Complex-valued degrees of freedom in the analysis of phase diagrams:
 Lefschetz thimbles, Pade approximants and all that

Francesco Di Renzo (University of Parma and INFN)

GAUGE TOPOLOGY, FLUX TUBES AND HOLOGRAPHIC MODELS: THE INTRICATE DYNAMICS OF QCD IN VACUUM AND EXTREME ENVIRONMENTS

ECT* Trento, 25/05/2022

In collaboration with P. Dimopoulos, S. Singh (Parma), K. Zambello (Parma -> Pisa),
L. Dini, J. Goswami, D. Clarke, G. Nicotra, C. Schmidt, F. Zieschè (Bielefeld)

I teach students that it is better to regard real functions as restrictions to the real axis of (analytic) complex functions rather than regarding complex functions as extensions of real functions to complex plane ...

As annoyed as we can be of complex actions (and the sign problem), we always have to surrender to the complex plane as the real arena for the study of phase diagrams...

We will look at a couple of examples of interesting physics going on in the complex plane.

We will be concerned with Lefschetz Thimbles (doing better that what we had been able to do previously) and Lattice QCD at imaginary values of the baryonic chemical potential.

A unifying tool will be (multi-point) Padè analysis.

Thimble regularisation in a nutshell (via a toy model)

Aurora Coll. (2012) Y. Kikukawa et al (2013)

$$
\langle O\rangle=Z^{-1} \int d x e^{-S(x)} O(x)
$$

$$
S(x)=S_{R}(x)+i S_{I}(x)
$$

complex action ... SIGN PROBLEM!

$$
\begin{aligned}
\langle O\rangle & =Z^{-1} \int d x e^{-S(x)} O(x) \\
& =\frac{\sum_{\sigma} n_{\sigma} e^{-i S_{I}\left(p_{\sigma}\right)} \int_{\mathcal{J}_{\sigma}} d z e^{-S_{R}(z)} O(z) e^{i \omega(z)}}{\sum_{\sigma} n_{\sigma} e^{-i S_{I}\left(p_{\sigma}\right)} \int_{\mathcal{J}_{\sigma}} d z e^{-S_{R}(z)} e^{i \omega(z)}}
\end{aligned}
$$

$$
\begin{aligned}
& S(x)=S_{R}(x)+i S_{I}(x) \\
& \text { complex action ... SIGN PROBLEM! }
\end{aligned}
$$

\mathcal{J}_{σ} union of solutions of the SA equatio
where $\partial_{z} S=0$

$$
\begin{array}{ll}
\frac{d}{d t} z_{i}=\frac{\partial \bar{S}}{\partial \bar{z}_{i}} & \text { complex DOF! } \\
e^{-i S_{I}\left(p_{\sigma}\right)} & \text { constant! }
\end{array}
$$

$$
\begin{aligned}
\langle O\rangle & =Z^{-1} \int d x e^{-S(x)} O(x) \\
& =\frac{\sum_{\sigma} n_{\sigma} e^{-i S_{I}\left(p_{\sigma}\right)} \int_{\mathcal{J}_{\sigma}} d z e^{-S_{R}(z)} O(z) e^{i \omega(z)}}{\sum_{\sigma} n_{\sigma} e^{-i S_{I}\left(p_{\sigma}\right)} \int_{\mathcal{J}_{\sigma}} d z e^{-S_{R}(z)} e^{i \omega(z)}} \\
& =\frac{\sum_{\sigma} n_{\sigma} e^{-i S_{I}\left(p_{\sigma}\right)} Z_{\sigma}\left\langle O e^{i \omega}\right\rangle_{\sigma}}{\sum_{\sigma} n_{\sigma} e^{-i S_{I}\left(p_{\sigma}\right)} Z_{\sigma}\left\langle e^{i \omega}\right\rangle_{\sigma}}
\end{aligned}
$$

$$
\begin{gathered}
S(x)=S_{R}(x)+i S_{I}(x) \\
\text { complex action ... SIGN PROBLEM! }
\end{gathered}
$$

