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• glueball spectra −→ topology and its freezing: in SU(N) gauge theories ∀N ;

• flux tube spectra −→ world sheet string action

glueballs and topology with A. Athenodorou: arXiv:2106.00364;2007.06422

extra methods for topology: arXiv:2202.02528

flux tube spectra with A. Athenodorou: arXiv:2112.11213;2205.03642;...
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energies from Euclidean correlators:

C(t) =
〈φ†(t)φ(0)〉
〈φ†(0)φ(0)〉 =

∑

n=0 |cn|2 exp{−Ent} t=ant→∞−→ |c0|2 exp{−aE0nt}

glueballs: φ(t) contractible loop, quantum numbers RPC , momentum p = 0

flux tubes: φ(t) non-contractible winding loop, quantum numbers, p = 0

continuum extrapolation:
aM(a)
aµ(a)

a→0
=

M(a)
µ(a)

≃ M(0)
µ(0)

+ ca2µ(a)2

we use string tension as ourscale, µ =
√
σ

N = ∞ extrapolation:
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SU(8) , 20330 , a
√
σ = 0.1325
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e.g. SU(4): some continuum extrapolations

a2σ
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A++
1 → 0++ (•), E++ → 2++ (�) and T++

2 → 2++ (♦).

NOTE: doublet E++ + triplet T++
2 −→ five components of JPC = 2++ glueball
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some N → ∞ extrapolations

1/N 2
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JPC = 0++ ground (•) and first excited (�); 0−+ ground (◦) and first excited (�).

With extrpolations to N = ∞ from N = 2 − 12.
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some more N → ∞ extrapolations
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JPC = 2++ ground (•) and first excited (◦) tensors; 2−+ ground (�) and first excited

(�) pseudotensors; lightest 2+− (∗) and the lightest 2−− (�).
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Topological freezing

basic idea: Q → Q− 1 involves an instanton shrinking from ρ ∼ O(1)fm to ρ ∼ a

and then disappearing within a hypercube, so upper bound is probability of

finding very small I with ρ ∼ a× few:

D(ρ) ∝ 1

ρ5
1

g4N
exp

{

− 8π2

g2(ρ)

}

N→∞∝ 1

ρ5

{

exp

{

− 8π2

g2(ρ)N

}}N
ρ∼a∝ (aΛ)

11N
3

−5 .

so let: τQ = average number sweeps forQ → Q± 1

=⇒
τQ ։ ∞ for a → 0 at fixed N or for N → ∞ at fixed a
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τQ vs N with fits τQ = b exp{cN} :

N

ln{τ̃Q}
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σ ∼ 0.15 (•) and a

√
σ ∼ 0.33 (◦).

8



τQ vs a with fits τQ = b{1/a√σ}c :

ln{1/a√σ}

ln{τ̃Q}
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SU(3) (•), SU(4) (◦), SU(5) (�), SU(6) (�), SU(8) (�) on volume = (3/
√
σ)4.
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does the freezing matter here?

• not for large N :
〈C(t)Q2〉c
〈C(t)〉〈Q2〉 ∼ 1 +O(1/N2) (Witten’s interlaced θ-vacua)

• for N ≤ 5 and most N = 6 no freezing issue in our calculations

• for N ≥ 8 freezing, but explicit check ⇒ no visible effect

• improvement: multiple parallel sequences starting with different Q with a

‘reasonable’ distribution

BUT: cannot calculate Q-dependent properties, e.g. susceptibility, for

N ≥ 8 (or even 6)
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dealing better with freezing:

• very large (physical) volumes - computing time!

• open (non-periodic) boundary - only partial success

• introduce a suitable defect (M. Hasenbusch 1706.04443)

- see C. Bonnano et al 2205.06190

Of course changes in Q are a lattice artifact, albeit a useful one!
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Calculating Q on the lattice

Q(x) = 1
32π2 ǫµνρσTr{Fµν(x)Fρσ(x)}

lattice
=⇒

QL(x) ≡ 1
32π2 ǫµνρσTr{Uµν(x)Uρσ(x)} = a4Q(x) +O(a6)

on smooth fields. On rough fields (symmetrise above) QL(x)

QL(x) = a4Z(β)Q(x) + η(β) +O(a6)

so remove pert fluctuations by smoothening fields locally so that Q does not

change - replace heat bath by action minimisation (‘cooling’

QL(x)
cool−→ Q(x)

when ρI/a → ∞; small corrections otherwise
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Calculating Q on the lattice – some other algorithms

•zero modes of Dirac operator

same as cooling up to ρ ∼ a lattice artifacts: e.g. Cundy et al: hep-lat/0203030

•Wilson flow

‘continuous cooling’, result same as cooling: e.g. Alexandrou et al: 1708.00696

•variations on cooling

e.g. any saddle point of action: Garcia Perez,van Baal hep-lat/9403026

etc ....

