tran-
sition line is a quadratic function all the way down to the
critical point. We vary μcep from 500 to 630 MeV, which
generates the width of the red band. For Tcep, we chose in
accordance with the Ansatz for the transition line: Tcep ¼
Tcð1 − κB2 ðμcep=TcÞ2Þ, with Tc ¼ 156.5 MeV. The prefac-
tor c2jzcj−βδ was chosen to be 0.5. In principle, we need at
least four data points in the scaling region of the critical
point to determine all the unknown nonuniversal param-
eters, including the location of the QCD critical point Tcep,
μcep. For the Gross-Neveu model, it has been recently
shown that Tcep; μcep; c1; c2 can be determined from a fit to
the above Ansatz [27]. It will be very interesting to apply
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From the fit we get

= 206.7(2.6) MeV

        = 208.705(0.002) MeV
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where μ̂B ¼ μB=T and t0, h0, and TRW are nonuniversal
parameters. TRW is the RW transition temperature, which is
known for our particular lattice setup [41]. We now can
solve t=h1=βδ ≡ zc ¼ jzcjei

π
2βδ for μ̂B to obtain

μ̂RLY ¼ $π

!
z0
jzcj

"
βδ
!
TRW − T
TRW

"
βδ
; ð4Þ

μ̂ILY ¼ $π; ð5Þ

where the normalization constant z0 is defined as z0 ¼
h1=βδ0 =t0. Equations (4) and (5) thus define the temperature
scaling of the Lee-Yang edge singularity, associated with
the Roberge-Weiss critical point.

B. Chiral singularities

In the chiral limit of (2þ 1)-flavor QCD, we expect a
second order transition in the universality class of the 3d O
(4)-symmetric spin model [42]. In recent lattice QCD
simulations by the HotQCD Collaboration [43,44], con-
sistency with this expected universal behavior could be
demonstrated, even though a first order transition at very
small pion mass (mπ ≲ 55 MeV) cannot be excluded with
the accuracy of the present data. For simulations with
staggered fermions on coarse lattices, away from the
continuum limit, the universal scaling is expected to be
in the universality class of the 3d O(2) model, as staggered
fermions preserve only a subgroup of the original chiral
symmetry. The full chiral symmetry is expected to be
restored in the continuum limit. In the vicinity of the chiral
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s takes the role of the symmetry
breaking field ðml=m
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s ∝ hÞ. In addition, this relation

involves three nonuniversal parameters z0; Tc; κB2 . The
latter two are prominent numbers that quantify the QCD
phase diagram and have been determined to quite some
precision [44–47]. The normalization constant z0 is known

with less precision but it can, in principle, be inferred from
scaling fits of QCD observables to the magnetic equation
of state.
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where z0 ¼ h1=βδ0 =t0. This solution has also been used in
[48] to derive an estimate of the radius of convergence.
Equation (8) is visualized in Fig. 1 as green band, where we
chose ml=m

phys
s ¼ 1=27 (physical mass ratio) and Tc ¼

147 MeVwhich is our best estimate for the chiral transition
temperature for Nτ ¼ 6. It is however obvious that Tc does
not alter the line of constant z ¼ zc much; it mainly alters
the normalization of the temperature behavior. The curva-
ture κB2 is chosen as κB2 ¼ 0.012. We vary z0 from 1.5 to 2.5
which generates the width of the green band. Our best
estimate for Nτ ¼ 6 is z0 ¼ 2.35, which stems from scaling
fits to the magnetic equation of state.

C. The QCD critical point

The same kind of scaling is expected to hold close to the
QCD critical point. Unfortunately, the mapping to the
universal theory with Zð2Þ symmetry is unknown.
A frequently used Ansatz for the scaling fields is based
on a linear mapping,

t ¼ αtðT − TcepÞ þ βtðμB − μBcepÞ; ð9Þ

h ¼ αhðT − TcepÞ þ βhðμB − μBcepÞ; ð10Þ

where the critical point is located at (Tcep, μcep). This Ansatz
leads to [49]

μLY ¼ μcep − c1ðT − TcepÞ þ ic2jzcj−βδðT − TcepÞβδ; ð11Þ

where c1 is given by the slope of the transition line at the
critical point, and c2 is related to the angle between the
(t ¼ 0) and (h ¼ 0) lines. For the red band in Fig. 1,
we chose c1 ¼ −2κB2 ¼ −0.024, assuming that the tran-
sition line is a quadratic function all the way down to the
critical point. We vary μcep from 500 to 630 MeV, which
generates the width of the red band. For Tcep, we chose in
accordance with the Ansatz for the transition line: Tcep ¼
Tcð1 − κB2 ðμcep=TcÞ2Þ, with Tc ¼ 156.5 MeV. The prefac-
tor c2jzcj−βδ was chosen to be 0.5. In principle, we need at
least four data points in the scaling region of the critical
point to determine all the unknown nonuniversal param-
eters, including the location of the QCD critical point Tcep,
μcep. For the Gross-Neveu model, it has been recently
shown that Tcep; μcep; c1; c2 can be determined from a fit to
the above Ansatz [27]. It will be very interesting to apply
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Scaling in the vicinity of the chiral transition 
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matter: Lee-Yang edge singularities from lattice QCD
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We present a calculation of the net baryon number density as a function of imaginary baryon number
chemical potential, obtained with highly improved staggered quarks at temporal lattice extent of Nτ ¼ 4, 6.
We construct various rational function approximations of the lattice data and discuss how poles in the
complex plane can be determined from them. We compare our results of the singularities in the chemical
potential plane to the theoretically expected positions of the Lee-Yang edge singularity in the vicinity of the
Roberge-Weiss and chiral phase transitions. We find a temperature scaling that is in accordance with the
expected power law behavior.
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I. INTRODUCTION