\mathcal{J}_{σ} union of solutions of the SA equatio
where $\partial_{z} S=0$

$$
\begin{array}{ll}
\frac{d}{d t} z_{i}=\frac{\partial \bar{S}}{\partial \bar{z}_{i}} & \text { complex DOF! } \\
e^{-i S_{I}\left(p_{\sigma}\right)} & \text { constant! }
\end{array}
$$

with $\langle X\rangle_{\sigma} \equiv \frac{\int_{\mathcal{J}_{\sigma}} d z e^{-S_{R}} X}{\int_{\mathcal{J}_{\sigma}} d z e^{-S_{R}}} \equiv \frac{\int_{\mathcal{J}_{\sigma}} d z e^{-S_{R}} X}{Z_{\sigma}}$

$$
\begin{aligned}
&\langle O\rangle=Z^{-1} \int d x e^{-S(x)} O(x) \\
&= \frac{\sum_{\sigma} n_{\sigma} e^{-i S_{I}\left(p_{\sigma}\right)} \int_{\mathcal{J}_{\sigma}} d z e^{-S_{R}(z)} O(z) e^{i \omega(z)}}{\sum_{\sigma} n_{\sigma} e^{-i S_{I}\left(p_{\sigma}\right)} \int_{\mathcal{J}_{\sigma}} d z e^{-S_{R}(z)} e^{i \omega(z)}} \\
&= \frac{\sum_{\sigma} n_{\sigma} e^{-i S_{I}\left(p_{\sigma}\right)} Z_{\sigma}\left\langle O e^{i \omega}\right\rangle_{\sigma}}{\sum_{\sigma} n_{\sigma} e^{-i S_{I}\left(p_{\sigma}\right)} Z_{\sigma}\left\langle e^{i \omega}\right\rangle_{\sigma}} \\
& \quad \text { with }\langle X\rangle_{\sigma} \equiv \frac{\int_{\mathcal{J}_{\sigma}} d z e^{-S_{R}} X}{\int_{\mathcal{J}_{\sigma}} d z e^{-S_{R}}} \equiv \frac{\int_{\mathcal{J}_{\sigma}} d z e^{-S_{R} X}}{Z_{\sigma}}
\end{aligned}
$$

concrete example

$$
Z=\int_{\mathbb{R}} \mathrm{d} \phi e^{-S(\phi)} \quad S(\phi)=\frac{1}{2} \sigma \phi^{2}+\frac{1}{4} \lambda \phi^{4}
$$

STABLE (SA) and UNSTABLE (SD) thimbles
Only thimbles associated to critical points whose unstable thimble intersects the original domain of integration enter the THIMBLE DECOMPOSITION!

$$
S(x)=S_{R}(x)+i S_{I}(x)
$$

complex action ... SIGN PROBLEM!
$\mathcal{J}_{\sigma} \quad$ union of solutions of the SA equatio where $\partial_{z} S=0$

$$
\begin{array}{ll}
\frac{d}{d t} z_{i}=\frac{\partial \bar{S}}{\partial \bar{z}_{i}} & \text { complex DOF! } \\
e^{-i S_{I}\left(p_{\sigma}\right)} & \text { constant! }
\end{array}
$$

I am cheating you ...

I am cheating you ...

THIMBLE DECOMPOSITION does not hold the same once and forever!
It is different in different region of the parameters space!

THIMBLE DECOMPOSITION does not hold the same once and forever!
It is different in different region of the parameters space!

One single thimble contributing

I am cheating you ...

THIMBLE DECOMPOSITION does not hold the same once and forever!
It is different in different region of the parameters space!

One single thimble contributing

More thimbles contributing

THIMBLE DECOMPOSITION does not hold the same once and forever!
It is different in different region of the parameters space!

One single thimble contributing

Stokes phenomenon

More thimbles contributing

THIMBLE DECOMPOSITION does not hold the same once and forever!
It is different in different region of the parameters space!

