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1. Color confinement in QCD as an Abelian dual
Meissner effect

1. 1974-75: Idea of dual superconductor (electric ↔ magnetic) as the
color-confinement mechanism (’tHooft-Mandelstam): Something color
magnetic must be condensed in QCD.

2. 1981: ’tHooft idea of monopole in QCD: A partial gauge-fixing
SU(3) → U(1)× U(1) and Abelian projection: Monopoles appear as a
topological object coming from the singularity of the gauge-fixing matrix.
Numerical data supporting this idea are shown especially on the basis of
maximally Abelian gauge. But this idea has serious problems:(1) gauge
dependence, For example, in Polyakov-loop gauge, monopoles are always
only time-like, hence can not contribute to confinement. (2) Abelian charge
confinement, not non-Abelian color confinement,

� �
Gauge invariance problem, i.e., how to explain why SU3
color singlets alone can survive in the Abelian framework is most
important!� �
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3. In 2010, an important relation was found by Bonati et al. which shows that
violation of non-Abelian Bianchi identity (VNABI) Jα

ν (x) exists behind any
Abelian projection scheme: Reference C. Bonati et al,, P.R.D81, 085022 (2010)

Tr(Φα(x)Jα
ν (x)) = Tr(Φα(x)Dα

µG
α∗
µν(x))

= ∂µF
α∗
µν . (1)

Gα∗
µν: a non-Abelian dual field strength,

Φα(x): an adjoint operator characterizing the Abelian projection scheme
Fα∗
µν : the ’tHooft tensor.

They asserted further that the above relation leads to gauge invariance of
’tHooft Abelian projection schemes. But regretabbly it is not correct.
Gauge invariance is not proved only through (1).

� �
The key to solve the gauge invariance problem is to find a gauge-
independent color magnetic quantity, a magnetic
monopole in QCD. Bonati et als’ work suggests that VNABI Jα

ν (x)
may be the clue.� �
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2. Abelian magnetic monopoles of the Dirac type
in QCD

The Jacobi identities ϵµνρσ[Dν, [Dρ, Dσ]] = 0 where Dµ ≡ ∂µ − igAµ.
Calculate explicitly:

[Dρ, Dσ] = −ig(∂ρAσ − ∂σAρ − ig[Aρ, Aσ]) + [∂ρ, ∂σ]

= −igGρσ + [∂ρ, ∂σ]

If [∂ρ, ∂σ] is neglected, we get DνG
∗
µν = 0 → Non-Abelian Bianchi identity

(NABI):

When define an Abelian-like field strength:
fµν ≡ ∂µAν − ∂νAµ = (∂µA

a
ν − ∂νA

a
µ)σ

a/2. if Aa
µ are regular → ∂νf

∗
µν = 0:

Abelian-like Bianchi identity:
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What happens if [∂ρ, ∂σ] is not neglected?

Jacobi identity + [Dν, Gρσ] = DνGρσ

Jµ ≡ DνG
∗
µν =

1

2
ϵµνρσDνGρσ = − i

2g
ϵµνρσ[Dν, [∂ρ, ∂σ]]

=
1

2
ϵµνρσ[∂ρ, ∂σ]Aν = ∂νf

∗
µν ≡ kµ

kaµ ̸= 0 → color magnetic Abelian-like monopole: ∂µkµ = 0

[∂ρ, ∂σ]Aν ̸= 0
⇓

Line singularities existing in original gauge fields Aµ(x)
themselves!!! are the origin of Abelian monopoles in QCD.
Since the monopoles defined here comes from the (line) singularities of the
gauge field themselves, they are much the same as those discussed by Dirac in
QED with magnetic monopoles in 1931.
8 monopoles exist in SU(3).
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3. Gauge invariance of the Abelian confinement
picture� �
Assume that original non-Abelian gauge fields contain a line-like singularity
leading us to the existence of the Abelian-like monopoles (violation of non-
Abelian Bianchi identity).� �

⇓
� �
When such Abelian monopoles make condensation, 8 Abelian electric fields
are squeezed due to the dual Meissner effect leading to the color confinement.� �
SU(2): V (x) = eiαi(x)σi

Consider a U(1)3 : eiα3(x)σ3 ∈ SU(2). Quarks have a charge ±g/2 and are
described as

q =

(
u3

d3

)
(2)

When k3µ(x) make condensation, electric charged states with respect to U(1)3
are confined.
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But ū3u3 − d̄3d3 is not confined in U(1)3.

