

String spectrum, glueballs and topology in SU(N) gauge theories

Michael Teper (Oxford) - ECT 2022

- glueball spectra \longrightarrow topology and its freezing: in SU(N) gauge theories $\forall N$;
- flux tube spectra \longrightarrow world sheet string action

glueballs and topology with A. Athenodorou: arXiv:2106.00364;2007.06422 extra methods for topology: arXiv:2202.02528 flux tube spectra with A. Athenodorou: arXiv:2112.11213;2205.03642;... energies from Euclidean correlators:

$$C(t) = \frac{\langle \phi^{\dagger}(t)\phi(0)\rangle}{\langle \phi^{\dagger}(0)\phi(0)\rangle} = \sum_{n=0} |c_n|^2 \exp\{-E_n t\} \xrightarrow{t=an_t \to \infty} |c_0|^2 \exp\{-aE_0 n_t\}$$

glueballs: $\phi(t)$ contractible loop, quantum numbers R^{PC} , momentum p = 0 flux tubes: $\phi(t)$ non-contractible winding loop, quantum numbers, p = 0

continuum extrapolation:

$$\frac{aM(a)}{a\mu(a)} \stackrel{a}{\stackrel{\longrightarrow}{=}} ^{0} \frac{M(a)}{\mu(a)} \simeq \frac{M(0)}{\mu(0)} + ca^{2}\mu(a)^{2}$$

we use string tension as our scale, $\mu=\sqrt{\sigma}$

 $N = \infty$ extrapolation:

$$\frac{M_i}{\sqrt{\sigma}}\Big|_N = \left.\frac{M_i}{\sqrt{\sigma}}\right|_\infty + \frac{c_i}{N^2} + O\left(\frac{1}{N^4}\right)$$

SU(8) , 20³30 , $a\sqrt{\sigma} = 0.1325$

 $l_f * ; J^{PC} = 0^{++}(A_1^{++}) \bullet ; 2^{++}(E^{++}) \circ ; 0^{-+}(A_1^{-+}) \bigtriangleup ; 1^{+-}(T_1^{+-}) \blacklozenge$

e.g. SU(4): some continuum extrapolations

 $A_1^{++} \to 0^{++}$ (•), $E^{++} \to 2^{++}$ (•) and $T_2^{++} \to 2^{++}$ (◊). NOTE: doublet E^{++} + triplet $T_2^{++} \longrightarrow$ five components of $J^{PC} = 2^{++}$ glueball

some $N \to \infty$ extrapolations

 $J^{PC} = 0^{++}$ ground (•) and first excited (\blacksquare); 0^{-+} ground (°) and first excited (\square). With extrpolations to $N = \infty$ from N = 2 - 12.

some more $N \to \infty$ extrapolations

 $J^{PC} = 2^{++}$ ground (•) and first excited (•) tensors; 2^{-+} ground (•) and first excited (□) pseudotensors; lightest 2^{+-} (*) and the lightest 2^{--} (•).

Topological freezing

 \implies

basic idea: $Q \to Q - 1$ involves an instanton shrinking from $\rho \sim O(1)$ fm to $\rho \sim a$ and then disappearing within a hypercube, so upper bound is probability of finding very small I with $\rho \sim a \times few$:

$$D(\rho) \propto \frac{1}{\rho^5} \frac{1}{g^{4N}} \exp\left\{-\frac{8\pi^2}{g^2(\rho)}\right\} \stackrel{N \to \infty}{\propto} \frac{1}{\rho^5} \left\{\exp\left\{-\frac{8\pi^2}{g^2(\rho)N}\right\}\right\}^N \stackrel{\rho \sim a}{\propto} (a\Lambda)^{\frac{11N}{3}-5}.$$

so let: τ_Q = average number sweeps for $Q \rightarrow Q \pm 1$

 $\tau_Q \twoheadrightarrow \infty$ for $a \to 0$ at fixed N or for $N \to \infty$ at fixed a

 τ_Q vs N with fits $\tau_Q = b \exp\{cN\}$:

 $a\sqrt{\sigma} \sim 0.15$ (•) and $a\sqrt{\sigma} \sim 0.33$ (•).