SINGLE THIMBLE DOMINANCE has been a dream for a while ...
Sometimes it holds true, in general it fails

Thirring model first clear counterexample

Thirring model: from failure to new opportunity

$$
S=\beta \sum_{n=1 \ldots L}\left(1-\cos \left(\phi_{n}\right)\right)-\log \operatorname{det} D
$$

Single thimble fails ...
Y. Kikukawa et al (2016), A. Alexandru et al (2016)

Thirring model: from failure to new opportunity

$$
S=\beta \sum_{n=1 \ldots L}\left(1-\cos \left(\phi_{n}\right)\right)-\log \operatorname{det} D
$$

Two can be enough ...
F. Di Renzo, K. Zambello (2022)
$\langle O\rangle=\frac{\left\langle O e^{i \omega}\right\rangle_{\sigma_{1}}+\alpha\left\langle O e^{i \omega}\right\rangle_{\sigma_{2}}}{\left\langle e^{i \omega}\right\rangle_{\sigma_{1}}+\alpha\left\langle e^{i \omega}\right\rangle_{\sigma_{2}}}$

Single thimble fails ...
Y. Kikukawa et al (2016), A. Alexandru et al (2016)

THIMBLE DECOMPOSITION is DISCONTINUOUS across STOKES points, but PHYSICAL OBSERVABLES are NOT!

THIMBLE DECOMPOSITION is DISCONTINUOUS across STOKES points, but PHYSICAL OBSERVABLES are NOT!

First idea: compute TAYLOR EXPANSIONS in regions where single decomposition holds and BRIDGE!

THIMBLE DECOMPOSITION is DISCONTINUOUS across STOKES points, but PHYSICAL OBSERVABLES are NOT!

First idea: compute TAYLOR EXPANSIONS in regions where single decomposition holds and BRIDGE!

Second (better) idea: once you have TAYLOR EXPANSIONS compute PADĖ APPROXIMANTS and BRIDGE!

THIMBLE DECOMPOSITION is DISCONTINUOUS across STOKES points, but PHYSICAL OBSERVABLES are NOT!

First idea: compute TAYLOR EXPANSIONS in regions where single decomposition holds and BRIDGE!

Second (better) idea: once you have TAYLOR EXPANSIONS compute PADĖ APPROXIMANTS and BRIDGE!

THIMBLE DECOMPOSITION is DISCONTINUOUS across STOKES points, but PHYSICAL OBSERVABLES are NOT!

First idea: compute TAYLOR EXPANSIONS in regions where single decomposition holds and BRIDGE!

Second (better) idea: once you have TAYLOR EXPANSIONS compute PADĖ APPROXIMANTS and BRIDGE!

Taylor expansions on Lefschetz thimbles
Di Renzo, Zambello (2022)

We could take the continuum limit

$$
\begin{aligned}
& L=\frac{1}{T a} \quad \beta=\left(2 g^{2} \bar{a}\right)^{-1} \text { increasing } \\
& \text { at fixed } \quad L \hat{m}=16 \quad \beta \hat{m}=2
\end{aligned}
$$

PADÈ approximants for dense QCD (and forgetting about thimbles...)

What can we compute in dense lattice QCD, given the sign problem?

PADÈ approximants for dense QCD (and forgetting about thimbles...)

What can we compute in dense lattice QCD, given the sign problem?

Taylor expansions at ZERO μ_{B}

What can we compute in dense lattice QCD, given the sign problem?

Taylor expansions at ZERO μ_{B}
Observables at IMAGINARY values of μ_{B}

What can we compute in dense lattice QCD, given the sign problem?

Taylor expansions at ZERO μ_{B}
Observables at IMAGINARY values of μ_{B}

Let's merge the two and then go for a (multi-point) PADĖ !

What can we compute in dense lattice QCD, given the sign problem?

Taylor expansions at ZERO μ_{B}
Observables at IMAGINARY values of μ_{B}

Let's merge the two and then go for a (multi-point) PADĖ !

$$
\begin{aligned}
\chi_{n}^{B}\left(T, V, \mu_{B}\right) & =\left(\frac{\partial}{\partial \hat{\mu}_{B}}\right)^{n} \frac{\ln Z\left(T, V, \mu_{l}, \mu_{s}\right)}{V T^{3}} \\
& =\left(\frac{1}{3} \frac{\partial}{\partial \hat{\mu}_{l}}+\frac{1}{3} \frac{\partial}{\partial \hat{\mu}_{s}}\right)^{n} \frac{\ln Z\left(T, V, \mu_{l}, \mu_{s}\right)}{V T^{3}}
\end{aligned}
$$ computed at a number of imaginary values of μ_{B} (including zero...)

