STR@NG

String spectrum, glueballs and topology in $\mathrm{SU}(\mathrm{N})$ gauge theories

$$
\text { Michael Teper (Oxford) - ECT } 2022
$$

- glueball spectra \longrightarrow topology and its freezing: in $S U(N)$ gauge theories $\forall N$;
- flux tube spectra \longrightarrow world sheet string action
glueballs and topology with A. Athenodorou: arXiv:2106.00364;2007.06422
extra methods for topology: arXiv:2202.02528
flux tube spectra with A. Athenodorou: arXiv:2112.11213;2205.03642;...
energies from Euclidean correlators:

$$
C(t)=\frac{\left\langle\phi^{\dagger}(t) \phi(0)\right\rangle}{\left\langle\phi^{\dagger}(0) \phi(0)\right\rangle}=\sum_{n=0}\left|c_{n}\right|^{2} \exp \left\{-E_{n} t\right\}^{t=a n_{t} \rightarrow \infty}\left|c_{0}\right|^{2} \exp \left\{-a E_{0} n_{t}\right\}
$$

glueballs: $\phi(t)$ contractible loop, quantum numbers $R^{P C}$, momentum $p=0$ flux tubes: $\phi(t)$ non-contractible winding loop, quantum numbers, $p=0$
continuum extrapolation:

$$
\frac{a M(a)}{a \mu(a)} \stackrel{a \rightarrow 0}{=} \frac{M(a)}{\mu(a)} \simeq \frac{M(0)}{\mu(0)}+c a^{2} \mu(a)^{2}
$$

we use string tension as ourscale, $\mu=\sqrt{ } \sigma$
$N=\infty$ extrapolation:

$$
\left.\frac{M_{i}}{\sqrt{ } \sigma}\right|_{N}=\left.\frac{M_{i}}{\sqrt{ } \sigma}\right|_{\infty}+\frac{c_{i}}{N^{2}}+O\left(\frac{1}{N^{4}}\right)
$$

$\mathrm{SU}(8), 20^{3} 30, a \sqrt{ } \sigma=0.1325$

$$
l_{f} * ; J^{P C}=0^{++}\left(A_{1}^{++}\right) \bullet ; 2^{++}\left(E^{++}\right) \circ ; 0^{-+}\left(A_{1}^{-+}\right) \triangle ; 1^{+-}\left(T_{1}^{+-}\right)
$$

e.g. $\mathrm{SU}(4)$: some continuum extrapolations

$A_{1}^{++} \rightarrow 0^{++}(\bullet), E^{++} \rightarrow 2^{++}(\diamond)$ and $T_{2}^{++} \rightarrow 2^{++}(\diamond)$.
NOTE: doublet $E^{++}+$triplet $T_{2}^{++} \longrightarrow$ five components of $J^{P C}=2^{++}$glueball
some $N \rightarrow \infty$ extrapolations

$J^{P C}=0^{++}$ground (•) and first excited (■); 0^{-+}ground (o) and first excited (\square).
With extrpolations to $N=\infty$ from $N=2-12$.
some more $N \rightarrow \infty$ extrapolations

$J^{P C}=2^{++}$ground (•) and first excited (०) tensors; 2^{-+}ground (■) and first excited (\square) pseudotensors; lightest $2^{+-}(*)$ and the lightest $2^{--}(\star)$.

Topological freezing

basic idea: $Q \rightarrow Q-1$ involves an instanton shrinking from $\rho \sim O(1) \mathrm{fm}$ to $\rho \sim a$ and then disappearing within a hypercube, so upper bound is probability of finding very small I with $\rho \sim a \times f e w$:

$$
D(\rho) \propto \frac{1}{\rho^{5}} \frac{1}{g^{4 N}} \exp \left\{-\frac{8 \pi^{2}}{g^{2}(\rho)}\right\}^{N \rightarrow \infty} \frac{1}{\rho^{5}}\left\{\exp \left\{-\frac{8 \pi^{2}}{g^{2}(\rho) N}\right\}\right\}^{N} \stackrel{\rho \sim a}{\propto}(a \Lambda)^{\frac{11 N}{3}-5} .
$$

so let: $\quad \tau_{Q}=$ average number sweeps for $Q \rightarrow Q \pm 1$
$\tau_{Q} \rightarrow \infty$ for $a \rightarrow 0$ at fixed N or for $N \rightarrow \infty$ at fixed a
τ_{Q} vs N with fits $\tau_{Q}=b \exp \{c N\}:$

$a \sqrt{ } \sigma \sim 0.15(\bullet)$ and $a \sqrt{ } \sigma \sim 0.33(\circ)$.
τ_{Q} vs a with fits $\tau_{Q}=b\{1 / a \sqrt{ } \sigma\}^{c}:$

does the freezing matter here?

