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†Eötvös Loránd University, Budapest. ?Institute for Nuclear Research, Debrecen.

Based on: PRL 127 (2021) 23, 232002

24th of May, 2022, Trento, ECT* workshop ”Gauge Topology, Flux Tubes and Holographic
Models: the Intricate Dynamics of QCD in Vacuum Extreme Environments”

• Spontaneous symmetry breaking

• Constrained Monte Carlo simulations

• Summary



Spontaneous symmetry breaking

• More than one vacua exist connected by transformations by the broken
symmetry.

• Spontaneous breaking is defined as a double-limit: 1) volume, 2) explicit
breaking: φ̄min = lim

h→0
lim
V→∞

〈φ〉V,h.

• Crossing from one direction of h to another through h = 0 is a first order
transition.

• The effective potential between the different vacua is flat, but cannot be
accessed by usual simulations.

• Discrete symmetry: domains of different vacua, if the order parameter is
constrained inside the flat region.

• What happens if the broken symmetry is continuous? Expectation: regions of
different vacua will change continuously.

• How exactly? What configurations dominate the effective potential?

• What happens to translational invariance?



Spontaneous symmetry breaking

• Consider the 3D O(2) symmetric scalar model

S =

∫
d3x

(∂µ~ϕ)2

2
+
m2~ϕ2

2
+
g

4!
(~ϕ

2
)
2
.

• Classically:

• QFT:



Accessing the flat region, constraint potential

Define the constraint effective potential

exp
(
−V Ω(φ̄)

)
=

∫
Dϕ exp (−S[ϕ]) δ

(∫
ϕ− V φ̄

)
.

• In the infinite volume limit (and only there) agrees with the standard effective
potential (Legendre-transform).

O’Raifeartaigh et al., NPB 271 (1986)

• Markov chain Monte Carlo techniques can be constructed which satisfy the
constraint.

Fodor et al., PoS LATTICE2007 056 (2007)

• Analogous to changing from canonical (fixed h) to microcanonical (fixed φ̄)
ensemble.

• h can be recovered as

h =
dΩ(φ̄)

dφ̄
= m2φ̄+

g

6V

〈∫
x

ϕ3(x)

〉
φ̄

.



Constrained simulations

• We carry out constrained MC simulations on 3D lattices of size L3 with
periodic boundary conditions.

• In analogy to using ~h = (h, 0) we constrain both field directions:

V −1

∫
ϕ1 = φ̄ and V −1

∫
ϕ2 = 0 .

• We only study volume dependence towards the infinite volume limit, not the
lattice spacing dependence.

• We expect spin-wave like configurations, which break translational symmetry.



Constrained simulations
Looking at typical configurations:

• Spin-wave only in one direction.

• Slice averages

~s(x) =
1

L2

∑
y,z∈L

~ϕ(x, y, z) .

show pronounced inhomogeneities:

Two dominant types of configurations
emerge for φ̄ < φ̄min:

• a winding (w = 1): the field winds around
the full O(2) space;

• a non-winding (w = 0): the field
oscillates in O(2) space.

x1

αlim

O(2)

homogeneous
winding
non-winding



Simulational problem: ”topological freezing”

Problem:

• Configurations with different w are far in configuration space.

• Local changes are not enough to transform w.

• Transitions are rare in Markov time even if Sw=0 ≈ Sw=1.

Remedy:

• Change in dominance happens rapidly→ only affects small range of φ̄ around
some φ̄c.

• Preparing initial conditions→ measure observables in fixed w sectors.

• Measure φ̄c based on the generalization of the surface tension.



Observables: correlators

Ensemble averaged slice correlators: Cij(τ) =
1

L

〈∑
x∈L

si(x+ τ)sj(x)

〉
φ̄

.
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• Suppressed UV fluctuaions→ more pronounced macroscopic inhomogeneities.
• Classically motivated ansatz: constant length (φ̄min), angle depends on x1:

αw(x1) =
2πwx1

L
+ αlim sin

(
2πx1

L

)
.

• Trivial volume dependece: length scale proportional to L to minimize kinetic energy.



Observables: correlators

• Non-winding cfgs continously connect to homogeneous cfgs and dominate for φ̄ / φ̄min.
• Winding cfgs do not exist for ∀φ̄, but dominate for small φ̄.
• Sharp transition between the two (φ̄c).
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Observables: magnetic field
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• Controlled V →∞ limit for φ̄min from
hw=0(φ̄min,V, V ) = 0

• At infinite volume both sets of curves tend
to zero.

• Integral method for the potential:

Ωw(φ̄) =

∫ φ̄

0

dφhw(φ) + cw ,

• Setting the integration constants is simple
for w = 0, hard for w = 1.

• Transition around φ̄c will be sharp due to
the large difference between h0 and h1.

• Setting c1 and finding φ̄c, both through
generalizied surface tension.



Differential surface tension

• Different vacuua ≡ different points on the circle.

• We can think of rotating cfgs as connecting different vacuua.

• ∑ kinetic energy between roughly homogeneous slices
  

Ekin(φ̄) =
1

2L

∑
x

〈[∂x~s(x)]2〉φ̄ .

• Excess energy comes from kinetic energy of macroscopic inhomogeneities:

Ωinhom − Ωhom =
σ

φ̄2
min

[
Ekin(φ̄)− Ekin(φ̄min)

]
.

• Non-winding cfgs become homogeneous at φ̄min, set Ωw=0(φ̄min) = 0 to
obtain c0.

• For the winding case, c1, use that

Ω0(φ̄c)
!
= Ω1(φ̄c)⇔ Ekin,0(φ̄c)

!
= Ekin,1(φ̄c) .



Differential surface tension

• Consistent with a constant.

• Independent of topology.

• Thermodynamic limit can be carried out:
σ = 0.427(8)

• Approaching φ̄min requires a
0

0
type limit

⇒ errors blow up.
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• Constraint effective potential can be
reconstructed almost everywhere.

• Except around φ̄c (transition w = 0→ 1).

• Ω becomes flat as V →∞ indeed.
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Summary

• One can construct and simulate the constraint potential which coincides with
the effective potential in the V →∞ limit.

• The flat region is dominated by inhomogeneous spin wave configurations.

• The dominant configurations can be topologically classified (winding or not).

• We extended the definition of the surface tension to spontaneously broken
continuous symmetry systems→ applications?

• Can this be extended to fermionic systems? Non-local constraint before
Grassmann integration!