What can we compute in dense lattice QCD, given the sign problem?

Taylor expansions at ZERO μ_{B}

Observables at IMAGINARY values of μ_{B}

Let's merge the two and then go for a (multi-point) PADĖ !

$$
\begin{aligned}
\chi_{n}^{B}\left(T, V, \mu_{B}\right) & =\left(\frac{\partial}{\partial \hat{\mu}_{B}}\right)^{n} \frac{\ln Z\left(T, V, \mu_{l}, \mu_{s}\right)}{V T^{3}} \\
& =\left(\frac{1}{3} \frac{\partial}{\partial \hat{\mu}_{l}}+\frac{1}{3} \frac{\partial}{\partial \hat{\mu}_{s}}\right)^{n} \frac{\ln Z\left(T, V, \mu_{l}, \mu_{s}\right)}{V T^{3}}
\end{aligned}
$$

and approximated by rational functions $\quad R_{n}^{m}(x)=\frac{P_{m}(x)}{\tilde{Q}_{n}(x)}=\frac{P_{m}(x)}{1+Q_{n}(x)}=\frac{\sum_{i=0}^{m} a_{i} x^{i}}{1+\sum_{j=1}^{n} b_{j} x^{j}}$

A bit more on multi-point PADÈ

$$
\begin{aligned}
\chi_{n}^{B}\left(T, V, \mu_{B}\right) & =\left(\frac{\partial}{\partial \hat{\mu}_{B}}\right)^{n} \frac{\ln Z\left(T, V, \mu_{l}, \mu_{s}\right)}{V T^{3}} \\
& =\left(\frac{1}{3} \frac{\partial}{\partial \hat{\mu}_{l}}+\frac{1}{3} \frac{\partial}{\partial \hat{\mu}_{s}}\right)^{n} \frac{\ln Z\left(T, V, \mu_{l}, \mu_{s}\right)}{V T^{3}}
\end{aligned}
$$

$$
R_{n}^{m}(x)=\frac{P_{m}(x)}{\tilde{Q}_{n}(x)}=\frac{P_{m}(x)}{1+Q_{n}(x)}=\frac{\sum_{i=0}^{m} a_{i} x^{i}}{1+\sum_{j=1}^{n} b_{j} x^{j}}
$$

A bit more on multi-point PADÈ

$$
\begin{aligned}
\chi_{n}^{B}\left(T, V, \mu_{B}\right) & =\left(\frac{\partial}{\partial \hat{\mu}_{B}}\right)^{n} \frac{\ln Z\left(T, V, \mu_{l}, \mu_{s}\right)}{V T^{3}} \\
& =\left(\frac{1}{3} \frac{\partial}{\partial \hat{\mu}_{l}}+\frac{1}{3} \frac{\partial}{\partial \hat{\mu}_{s}}\right)^{n} \frac{\ln Z\left(T, V, \mu_{l}, \mu_{s}\right)}{V T^{3}}
\end{aligned}
$$

$R_{n}^{m}(x)=\frac{P_{m}(x)}{\tilde{Q}_{n}(x)}=\frac{P_{m}(x)}{1+Q_{n}(x)}=\frac{\sum_{i=0}^{m} a_{i} x^{i}}{1+\sum_{j=1}^{n} b_{j} x^{j}}$
which we want to hold at many points for a function $f(x)$ and its derivatives

A bit more on multi-point PADÈ

$$
\begin{aligned}
\chi_{n}^{B}\left(T, V, \mu_{B}\right) & =\left(\frac{\partial}{\partial \hat{\mu}_{B}}\right)^{n} \frac{\ln Z\left(T, V, \mu_{l}, \mu_{s}\right)}{V T^{3}} \\
& =\left(\frac{1}{3} \frac{\partial}{\partial \hat{\mu}_{l}}+\frac{1}{3} \frac{\partial}{\partial \hat{\mu}_{s}}\right)^{n} \frac{\ln Z\left(T, V, \mu_{l}, \mu_{s}\right)}{V T^{3}}
\end{aligned}
$$