- not for large $N: \quad \frac{\left\langle C(t) Q^{2}\right\rangle_{c}}{\langle C(t)\rangle\left\langle Q^{2}\right\rangle} \sim 1+O\left(1 / N^{2}\right) \quad$ (Witten's interlaced θ-vacua)
- for $N \leq 5$ and most $N=6$ no freezing issue in our calculations
- for $N \geq 8$ freezing, but explicit check \Rightarrow no visible effect
- improvement: multiple parallel sequences starting with different Q with a 'reasonable' distribution

BUT: cannot calculate Q-dependent properties, e.g. susceptibility, for $N \geq 8($ or even 6$)$
dealing better with freezing:

- very large (physical) volumes - computing time!
- open (non-periodic) boundary - only partial success
- introduce a suitable defect (M. Hasenbusch 1706.04443)
- see C. Bonnano et al 2205.06190

Of course changes in Q are a lattice artifact, albeit a useful one!

Calculating Q on the lattice
$Q(x)=\frac{1}{32 \pi^{2}} \epsilon_{\mu \nu \rho \sigma} \operatorname{Tr}\left\{F_{\mu \nu}(x) F_{\rho \sigma}(x)\right\}$
$\xrightarrow{\text { lattice }}$
$Q_{L}(x) \equiv \frac{1}{32 \pi^{2}} \epsilon_{\mu \nu \rho \sigma} \operatorname{Tr}\left\{U_{\mu \nu}(x) U_{\rho \sigma}(x)\right\}=a^{4} Q(x)+O\left(a^{6}\right)$
on smooth fields. On rough fields (symmetrise above) $Q_{L}(x)$
$Q_{L}(x)=a^{4} Z(\beta) Q(x)+\eta(\beta)+O\left(a^{6}\right)$
so remove pert fluctuations by smoothening fields locally so that Q does not change - replace heat bath by action minimisation ('cooling'
$Q_{L}(x) \xrightarrow{\text { cool }} Q(x)$
when $\rho_{I} / a \rightarrow \infty$; small corrections otherwise

Calculating Q on the lattice - some other algorithms

- zero modes of Dirac operator
same as cooling up to $\rho \sim a$ lattice artifacts: e.g. Cundy et al: hep-lat/0203030
-Wilson flow
'continuous cooling', result same as cooling: e.g. Alexandrou et al: 1708.00696
- variations on cooling
e.g. any saddle point of action: Garcia Perez,van Baal hep-lat/9403026
etc
back to cooling for now
$S U(8)$ lattice fields on a $20^{3} 30$ lattice with $a \sqrt{ } \sigma \simeq 0.133$:
Q_{L} after $2(\circ)$ and $20(\bullet)$ cooling sweeps.

$S U(8)$ lattice fields on a $20^{3} 30$ lattice with $a \sqrt{ } \sigma \simeq 0.133$:
Q_{L} after 2 cooling sweeps for fields with $Q_{L}=0,1,2(\circ, \square, \square)$ after 20 cooling sweeps.

two sequences of $S U(8)$ lattice fields on a $20^{3} 30$ lattice with $a \sqrt{ } \sigma \simeq 0.133$: Q_{L} after $2(\circ, \square)$ and $20(\bullet, \square)$ cooling sweeps.

topological susceptibility: $\frac{\chi^{1 / 4}}{\sqrt{ } \sigma}=0.368(3)+\frac{0.47(2)}{N^{2}}$

also $S U(3)$:
$\frac{\chi^{1 / 4}}{\sqrt{ } \sigma}=\left.0.4246(36)\right|_{\text {su } 3} \longrightarrow \chi^{1 / 4}=206(4) \mathrm{MeV}$
using $r_{0} \sqrt{ } \sigma=1.160(6)$ and $r_{0}=0.472(5) \mathrm{fm}$ (Sommer: 1401.3270)
$Z_{Q}(\beta)$ for $S U(8)$ lattice fields at $\beta=2 N / g^{2}=44.10,45.50,46.70$ corresponding to $a \sqrt{ } \sigma \sim 0.326(■), 0.219(\circ), 0.166(\bullet)$