Note one can choose any other U(1), U(1)1 described by eiα1(x)σ1 or U(1)2
described by eiα2(x)σ2. Then the quark field having an electric charge ±g/2
w.r.t these U(1) is expressed in terms of (u3, d3) as

(
u1

d1

)
=

(
(u3+d3)√

2
(u3−d3)√

2

)
.

(
u2

d2

)
=

(
(iu3+d3)√

2
(iu3−d3)√

2

)
.

For example, ū3u3 − d̄3d3 = ū1d1 + d̄1u1. Hence such states are charged with
respect to U(1)1 and confined if the Abelian monopoles k1µ(x) make
condensation.

Hence in this scheme , SU(2) is not broken and all three Abelian monopoles
are assumed to condense, so that only SU(2) singlets alone can exist in
physical states.
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The situations are more easily seen when one writes the quark-gluon coupling
term in SU(2) QCD as

q̄γµσ
a

2
qAa

µ =
1

2
(ū3γµd3 + d̄3γµu3)A

1
µ − i

1

2
(ū3γµd3 − d̄3γµu3)A

2
µ

+
1

2
(ū3γµu3 − d̄3γµd3)A

3
µ (3)

=
1

2
(ū1γµu1 − d̄1γµd1)A

1
µ +

1

2
(ū2γµu2 − d̄2γµd2)A

2
µ

+
1

2
(ū3γµu3 − d̄3γµd3)A

3
µ, (4)

In case of SU(3), all 8 magnetic currents kµ(x)
a are assumed to condense, so

that only SU(3) singlets appear in physical states.

Gauge invariance and non-Abelian color confinement can be explained
by means of Abelian dual Meissner effect.
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Figure 1: electric flux
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Figure 2: solenidal magnetic current

Figure 3: The dual Meissner effect
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4. Numerical supports of the new confinement
scheme

Theoretical expectations from the Abelian dual Meissner picture:

1. (Perfect Abelian dominance) : The linear part of non-Abelian static
potential is totally reproduced by the simple color average over those of 8
Abelian static potentials. Without additional gauge fixing, all string
tensions of the 8 Abelian potential are the same, so that σF = σa for any
color component.

2. (Perfect monopole dominance) :An Abelian static potential is composed
of two contributions, that is, the Coulomb interaction and the solenoidal
monopole current. The linear part is only from the solenoidal monopole
current. Hence σa = σm.

3. (The dual Ampère’s law and Ginzburg-Landau parameter) The
Abelian electric flux is squeezed by the monopole solenoidal current, that is,
the dual Ampère law holds.

4. (Existence of the continuum limit of Abelian monopoles satisfying
the Dirac quantization condition)
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(1) Perfect Abelian and monopole dominances

Abelian link fields on lattice without any additional gauge-fixing
Maximize R =

∑
ReTr eiθ1(s,µ)λ1U †(s, µ) =⇒

θ1(s, µ) = tan−1U1(s, µ)

U0(s, µ)
, (SU2 : U(s, µ) = U0(s, µ) + iσ⃗ · U⃗(sµ))

= tan−1Im(U12(s, µ) + U21(s, µ))

Re(U11(s, µ) + U22(s, µ))
, (SU3)

Abelian monopoles on lattice satisfying the Dirac quantization condition
Calculate Abelian plaquette variables θ1(s, µν) = ∂µθ1(s, ν)− ∂νθ1(s, µ):

θ1(s, µν) = θ̄1(s, µν) + 2πn1(s, µν) (|θ̄1(s, µν)| < π)

Since n1(s, µν) can be regarded as the number of the Dirac string, Abelian
monopoles are defined following DeGrand-Toussaint:

k1µ(s) = −(1/2)ϵµαβγ∂αθ̄1(s+ µ̂, βγ)

= (1/2)ϵµαβγ∂αn1(s+ µ̂, βγ)

Note ϵµαβγ∂αθ1(s+ µ̂, βγ) = 0 trivially.
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Evaluate each static potential through Polyakov-loop correlators.