$R_{n}^{m}(x)=\frac{P_{m}(x)}{\tilde{Q}_{n}(x)}=\frac{P_{m}(x)}{1+Q_{n}(x)}=\frac{\sum_{i=0}^{m} a_{i} x^{i}}{1+\sum_{j=1}^{n} b_{j} x^{j}}$
which we want to hold at many points for a function $f(x)$ and its derivatives

$$
\begin{aligned}
& P_{m}\left(x_{1}\right)-f\left(x_{1}\right) Q_{n}\left(x_{1}\right)=f\left(x_{1}\right), \\
& P_{m}^{\prime}\left(x_{1}\right)-f^{\prime}\left(x_{1}\right) Q_{n}\left(x_{1}\right)-f\left(x_{1}\right) Q_{n}^{\prime}\left(x_{1}\right)=f^{\prime}\left(x_{1}\right), \\
& \cdots \\
& P_{m}\left(x_{2}\right)-f\left(x_{2}\right) Q_{n}\left(x_{2}\right)=f\left(x_{2}\right), \\
& P_{m}^{\prime}\left(x_{2}\right)-f^{\prime}\left(x_{2}\right) Q_{n}\left(x_{2}\right)-f\left(x_{2}\right) Q_{n}^{\prime}\left(x_{2}\right)=f^{\prime}\left(x_{2}\right), \\
& \cdots \\
& P_{m}\left(x_{N}\right)-f\left(x_{N}\right) Q_{n}\left(x_{N}\right)=f\left(x_{N}\right), \\
& P_{m}^{\prime}\left(x_{N}\right)-f^{\prime}\left(x_{N}\right) Q_{n}\left(x_{N}\right)-f\left(x_{N}\right) Q_{n}^{\prime}\left(x_{N}\right)=f^{\prime}\left(x_{N}\right),
\end{aligned}
$$

Solve a linear system ...

A bit more on multi-point PADÈ

$$
\begin{aligned}
\chi_{n}^{B}\left(T, V, \mu_{B}\right) & =\left(\frac{\partial}{\partial \hat{\mu}_{B}}\right)^{n} \frac{\ln Z\left(T, V, \mu_{l}, \mu_{s}\right)}{V T^{3}} \\
& =\left(\frac{1}{3} \frac{\partial}{\partial \hat{\mu}_{l}}+\frac{1}{3} \frac{\partial}{\partial \hat{\mu}_{s}}\right)^{n} \frac{\ln Z\left(T, V, \mu_{l}, \mu_{s}\right)}{V T^{3}}
\end{aligned}
$$

$* R_{n}^{m}(x)=\frac{P_{m}(x)}{\tilde{Q}_{n}(x)}=\frac{P_{m}(x)}{1+Q_{n}(x)}=\frac{\sum_{i=0}^{m} a_{i} x^{i}}{1+\sum_{j=1}^{n} b_{j} x^{j}}$

A few alternatives...

A bit more on multi-point PADÈ

$$
\begin{aligned}
\chi_{n}^{B}\left(T, V, \mu_{B}\right) & =\left(\frac{\partial}{\partial \hat{\mu}_{B}}\right)^{n} \frac{\ln Z\left(T, V, \mu_{l}, \mu_{s}\right)}{V T^{3}} \\
& =\left(\frac{1}{3} \frac{\partial}{\partial \hat{\mu}_{l}}+\frac{1}{3} \frac{\partial}{\partial \hat{\mu}_{s}}\right)^{n} \frac{\ln Z\left(T, V, \mu_{l}, \mu_{s}\right)}{V T^{3}}
\end{aligned}
$$

$* R_{n}^{m}(x)=\frac{P_{m}(x)}{\tilde{Q}_{n}(x)}=\frac{P_{m}(x)}{1+Q_{n}(x)}=\frac{\sum_{i=0}^{m} a_{i} x^{i}}{1+\sum_{j=1}^{n} b_{j} x^{j}}$

A few alternatives...

