Role of inhomogeneities in the flattening of the quantum effective potential

Gergely Markó*, with Gergely Endrődi* and Tamás G. Kovács^{†,*}

*Fakultät für Physik, Universität Bielefeld, Bielefeld.

[†]Eötvös Loránd University, Budapest. *Institute for Nuclear Research, Debrecen.

Based on: PRL 127 (2021) 23, 232002

24th of May, 2022, Trento, ECT* workshop "Gauge Topology, Flux Tubes and Holographic Models: the Intricate Dynamics of QCD in Vacuum Extreme Environments"

- Spontaneous symmetry breaking
- Constrained Monte Carlo simulations
- Summary

Spontaneous symmetry breaking

- More than one vacua exist connected by transformations by the broken symmetry.
- Spontaneous breaking is defined as a **double-limit**: 1) volume, 2) explicit breaking: $\bar{\phi}_{\min} = \lim_{h \to 0V \to \infty} \lim \langle \phi \rangle_{V,h}$.
- Crossing from one direction of h to another through h = 0 is a first order transition.
- The effective potential between the different vacua is flat, but cannot be accessed by usual simulations.
- Discrete symmetry: **domains** of different vacua, if the order parameter is constrained inside the flat region.
- What happens if the broken symmetry is continuous? Expectation: regions of different vacua will change continuously.
- How exactly? What configurations dominate the effective potential?
- What happens to translational invariance?

Spontaneous symmetry breaking

• Consider the 3D O(2) symmetric scalar model

$$S = \int_{d^3x} \frac{(\partial_{\mu}\vec{\varphi})^2}{2} + \frac{m^2\vec{\varphi}^2}{2} + \frac{g}{4!}(\vec{\varphi}^2)^2 \,.$$

• Classically:

• QFT:

Accessing the flat region, constraint potential

Define the **constraint** effective potential

$$\exp\left(-V\Omega(\bar{\phi})\right) = \int \mathcal{D}\varphi \exp\left(-S[\varphi]\right) \,\delta\left(\int \varphi - V\bar{\phi}\right) \,.$$

• In the **infinite volume** limit (and only there) agrees with the standard effective potential (Legendre-transform).

O'Raifeartaigh et al., NPB 271 (1986)

• Markov chain Monte Carlo techniques can be constructed which **satisfy** the constraint.

Fodor et al., PoS LATTICE2007 056 (2007)

- Analogous to changing from **canonical** (fixed h) to **microcanonical** (fixed $\overline{\phi}$) ensemble.
- *h* can be recovered as

$$h = \frac{d\Omega(\bar{\phi})}{d\bar{\phi}} = m^2\bar{\phi} + \frac{g}{6V}\left\langle \int_x \varphi^3(x) \right\rangle_{\bar{\phi}} \,.$$

Constrained simulations

- We carry out constrained MC simulations on 3D lattices of size L³ with **periodic** boundary conditions.
- In analogy to using $\vec{h} = (h, 0)$ we constrain both field directions:

$$V^{-1}\int \varphi_1 = \overline{\phi}$$
 and $V^{-1}\int \varphi_2 = 0$.

- We only study volume dependence towards the **infinite volume** limit, not the lattice spacing dependence.
- We expect spin-wave like configurations, which break translational symmetry.

Constrained simulations

Looking at **typical configurations**:

- Spin-wave only in one direction.
- Slice averages

$$ec{s}(x) = rac{1}{L^2} \sum_{y,z \in L} ec{arphi}(x,y,z) \, .$$

show pronounced inhomogeneities:

Two dominant types of configurations emerge for $\bar{\phi} < \bar{\phi}_{\min}$:

- a winding (w = 1): the field winds around the full O(2) space;
- a non-winding (w = 0): the field oscillates in O(2) space.

Simulational problem: "topological freezing"

Problem:

- Configurations with different w are far in configuration space.
- Local changes are not enough to transform w.
- Transitions are rare in Markov time even if $S_{w=0} \approx S_{w=1}$.