Note that $Z_{Q}(\beta) \sim 0.1-0.2$ in this range of β

- We have many mutually consistent methods for calculating the total topological charge Q of a lattice field
- But calculating the charge density $Q(x)$ is more tricky: alterred by any smoothing
\Longrightarrow Some extra methods ... MT 2202.02528 and Phys.Lett. B232 (1989) 227
'repetition', blocking, smearing

Problem: given a lattice field $\left\{U_{l}\right\}_{0}$, how to calculate its physical density $Q(x)$? 'Repetition' - relatively simple and unambiguous if (computationally) expensive
$\left\{U_{l}\right\}_{0} \rightarrow\left\{U_{l}\right\}_{i_{h}}$ with i_{h} heat bath sweeps at same β
repeat with different random numbers \rightarrow generate an ensemble of n_{r} such fields $\left\{U_{l}\right\}_{i_{h}}^{j} ; j=1, \ldots, n_{r}$ each just i_{h} heat bath sweeps from $\left\{U_{l}\right\}_{0}$
calculate the average density:
$\bar{Q}_{i_{h}}(x)=\frac{1}{n_{r}} \sum_{j=1}^{n_{r}} Q_{i_{h}}^{j}(x)$
for i_{h} very small, e.g. $i_{h}=3$, this will average the most UV fluctuations but not those on physical length scales, for example:
Q averaged over 10^{4} repetitions of 3 heat bath sweeps starting from five separate starting fields with $Q=-1,0,1,2,3$, generated at $\beta=6.235$ on a $18^{3} 26$ lattice:

Diagonal line is $\bar{Q}_{L}=Z(\beta) Q$ with correct $Z(\beta=6.235)=0.1808$

Profile of $\bar{Q}_{L}(\bullet)$ from 10^{4} fields each 3 heat bath sweeps from a single $Q=-1$ $S U(3)$ lattice field generated at $\beta=6.235$.(Normalised)

Profile in t of $\bar{Q}_{L}(\bullet)$ from 10000 fields each 3 heat bath sweeps from a single $Q=-1 S U(3)$ lattice field generated at $\beta=6.235$, compared to profile of original $Q=-1$ field after 2 cooling sweeps (o).(Normalised to same Q.)

spectrum of confining flux tubes in $S U(N)$ gauge theories in $D=3+1$:
-energy spectrum of a flux tube winding around a spatial torus, length l
-relevant quantum numbers: spin J around axis, parity P_{\perp} perpendicular to axis, parity $P_{\|}$along axis, momentum $p=2 \pi q / l$ along axis

- quantised fluctuations \rightarrow massless 'phonons' on string
-what is effective action? anything other than phonons?
\bullet •e.g. GGRT $=$ Nambu-Goto spectrum for $D=26$ bosonic strings:
$E_{N_{L}, N_{R}}(q, l)=\sigma l \sqrt{1+\frac{8 \pi}{(l \sqrt{\sigma})^{2}}\left(\frac{N_{L}+N_{R}}{2}-\frac{D-2}{24}\right)+\left(\frac{2 \pi q}{(l \sqrt{\sigma})^{2}}\right)^{2}}$
flux tube in $S U(3) \beta=6.0625$: lightest 2 energy levels ($1+4$ states) :

lines are GGRT energy levels; note 'deconfinement' scale at $l_{c} \sqrt{ } \sigma \simeq 1.56$
- why is Nambu-Goto so good at large $l \sqrt{ } \sigma$?
expand $E_{N G}(l) \Longrightarrow$ terms are universal up to $O\left(1 / l^{5}\right)$ for ground state, up to $O\left(1 / l^{3}\right)$ for excited states
e.g. Aharony,Komargodski 1302.6257
- why is Nambu-Goto so good at small $l \sqrt{ } \sigma$?
integrable phonon scattering + Bethe ansatz for scattering finite V
'spatial-thermal gas'
Dubovsky, Flauger, Gorbenko et al e.g 1404.0037
- is the lightest 0^{--}an outlier stringy state or a massive excitation on the lightest flux tube?
energies of ground and first excited 0^{--}flux tube states

\Longrightarrow lightest 0^{--}is indeed an extra 'axionic' non-phonon state: Dubovsky,
Gorbenko 1511.01908
energies of ground and first excited 0^{--}flux tubes minus absolute ground state

ground, first and second excited 0^{++}flux tubes

energy of second excited 0^{++}flux tube minus absolute ground state