$$
\begin{aligned}
* R_{n}^{m}(x) & =\frac{\sum_{i=0}^{m^{\prime}} a_{2 i+1} x^{2 i+1}}{1+\sum_{j=1}^{n / 2} b_{2 j} x^{2 j}}, \quad \text { odd function } . . \\
(m & \left.=2 m^{\prime}+1, a_{1}=\chi_{2}^{B}(T, V, 0)\right)
\end{aligned}
$$

A bit more on multi-point PADÈ

$$
\begin{aligned}
\chi_{n}^{B}\left(T, V, \mu_{B}\right) & =\left(\frac{\partial}{\partial \hat{\mu}_{B}}\right)^{n} \frac{\ln Z\left(T, V, \mu_{l}, \mu_{s}\right)}{V T^{3}} \\
& =\left(\frac{1}{3} \frac{\partial}{\partial \hat{\mu}_{l}}+\frac{1}{3} \frac{\partial}{\partial \hat{\mu}_{s}}\right)^{n} \frac{\ln Z\left(T, V, \mu_{l}, \mu_{s}\right)}{V T^{3}}
\end{aligned}
$$

$* R_{n}^{m}(x)=\frac{P_{m}(x)}{\tilde{Q}_{n}(x)}=\frac{P_{m}(x)}{1+Q_{n}(x)}=\frac{\sum_{i=0}^{m} a_{i} x^{i}}{1+\sum_{j=1}^{n} b_{j} x^{j}}$

A few alternatives...

$$
\begin{aligned}
* R_{n}^{m}(x) & =\frac{\sum_{i=0}^{m^{\prime}} a_{2 i+1} x^{2 i+1}}{1+\sum_{j=1}^{n / 2} b_{2 j} x^{2 j}}, \quad \text { odd function... } \\
(m & \left.=2 m^{\prime}+1, a_{1}=\chi_{2}^{B}(T, V, 0)\right)
\end{aligned}
$$

$$
c_{j}^{(k)} \equiv \frac{\partial^{j} f}{\partial x^{j}}\left(x_{k}\right) \simeq \frac{\partial i R^{m}}{\partial x^{j}}\left(x_{k}\right)
$$

*minimise $\quad \tilde{\chi}^{2}=\sum_{j, k} \frac{\left|\frac{\partial R^{m}}{\partial x^{j}}\left(x_{k}\right)-c_{j}^{(k)}\right|^{2}}{\left|\Delta c_{j}^{(k)}\right|^{2}}$

FIG. 2. Cumulants of the net baryon number fluctuations as a function of a purely imaginary chemical potential, for three different temperatures, obtained on $24^{3} \times 4$ lattices. Shown are $\operatorname{Im}\left[\chi_{1}^{B}\right]$ (top), $\operatorname{Re}\left[\chi_{2}^{B}\right]$ (middle), and $\operatorname{Im}\left[\chi_{3}^{B}\right]$. Data points are connected by dashed lines to guide the eye.

Rational approximations describing data

Free energy
by integration...

next thing we want to do is analytic continuation

We have already seen SPIKES ...

Let's now look for the SINGULARITY STRUCTURE (we hunt for LEE YANG ZEROS, i.e. zeros of the partition function)

The big picture of Lee Yang edge singularities in QCD
Slide produced by Christian Schmidt

* The ultimate goal is the location of the QCD critical point
* We can think of three distinct critical points/ scaling regions: Roberge Weiss transition, chiral transition, QCD critical point

PHYSICAL REVIEW D 105, 034513 (2022)

zeros and poles show up where they are expected || large number of cancelations || relevant vs NON relevant pieces of informations

The same in the fugacity plane

The same in the fugacity plane

SHALL WE TRUST ALL THIS?