 τ_Q vs *a* with fits $\tau_Q = b\{1/a\sqrt{\sigma}\}^c$:

SU(3) (•), SU(4) (o), SU(5) (**□**), SU(6) (**□**), SU(8) (♦) on volume = $(3/\sqrt{\sigma})^4$.

does the freezing matter here?

- not for large N: $\frac{\langle C(t)Q^2 \rangle_c}{\langle C(t) \rangle \langle Q^2 \rangle} \sim 1 + O(1/N^2)$ (Witten's interlaced θ -vacua)
- for $N \leq 5$ and most N = 6 no freezing issue in our calculations
- for $N \ge 8$ freezing, but explicit check \Rightarrow no visible effect

• improvement: multiple parallel sequences starting with different Q with a 'reasonable' distribution

BUT: cannot calculate Q-dependent properties, e.g. susceptibility, for $N \ge 8$ (or even 6)

dealing better with freezing:

- very large (physical) volumes computing time!
- open (non-periodic) boundary only partial success
- introduce a suitable defect (M. Hasenbusch 1706.04443)
- see C. Bonnano et al 2205.06190

Of course changes in Q are a lattice artifact, albeit a useful one!

Calculating Q on the lattice

 $Q(x) = \frac{1}{32\pi^2} \epsilon_{\mu\nu\rho\sigma} \operatorname{Tr} \{ F_{\mu\nu}(x) F_{\rho\sigma}(x) \}$ lattice

$$Q_L(x) \equiv \frac{1}{32\pi^2} \epsilon_{\mu\nu\rho\sigma} \operatorname{Tr} \{ U_{\mu\nu}(x) U_{\rho\sigma}(x) \} = a^4 Q(x) + O(a^6)$$

on smooth fields. On rough fields (symmetrise above) $Q_L(x)$

$$Q_L(x) = a^4 Z(\beta)Q(x) + \eta(\beta) + O(a^6)$$

so remove pert fluctuations by smoothening fields locally so that Q does not change - replace heat bath by action minimisation ('cooling'

 $Q_L(x) \xrightarrow{cool} Q(x)$

when $\rho_I/a \to \infty$; small corrections otherwise

Calculating Q on the lattice – some other algorithms

•zero modes of Dirac operator same as cooling up to $\rho \sim a$ lattice artifacts: e.g. Cundy et al: hep-lat/0203030

•Wilson flow 'continuous cooling', result same as cooling: e.g. Alexandrou et al: 1708.00696

•variations on cooling e.g. any saddle point of action: Garcia Perez, van Baal hep-lat/9403026

etc back to cooling for now SU(8) lattice fields on a 20³30 lattice with $a\sqrt{\sigma} \simeq 0.133$: Q_L after 2 (\circ) and 20 (\bullet) cooling sweeps.

SU(8) lattice fields on a 20^330 lattice with $a\surd\sigma\simeq 0.133$:

 Q_L after 2 cooling sweeps for fields with $Q_L = 0, 1, 2 \ (\circ, \blacksquare, \Box)$ after 20 cooling sweeps.

two sequences of SU(8) lattice fields on a 20³30 lattice with $a\sqrt{\sigma} \simeq 0.133$: Q_L after 2 (\circ, \Box) and 20 (\bullet, \blacksquare) cooling sweeps.

topological susceptibility: $\frac{\chi^{1/4}}{\sqrt{\sigma}} = 0.368(3) + \frac{0.47(2)}{N^2}$

also SU(3): $\frac{\chi^{1/4}}{\sqrt{\sigma}} = 0.4246(36)|_{su3} \longrightarrow \chi^{1/4} = 206(4) \text{MeV}$ using $r_0 \sqrt{\sigma} = 1.160(6)$ and $r_0 = 0.472(5) \text{fm}$ (Sommer: 1401.3270) $Z_Q(\beta)$ for SU(8) lattice fields at $\beta = 2N/g^2 = 44.10, 45.50, 46.70$ corresponding to $a\sqrt{\sigma} \sim 0.326(\blacksquare), 0.219(\circ), 0.166(\bullet)$