back to cooling for now
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SU(8) lattice fields on a 20330 lattice with a
√
σ ≃ 0.133:

QL after 2 (◦) and 20 (•) cooling sweeps.
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SU(8) lattice fields on a 20330 lattice with a
√
σ ≃ 0.133:

QL after 2 cooling sweeps for fields with QL = 0, 1, 2 (◦,�,�) after 20 cooling

sweeps.
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two sequences of SU(8) lattice fields on a 20330 lattice with a
√
σ ≃ 0.133:

QL after 2 (◦,�) and 20 (•,�) cooling sweeps.
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topological susceptibility: χ1/4
√

σ = 0.368(3) + 0.47(2)
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also SU(3):

χ1/4
√

σ
= 0.4246(36)|su3 −→ χ1/4 = 206(4)MeV

using r0
√
σ = 1.160(6) and r0 = 0.472(5)fm (Sommer: 1401.3270)
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ZQ(β) for SU(8) lattice fields at β = 2N/g2 = 44.10, 45.50, 46.70

corresponding to a
√
σ ∼ 0.326(�), 0.219(◦), 0.166(•)
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Note that ZQ(β) ∼ 0.1− 0.2 in this range of β
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•We have many mutually consistent methods for calculating the total topological

charge Q of a lattice field

•But calculating the charge density Q(x) is more tricky: alterred by any

smoothing

=⇒Some extra methods ... MT 2202.02528 and Phys.Lett. B232 (1989) 227

‘repetition’, blocking, smearing
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Problem: given a lattice field {Ul}0, how to calculate its physical density Q(x)?

‘Repetition’ - relatively simple and unambiguous if (computationally) expensive

{Ul}0 → {Ul}ih with ih heat bath sweeps at same β

repeat with different random numbers → generate an ensemble of nr such fields

{Ul}jih ; j = 1, ..., nr each just ih heat bath sweeps from {Ul}0

calculate the average density:

Qih
(x) = 1

nr

∑nr
j=1 Q

j
ih
(x)

for ih very small, e.g. ih = 3, this will average the most UV fluctuations but not

those on physical length scales, for example:
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Q averaged over 104 repetitions of 3 heat bath sweeps starting from five separate

starting fields with Q = −1, 0, 1, 2, 3, generated at β = 6.235 on a 18326 lattice:

Qih=3

Q
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−1

Diagonal line is QL = Z(β)Q with correct Z(β = 6.235) = 0.1808
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Profile of QL (•) from 104 fields each 3 heat bath sweeps from a single Q = −1

SU(3) lattice field generated at β = 6.235.(Normalised)
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Profile in t of QL (•) from 10000 fields each 3 heat bath sweeps from a single

Q = −1 SU(3) lattice field generated at β = 6.235, compared to profile of original

Q = −1 field after 2 cooling sweeps (◦).(Normalised to same Q.)
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spectrum of confining flux tubes in SU(N) gauge theories in D = 3 + 1:

•energy spectrum of a flux tube winding around a spatial torus, length l

•relevant quantum numbers: spin J around axis, parity P⊥ perpendicular to axis,

parity P‖ along axis, momentum p = 2πq/l along axis

•quantised fluctuations → massless ‘phonons’ on string

•what is effective action? anything other than phonons?

•e.g. GGRT = Nambu-Goto spectrum for D = 26 bosonic strings:

ENL,NR
(q, l) = σl

√

1 + 8π
(l
√
σ)2

(

NL+NR
2

− D−2
24

)

+
(

2πq
(l
√

σ)2

)2
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flux tube in SU(3) β = 6.0625 : lightest 2 energy levels (1+4 states) :
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lines are GGRT energy levels; note ‘deconfinement’ scale at lc
√
σ ≃ 1.56
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• why is Nambu-Goto so good at large l
√
σ?

expand ENG(l) =⇒ terms are universal up to O(1/l5) for ground state, up to

O(1/l3) for excited states

e.g. Aharony,Komargodski 1302.6257

• why is Nambu-Goto so good at small l
√
σ?

integrable phonon scattering + Bethe ansatz for scattering finite V

‘spatial-thermal gas’

Dubovsky, Flauger, Gorbenko et al e.g 1404.0037

• is the lightest 0−− an outlier stringy state or a massive excitation on the

lightest flux tube?
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energies of ground and first excited 0−− flux tube states
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=⇒ lightest 0−− is indeed an extra ‘axionic’ non-phonon state: Dubovsky,

Gorbenko 1511.01908
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energies of ground and first excited 0−− flux tubes minus absolute ground state
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ground, first and second excited 0++ flux tubes
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energy of second excited 0++ flux tube minus absolute ground state
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