Order parameter near a 2nd order phase transition

$$
\begin{gathered}
M=h^{1 / \delta} f_{G}(z)+M_{\mathrm{reg}} \quad z \equiv t /|h|^{1 / \beta \delta} \\
t=t_{0}^{-1}\left(\frac{T_{\mathrm{RW}}-T}{T_{\mathrm{RW}}}\right) \quad \text { scaling fields } \\
h=h_{0}^{-1}\left(\frac{\hat{\mu}_{B}-i \pi}{i \pi}\right) \quad \hat{\mu}_{B}=\mu_{B} / T
\end{gathered}
$$

Order parameter near a 2nd order phase transition

$$
\begin{aligned}
& M=h^{1 / \delta} f_{G}(z)+M_{\mathrm{reg}} \quad z \equiv t /|h|^{1 / \beta \delta} \\
& t=t_{0}^{-1}\left(\frac{T_{\mathrm{RW}}-T}{T_{\mathrm{RW}}}\right) \quad \text { scaling fields } \\
& h=h_{0}^{-1}\left(\frac{\hat{\mu}_{B}-i \pi}{i \pi}\right) \quad \hat{\mu}_{B}=\mu_{B} / T
\end{aligned}
$$

$$
\begin{array}{cl}
\hat{\mu}_{\mathrm{LY}}^{R}= \pm \pi\left(\frac{z_{0}}{\left|z_{c}\right|}\right)^{\beta \delta}\left(\frac{T_{\mathrm{RW}}-T}{T_{\mathrm{RW}}}\right)^{\beta \delta} & \text { From the fit we get } \\
T_{\mathrm{RW}}=206.7(2.6) \mathrm{MeV} \\
\hat{\mu}_{\mathrm{LY}}^{I}= \pm \pi, & T_{\mathrm{RW}}=208.705(0.002) \mathrm{MeV}
\end{array}
$$

Order parameter near a 2nd order phase transition

$$
\begin{gathered}
M=h^{1 / \delta} f_{G}(z)+M_{\mathrm{reg}} \quad z \equiv t /|h|^{1 / \beta \delta} \\
t=t_{0}^{-1}\left(\frac{T_{\mathrm{RW}}-T}{T_{\mathrm{RW}}}\right) \quad \text { scaling fields } \\
h=h_{0}^{-1}\left(\frac{\hat{\mu}_{B}-i \pi}{i \pi}\right) \quad \hat{\mu}_{B}=\mu_{B} / T
\end{gathered}
$$

$$
\begin{array}{cl}
\hat{\mu}_{\mathrm{LY}}^{R}= \pm \pi\left(\frac{z_{0}}{\left|z_{c}\right|}\right)^{\beta \delta}\left(\frac{T_{\mathrm{RW}}-T}{T_{\mathrm{RW}}}\right)^{\beta \delta} \quad \text { From the fit we get } \\
T_{\mathrm{RW}}=206.7(2.6) \mathrm{MeV} \\
\hat{\mu}_{\mathrm{LY}}^{I}= \pm \pi, & T_{\mathrm{RW}}=208.705(0.002) \mathrm{MeV}
\end{array}
$$

Care needed! ... but intriguing ... what we found is compared with 68\% and 95% confidence regions of a theoretical prediction (no fit!) Our first, preliminary indication of a chiral singularity...

CONCLUSIONS

1. We saw two different examples of studies in the complex plane, ending up with predictions for phase diagrams obtained from (multi-point) Padè analysis.
2. Thimbles + Taylor + Padè can still enable some new progress (avoiding multithimble simulations)
3. The program of (multi-point) Padè could provide interesting informations on Lee Yang edge singularities in QCD. RW seems solid, we are trying to better understand chiral transition. The Holy Grail (needless to say) is the critical point...
4. Work is going on: stay tuned!

Critical points pattern for Thirring

FIG. 1. Critical points for $L=4, \beta=1$ and $m a=1$: solutions for $\hat{\mu}=0$ (top left), solutions for $\hat{\mu} \in[0.0,2.0]$ (top right), real part of the action as a function of $\hat{\mu}$ (bottom left) and imaginary part of the action as a function of $\hat{\mu}$ (bottom right).

FIG. 11. Thirring 1D. Top: comparison between the approximation of a [15/15] order single-point Padé about 0 and a [10/10] order multipoint Padé constructed in the interval [0,4] with only up to first derivatives. Middle, Bottom: depiction of the poles as seen by the single-point and multipoint Padé, respectively.

FIG. 14. 1D Thirring model: functional form of the rational approximation (left) and sensitivity to different sets of poles (right) whe sampled in different intervals: $[0,4]$ (top), $[-4,4]$ (middle), $[-2,2]$ (bottom).