The phase diagram of quantum chromodynamics (QCD)
belongs to the most pressing open issues in high energy
physics. With large scale experimental programs at RHIC
and LHC, the phase diagram is scanned for hints of a
critical point or a first order phase transition. In addition,
many ab initio calculations of lattice QCD are performed to
infer on the QCD phase diagram.
Unfortunately, the notorious sign problem hampers

numerical studies of the QCD phase diagram. At vanishing
baryon chemical potential (μB ≡ 0), lattice QCD calcula-
tions rely onMonte Carlo methods for an efficient sampling
of the QCD partition sum. At nonvanishing baryon chemi-
cal potentials (μB > 0), standard Monte Carlo methods
cease working as the fermion determinant becomes genu-
inely complex. Hence, the kernel of the QCD partition sum
is strongly oscillating with increasing lattice volumes.
Over the last decades, manymethods have been developed

which potentially circumvent or solve theQCDsign problem.
These methods include reweighting [1,2], Taylor expansions
[3–5], analytic continuation from purely imaginary chemical
potentials [6,7], canonical partition functions [8,9], strong
coupling/dual methods [10–13], the density of states method
[14–16], and complex Langevin dynamics [17–20]. Related

to the latter is also the Lefschetz thimble method [21–23],
which is based on a deformation of the integration manifold
into complex field space. Recent developments are reviewed,
e.g., in [24–26]. However, all these methods face severe
limitations that restrict their applicability toward the thermo-
dynamic and/or continuum limits.
With this study, we systematically investigate singularities

of the grand canonical potential in the complex chemical
potential plane, which we identify from an (analytically
continued) rational approximation of lattice data obtained at
purely imaginary chemical potentials. The rational approxi-
mation of the net baryon number density is done in
consistency with the second, third, and fourth order cumu-
lants of the baryon number density. In this sense, our method
could be seen as a combination of the Taylor expansion
approach and the imaginary chemical potential method. The
position of those singularities provides very valuable infor-
mation on the QCD phase diagram. We find that they are in
agreement with the critical scaling of the Lee-Yang edge
singularities in the vicinity of the Roberge-Weiss transition
and the chiral transition. We also discuss the scaling of the
Lee-Yang edge singularity in the vicinity of a hypothetical
critical end point. Finally, we point out that the position of the
singularities can be used to estimate the radius of conver-
gence of any analytic expansion and to extract nonuniversal
parameters that map QCD to the universal scaling function.
Among the latter might also be the position of the QCD
critical end point, which was demonstrated recently in the
case of the Gross-Neveu model [27]. Genuine Lee-Yang
zeros have been recently also studied in other works [28,29].
This paper is organized as follows. In Sec. II, we

introduce the scaling theory of the Lee-Yang edge
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Care needed! … but intriguing … what we found is compared with 68% 
and 95% confidence regions of a theoretical prediction (no fit!)


Our first, preliminary indication of a chiral singularity…



CONCLUSIONS

1. We saw two different examples of studies in the complex plane, ending up 
with predictions for phase diagrams obtained from (multi-point) Padè analysis.


2. Thimbles + Taylor + Padè can still enable some new progress (avoiding multi-
thimble simulations)


3. The program of (multi-point) Padè could provide interesting informations on 
Lee Yang edge singularities in QCD. RW seems solid, we are trying to better 
understand chiral transition. The Holy Grail (needless to say) is the critical 
point…


4. Work is going on: stay tuned!



The Takagi problem is solved numerically (only once, at
the beginning of the simulation) and the solution returns L
Takagi vectors vðiÞ and the associated Takagi values λi.
(ii) Our Monte Carlo method works by sampling entire

SA paths. Each path is identified by the initial
direction of the flow n̂ along the tangent space at
the critical point. For the one-dimensional Thirring
model the vector n̂ has L components which denote
the initial displacement along each Takagi vector.
Specifically we apply the Metropolis-Hastings algo-
rithm to sample paths ∝ Zn̂. Starting from a path
with initial direction n̂, we propose a new path with
initial direction n̂ using a set of rotations as
described in Sec. II. Then we apply the Metropolis
acceptance step, which requires the calculation of
the partial partition function Zn̂, and we measure the
observable, which in our case means calculating the
quantity fn̂. The thimble contribution to the observ-
able f is given by the sample mean hfiσ0 ¼

1
N

P
n̂
fn̂
Zn̂
.