Note that $Z_Q(\beta) \sim 0.1 - 0.2$ in this range of β

•We have many mutually consistent methods for calculating the total topological charge Q of a lattice field

•But calculating the charge density Q(x) is more tricky: alterred by any smoothing

 \implies Some extra methods ... MT 2202.02528 and Phys.Lett. B232 (1989) 227 'repetition', blocking, smearing

Problem: given a lattice field $\{U_l\}_0$, how to calculate its physical density Q(x)? 'Repetition' - relatively simple and unambiguous if (computationally) expensive

 $\{U_l\}_0 \to \{U_l\}_{i_h}$ with i_h heat bath sweeps at same β

repeat with different random numbers \rightarrow generate an ensemble of n_r such fields $\{U_l\}_{i_h}^j; j = 1, ..., n_r$ each just i_h heat bath sweeps from $\{U_l\}_0$

calculate the average density:

$$Q_{i_h}(x) = \frac{1}{n_r} \sum_{j=1}^{n_r} Q_{i_h}^j(x)$$

for i_h very small, e.g. $i_h = 3$, this will average the most UV fluctuations but not those on physical length scales, for example:

Q averaged over 10⁴ repetitions of 3 heat bath sweeps starting from five separate starting fields with Q = -1, 0, 1, 2, 3, generated at $\beta = 6.235$ on a 18³26 lattice:

Diagonal line is $\overline{Q}_L = Z(\beta)Q$ with correct $Z(\beta = 6.235) = 0.1808$

Profile of \overline{Q}_L (•) from 10⁴ fields each 3 heat bath sweeps from a single Q = -1SU(3) lattice field generated at $\beta = 6.235$.(Normalised)

Profile in t of \overline{Q}_L (•) from 10000 fields each 3 heat bath sweeps from a single Q = -1 SU(3) lattice field generated at $\beta = 6.235$, compared to profile of original Q = -1 field after 2 cooling sweeps (•).(Normalised to same Q.)

spectrum of confining flux tubes in SU(N) gauge theories in D = 3 + 1:

• energy spectrum of a flux tube winding around a spatial torus, length l

•relevant quantum numbers: spin J around axis, parity P_{\perp} perpendicular to axis, parity P_{\parallel} along axis, momentum $p = 2\pi q/l$ along axis

•quantised fluctuations \rightarrow massless 'phonons' on string

•what is effective action? anything other than phonons?

•e.g. GGRT = Nambu-Goto spectrum for D = 26 bosonic strings:

$$E_{N_L,N_R}(q,l) = \sigma l \sqrt{1 + \frac{8\pi}{(l\sqrt{\sigma})^2} \left(\frac{N_L + N_R}{2} - \frac{D-2}{24}\right) + \left(\frac{2\pi q}{(l\sqrt{\sigma})^2}\right)^2}$$

flux tube in SU(3) $\beta = 6.0625$: lightest 2 energy levels (1+4 states) :

lines are GGRT energy levels; note 'deconfinement' scale at $l_c \sqrt{\sigma} \simeq 1.56$

• why is Nambu-Goto so good at large $l\sqrt{\sigma}$? expand $E_{NG}(l) \Longrightarrow$ terms are universal up to $O(1/l^5)$ for ground state, up to $O(1/l^3)$ for excited states e.g. Aharony,Komargodski 1302.6257

• why is Nambu-Goto so good at small $l\sqrt{\sigma}$? integrable phonon scattering + Bethe ansatz for scattering finite V 'spatial-thermal gas' Dubovsky, Flauger, Gorbenko et al e.g 1404.0037

• is the lightest 0^{--} an outlier stringy state or a massive excitation on the lightest flux tube?

energies of ground and first excited 0^{--} flux tube states

 \implies lightest 0^{--} is indeed an extra 'axionic' non-phonon state: Dubovsky, Gorbenko 1511.01908

energies of ground and first excited 0^{--} flux tubes minus absolute ground state

ground, first and second excited 0^{++} flux tubes

energy of second excited 0^{++} flux tube minus absolute ground state