V (R) = − 1

aNt
ln⟨P (0)P ∗(R)⟩ .

PF = TrΠNt−1
k=0 U(s+ k4̂, 4) ,

PA = exp[i

Nt−1∑
k=0

θ1(s+ k4̂, 4)] = Pph · Pmon ,

Pph = exp{−i

Nt−1∑
k=0

∑
s′

D(s+ k4̂− s′)∂′
νΘ̄1(s

′, ν4)} ,

Pmon = exp{−2πi

Nt−1∑
k=0

∑
s′

D(s+ k4̂− s′)∂′
νn1(s

′, ν4)}
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Perfect Abelian dominance can be proved using the Lüscher’s
multilevel method.

Table 1: Simulation parameters: Nsub is the sublattice size divided and Niup is
the number of internal updates in the multilevel method.

β N3
s ×Nt a(β) [fm] Nconf Nsub Niup

5.60 163 × 16 0.2235 6 2 10000000
5.70 123 × 12 0.17016 6 2 5000000
5.80 123 × 12 0.13642 6 3 5000000

Table 2: The string tension σa2, the Coulombic coefficient c, and the constant
µa.

β = 5.6, 163 × 12 σa2 c µa
VNA 0.239(2) -0.39(4) 0.79(2)
VA 0.25(2) -0.3(1) 2.6(1)
β = 5.7, 123 × 12
VNA 0.159(3) -0.272(8) 0.79(1)
VA 0.145(9) -0.32(2) 2.64(3)
β = 5.8, 123 × 12
VNA 0.101(3) -0.28(1) 0.82(1)
VA 0.102(9) -0.27(2) 2.60(3)
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Perfect monopole dominance:

The Lüscher’s multilevel method does not work. To evaluate < PmonP
∗
mon >,

we need tremendous number of vacuum configurations.

Table 3: Typical simulation parameters. NRGT is the number of random gauge
transformations.

β N3
s × Nt a(β) [fm] Nconf NRGT

SU2 2.43 243 × 8 0.1029(4) 7,000 4,000

SU3 5.6 243 × 4 0.2235 910000 400

Table 4: Best fitted values of the string tension σa2, the Coulombic coefficient
c, and the constant µa.

SU(3) (243 × 4)

σa2 c µa FR(R/a) χ2/Ndf

VNA 0.178(1) 0.86(4) 0.99(1) 5 - 9 1.23

VA 0.16(3) 0.9(11) 2.5(3) 5 - 9 1.03

Vmon 0.17(2) 2.9(1) 4 - 7 1.08

Vph −0.0007(1) 0.046(3) 0.945(1) 3 - 10 7.22e-08

SU(2) (243 × 8)

VNA 0.0415(9) 0.47(2) 0.46(8) 4.1 - 7.8 0.99

VA 0.041(2) 0.47(6) 1.10(3) 4.5 - 8.5 1.00

Vmon 0.043(3) 0.37(4) 1.39(2) 2.1 - 7.5 0.99

Vph −6.0(3) × 10−5 0.0059(3) 0.46649(6) 7.7 - 11.5 1.02
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(2) The Abelian dual Meissner effect

Table 5: Simulation parameters for the measurement of Ea
i and k2 (Left).

∇× E⃗, ∂4B⃗, kai (Right). id is the distance between two Polyakov loops. Nconf,
Nran and Ns are numbers of configurations, random gauge copies and smearing,
respectively.