The quantities Zn̂ and fn̂ are integrals in time or
(after a change of variable) in action. The integrals
depend on the integration variable implicitly through
the field and basis configurations. The latter evolve

following, respectively, the SA equations [Eq. (8)]
and the parallel transport equations [Eq. (4), with the
Hessian from Eq. (9)]. The SA and parallel transport
equations are integrated numerically starting from an
initial condition dependent on the initial direction of
the path n̂:

!
z ¼ zσ þ

P
i nie

λitvðiÞ

VðhÞ ¼ vðhÞeλht
:

The very same algorithm will be used both in Sec. V to
sample (again) the fundamental thimble and in Sec. IV to
sample both the fundamental and the subleading thimbles.
In Fig. 2 we show the numerical results obtained from

numerical simulations performed on the fundamental
thimble J σ0 for different values of β ¼ 1.0, 1.5, 2.0,
4.0.2 At strong couplings (i.e., at low β) the single-thimble
approximation yields the wrong results, at least for high

FIG. 1. Critical points for L ¼ 4, β ¼ 1 and ma ¼ 1: solutions for μ̂ ¼ 0 (top left), solutions for μ̂ ∈ ½0.0; 2.0& (top right), real part of
the action as a function of μ̂ (bottom left) and imaginary part of the action as a function of μ̂ (bottom right).

2Actually a small imaginary part has been added to β in order
to prevent a Stokes phenomenon between J σ0 and J σ0̄ .
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lattices, respectively. Also listed are the number of configu-
rations on which we have measured the observables and
which are separated by 10 RHMC trajectories of length
0.5–1.0.

APPENDIX B: MULTIPOINT
VS SINGLE-POINT PADÉ

As mentioned before, most of the literature that exists on
existence, uniqueness, and convergence [57,74] of Padé
sequences exists mainly for single-point Padé expansions
wherein the rational approximation is constructed from a
single Taylor expansion with arbitrarily many Taylor coef-
ficients [75]. On the other hand, we may be presented with a
situation in which we have low-order Taylor data but at
arbitrarily many points. This is known in the literature as
multipoint Padé, but most commonly only values at other
points are used. In our work, we also use higher Taylor
coefficients at other points. Since not a lot of literature on
multipoint Padé exists, we validate our findings with numeri-
cal experiments conducted on a number of test functions.
Basedonour numerical experiments, it is also shown that there
are situations in which a multipoint Padé does better while
there are other situations inwhich a single point may be better.
Most of our numerical experiments are based on the 1D

Thirring model (a model that was studied in [64]). This
model is chosen because its partition function has a known
analytical solution. For the purposes of these experiments,
we simulate the number density of the 1D Thirring model,

N¼ I1ðβÞL sinhðLμÞ
I1ðβÞL coshðLμÞþ I0ðβÞL coshðLsinh−1ðmÞÞ

; ðB1Þ

where because we know the exact location of poles of the
number density, it is easy to validate/invalidate our
approximation. Shown in Fig. 11 are the approximations
and singularity structure of the number density simulated at
β ¼ 1, L ¼ 8, and m ¼ 2 (same parameters used in all
figures depicting the 1D Thirring model).

TABLE IV. Mean values and statistical errors of net baryon number cumulants from 363 × 6 lattices. Also indicated is the number of
measured configurations.

μ̂IB Im½χB1& Re½χB2& Im½χB3&
Number of

configurations μ̂IB Im½χB1& Re½χB2& Im½χB3&
Number of

configurations

T ¼ 145.1 (MeV) T ¼ 145.1 (MeV)

0.000 0.00024(51) 0.0579(24) 0.001(20) 5280 1.963 0.05578(61) –0.0217(39) 0.074(36) 5280
0.393 0.02276(42) 0.0526(27) 0.026(24) 5280 2.356 0.04384(73) –0.0467(49) 0.099(46) 5280
0.785 0.04142(56) 0.0426(22) 0.057(19) 5280 2.749 0.02391(81) –0.0569(44) 0.024(37) 5280
1.178 0.05436(54) 0.0176(27) 0.055(27) 5280 2.945 0.01315(95) –0.0663(47) 0.008(46) 5280
1.571 0.05995(76) –0.0042(24) 0.075(25) 5280 3.142 0.00024(80) –0.0538(41) 0.071(39) 5280

FIG. 11. Thirring 1D. Top: comparison between the approxi-
mation of a [15/15] order single-point Padé about 0 and
a [10/10] order multipoint Padé constructed in the interval
[0,4] with only up to first derivatives. Middle, Bottom: depiction
of the poles as seen by the single-point and multipoint Padé,
respectively.
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FIG. 14. 1D Thirring model: functional form of the rational approximation (left) and sensitivity to different sets of poles (right) when
sampled in different intervals: [0, 4] (top), [–4, 4] (middle), [–2, 2] (bottom).

FIG. 15. Left: interval used Im½μ" ∈ ½0; 3"; (top) approximation is good but (bottom) signature of branch cut missed. Right: interval
used Im½μ" ∈ ½−3; 3"; (top) approximation is good in the region considered and (choosing an interval which includes the branch cut
symmetrically ensures) that the (bottom) branch cut is properly obtained.
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