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Spontaneous symmetry breaking

More than one vacua exist connected by transformations by the broken
symmetry.

Spontaneous breaking is defined as a double-limit: 1) volume, 2) explicit

breaking: ¢min = hn%vhm ( D)V -

Crossing from one direction of A to another through h = 0 is a first order
transition.

The effective potential between the different vacua is flat, but cannot be
accessed by usual simulations.

Discrete symmetry: domains of different vacua, if the order parameter is
constrained inside the flat region.

What happens if the broken symmetry is continuous? Expectation: regions of
different vacua will change continuously.

How exactly? What configurations dominate the effective potential?

What happens to translational invariance?



Spontaneous symmetry breaking

e Consider the 3D O(2) symmetric scalar model
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e Classically:




Accessing the flat region, constraint potential

Define the constraint effective potential

xp (-V0(3) = [ Dpexp (-5l o ( [ - v¢) .

¢ In the infinite volume limit (and only there) agrees with the standard effective

potential (Legendre-transform).
O’Raifeartaigh et al., NPB 271 (1986)

e Markov chain Monte Carlo techniques can be constructed which satisfy the
constraint.
Fodor et al., PoS LATTICE2007 056 (2007)

e Analogous to changing from canonical (fixed %) to microcanonical (fixed ¢)
ensemble.

e h can be recovered as



Constrained simulations

We carry out constrained MC simulations on 3D lattices of size L? with
periodic boundary conditions.

In analogy to using & = (h, 0) we constrain both field directions:

V_lfgolng and V_1/g0220.

We only study volume dependence towards the infinite volume limit, not the
lattice spacing dependence.

We expect spin-wave like configurations, which break translational symmetry.



Constrained simulations

Looking at typical configurations:

e Spin-wave only in one direction. Two dominant types of configurations
e Slice averages emerge for ¢ < ¢min'
N S e a winding (w = 1): the field winds around
S(@) = L2 y;L Py, 2). the full O(2) space;
e a non-winding (w = 0): the field
show pronounced inhomogeneities: oscillates in O(2) space.

— homogeneous
—— winding
T — non-winding



Simulational problem: “topological freezing”

Problem:

e Configurations with different w are far in configuration space.
e Local changes are not enough to transform w.

e Transitions are rare in Markov time even if S,,—g ~ S,,—1.
Remedy:

e Change in dominance happens rapidly — only affects small range of ¢ around
some ¢..

e Preparing initial conditions — measure observables in fixed w sectors.

e Measure ¢. based on the generalization of the surface tension.



Observables: correlators

Ensemble averaged slice correlators: C;,(7) = 7
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e Suppressed UV fluctuaions — more pronounced macroscopic inhomogeneities.
e Classically motivated ansatz: constant length (¢min), angle depends on z;:

2TWITq , 2mx]
ay(T) = 7 4+ o5 SIN 7 .
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e Trivial volume dependece: length scale proportional to L to minimize kinetic energy.



Observables: correlators

e Non-winding cfgs continously connect to homogeneous cfgs and dominate for ¢ < @umin-
e Winding cfgs do not exist for V¢, but dominate for small ¢.

e Sharp transition between the two (¢.).
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e Controlled V' — oo limit for ¢, from
Pw=0(Pmin,v, V) =0

e At infinite volume both sets of curves tend

to zero.

e Integral method for the potential:

@
Qu(F) = /0 ddh () + cu

e Setting the integration constants is simple
for w = 0, hard for w = 1.

e Transition around ¢. will be sharp due to
the large difference between hy and h;.

e Setting c; and finding ¢., both through
generalizied surface tension.



Differential surface tension
Different vacuua = different points on the circle.

We can think of rotating cfgs as connecting different vacuua.

Fian(9) = 57 S {[0:5()) 5.

Excess energy comes from kinetic energy of macroscopic inhomogeneities:

Qinhom — hom = % [Ekin($> - Ekin(&min)} .

min

Non-winding cfgs become homogeneous at ¢,in, St Qyw—o(Pmin) = 0 t0
obtain c.

For the winding case, ¢, use that
Qo(pe) ~ Q1(¢c) & Exino(oc) ~ Eiin.1(c) -



Differential surface tension

Consistent with a constant.
Independent of topology.

Thermodynamic limit can be carried out:
o = 0.427(8)

- : 0 .
Approaching ¢, requires a A type limit
= errors blow up.

Constraint effective potential can be
reconstructed almost everywhere.

Except around ¢, (transition w = 0 — 1).

) becomes flat as V' — oo indeed.
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Summary

One can construct and simulate the constraint potential which coincides with
the effective potential in the V' — oo limit.

The flat region is dominated by inhomogeneous spin wave configurations.
The dominant configurations can be topologically classified ( or not).

We extended the definition of the surface tension to spontaneously broken
continuous symmetry systems — applications?

Can this be extended to fermionic systems? Non-local constraint before
Grassmann integration!