Ea
i

id Nconf Nran Ns

d=5 80000 100 120

d=6 80000 100 120

k2

id Nconf Nran Ns

d=5 960000 0 120

d=6 960000 0 120

the dual Ampère’s law

id Nconf Nran Ns

d=3 20000 100 90

ka
ϕ

d=3 11200 3000 90

d
ρconn(O(r)) =

⟨
Tr(P (0)LO(r)L†)TrP †(d)

⟩
⟨TrP (0)TrP †(d)⟩

−1

3

⟨
TrP (0)TrP †(d)TrO(r)

⟩
⟨TrP (0)TrP †(d)⟩

,
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Figure 4: The Abelian color electric field around static quarks for d = 5
at β = 5.6 on 243 × 4 lattices. (Left) The squared monopole density at
d = 5.(Right)
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5. Existence of the continuum limit

Does the continuum limit of ka(s, µ) exist?

The monopole density in the continuum limit in pure SU2 and
SU3 QCD.

The lattice vacuum is contaminated with large amount of lattice artifact
monopoles. To reduce lattice artifacts, various techniques smoothing the
vacuum are introduced.

1. Tadpole improved (SU2) and Iwasaki (SU3) action:
484 at β = 3.0 ∼ 3.9 in SU2 and at β = 2.3 ∼ 3.5 in SU3

2. Introduction of various smooth gauge-fixings
1) Maximal center gauge(MCG): Maximization of R =

∑
s,µ(TrU(s, µ))2

SU(3) → Z(3)

2) Maximal Abelian and U(1)2 Landau gauge (MAU1)

3) Direct Laplacian center gauge (DLCG) only in SU2

3) Maximal Abelian Wilson loop gauge (AWL) only in SU2: Maximization of
R =

∑
s,µ ̸=ν

∑
a(cos(θ

a
µν(s))
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3. The blockspin transformation of monopoles
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Figure 6: Blockspin definition of monopoles:
T.L. Ivanenko et al., Phys. Lett. B252, (1990) 631

Monopole is defined on a a3 cube and
the n-blocked monopole is defined on a cube
with a lattice spacing b = na

k(n)µ (sn) =

n−1∑
i,j,l=0

kµ(nsn + (n− 1)µ̂+ iν̂ + jρ̂+ lσ̂)

n = 1, 2, 3, 4, 6, 8, 12 blockings are adopted on 484 lattice.
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Evaluate a gauge-invariant density of the n-blocked monopole:

ρ(a(β), n) =

∑
µ,sn

√∑
a(k

(n)a
µ (sn))2

4
√
3Vnb3

Figure 7: Comparison of the VNABI (Abelian-like monopoles) densities versus b = na(β)

in SU3: MCG, MAU12 (Left) and in SU2: MCG, AWL, DLCG and MAU1 (Right). A uniform

curve is obtained for all gauges.
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Summary

1. Clear scaling behaviors are observed up to the 12-step

blockspin transformations for (SU2) β = 3.0 ∼ 3.9 and (SU3)

β = 2.3 ∼ 3.5. The density ρ(a(β), n) is a function of

b = na(β) alone, i.e. ρ(b). n → ∞ means a(β) → 0 for fixed

b = na. Existence of the continuum limit!

2. When the vacuum becomes smooth enough shown here in

(SU2) MCG, DLCG, AWL, MAU1 and in (SU3) MCG, MAU1,

the same ρ(b) is obtained. Gauge independence!

This is naturally expected in the continuum limit.

Similar beautiful scaling behaviors are observed also in the monopole
effective action S(k

(n)
µ ) in SU2. From the scaling results of the monopole

density and the infrared monopole action, we can say that the new monopoles
of the Dirac type have the continuum limit.

20



6. Future outlook

1. There is in principle no problem concerning the existence of

this new color magnetic monopoles in full QCD with light

dynamical quarks. To study these Abelian new monopoles of

the Dirac type in full QCD is important.

• What is the scaling behavior with respect to monopole

density when small dynamical quarks exist?

• Could they explain all mass generation in QCD such as

hadron masses?

• What is an infrared effective monopole action in full QCD

• Is it rewritten by a kind of the dual Abelian Higgs model?

• Could the monopoles explain also chiral symmetry breaking?

2. What is the origin of the assumed singularity in original gauge

fields? Is there any clue in ’ beyond the standard model’ ?
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