Remedy:

- Change in dominance happens rapidly \rightarrow only affects small range of $\bar{\phi}$ around some $\bar{\phi}_c$.
- Preparing initial conditions \rightarrow measure observables in fixed w sectors.
- Measure $\bar{\phi}_c$ based on the generalization of the surface tension.

Observables: correlators

Ensemble averaged slice correlators: $C_{ij}(\tau) = \frac{1}{L} \left\langle \sum_{x \in L} s_i(x+\tau) s_j(x) \right\rangle_{\bar{\phi}}$.

- Suppressed UV fluctuations \rightarrow more pronounced macroscopic inhomogeneities.
- Classically motivated ansatz: constant length ($\bar{\phi}_{\min}$), angle depends on x_1 :

$$\alpha_w(x_1) = \frac{2\pi w x_1}{L} + \alpha_{\lim} \sin\left(\frac{2\pi x_1}{L}\right)$$

• Trivial volume dependece: length scale proportional to *L* to minimize kinetic energy.

Observables: correlators

- Non-winding cfgs continously connect to homogeneous cfgs and dominate for $\bar{\phi} \lesssim \bar{\phi}_{\min}$.
- Winding cfgs **do not exist** for $\forall \bar{\phi}$, but dominate for small $\bar{\phi}$.
- Sharp transition between the two $(\bar{\phi}_c)$.

Observables: magnetic field

- Controlled $V \to \infty$ limit for $\bar{\phi}_{\min}$ from $h_{w=0}(\bar{\phi}_{\min,V}, V) = 0$
- At infinite volume both sets of curves tend to zero.
- Integral method for the potential:

$$\Omega_w(\bar{\phi}) = \int_0^{\bar{\phi}} d\phi h_w(\phi) + c_w \,,$$

- Setting the integration constants is simple for w = 0, hard for w = 1.
- Transition around $\bar{\phi}_{c}$ will be sharp due to the large difference between h_{0} and h_{1} .
- Setting c_1 and finding $\overline{\phi}_c$, both through generalized surface tension.

Differential surface tension

- Different vacuua \equiv different points on the circle.
- We can think of **rotating cfgs** as **connecting** different vacuua.
- \sum kinetic energy between roughly homogeneous slices

$$E_{\rm kin}(\bar{\phi}) = \frac{1}{2L} \sum_{x} \langle [\partial_x \vec{s}(x)]^2 \rangle_{\bar{\phi}} \,.$$

• Excess energy comes from kinetic energy of macroscopic inhomogeneities:

$$\Omega_{\rm inhom} - \Omega_{\rm hom} = \frac{\sigma}{\bar{\phi}_{\rm min}^2} \left[E_{\rm kin}(\bar{\phi}) - E_{\rm kin}(\bar{\phi}_{\rm min}) \right]$$

- Non-winding cfgs become homogeneous at $\bar{\phi}_{\min}$, set $\Omega_{w=0}(\bar{\phi}_{\min}) = 0$ to obtain c_0 .
- For the winding case, c_1 , use that

$$\Omega_0(\bar{\phi}_{\rm c}) \stackrel{!}{=} \Omega_1(\bar{\phi}_{\rm c}) \Leftrightarrow E_{\rm kin,0}(\bar{\phi}_{\rm c}) \stackrel{!}{=} E_{\rm kin,1}(\bar{\phi}_{\rm c}) \,.$$

Differential surface tension

- Consistent with a constant.
- Independent of topology.
- Thermodynamic limit can be carried out: $\sigma = 0.427(8)$
- Approaching $\bar{\phi}_{\min}$ requires a $\frac{0}{0}$ type limit \Rightarrow errors blow up.

- Constraint effective potential can be reconstructed almost everywhere.
- Except around $\bar{\phi}_c$ (transition $w = 0 \rightarrow 1$).
- Ω becomes flat as $V \to \infty$ indeed.

Summary

- One can construct and simulate the constraint potential which coincides with the effective potential in the $V \to \infty$ limit.
- The flat region is dominated by inhomogeneous spin wave configurations.
- The dominant configurations can be topologically classified (winding or not).
- We extended the definition of the surface tension to spontaneously broken continuous symmetry systems \rightarrow applications?
- Can this be extended to fermionic systems? Non-local constraint before Grassmann integration!