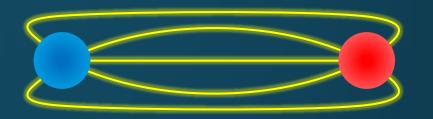


Flux Tube

- Quark confinement
- Non-pert. dynamics
- Linear potential
- ☐ String theory

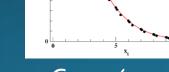


Flux Tube

- Quark confinement
- Non-pert. dynamics
- Linear potential
- String theory

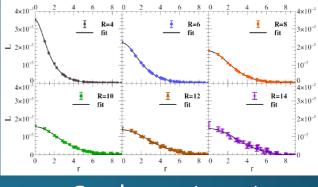
Many Studies on Flux Tube

- Potential
- ☐ Color-electric field
- Action density



Cea+ (2012)

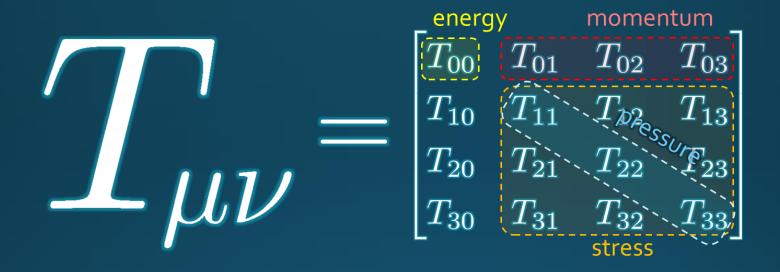
SU(3) 20⁴ lattice β=6.0 cooling 10



Cardoso+ (2013)

so many studies...

Energy-Momentum Tensor

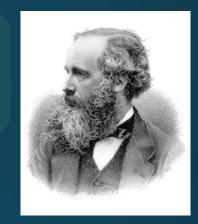


- The most fundamental quantity in physics
- Gauge invariant observable
- All components have important physical meaning.
- stress tensor = mechanical distortion in static systems

Maxwell Stress

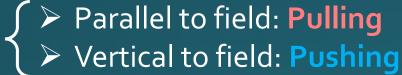
(in Maxwell Theory)

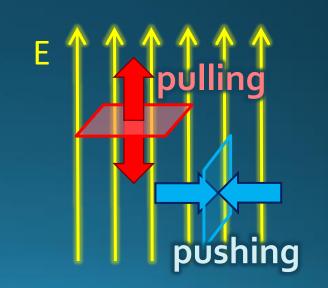
$$\sigma_{ij} = \varepsilon_0 E_i E_j + \frac{1}{\mu_0} B_i B_j - \frac{1}{2} \delta_{ij} \left(\varepsilon_0 E^2 + \frac{1}{\mu_0} B^2 \right)$$



$$\vec{E} = (E, 0, 0)$$

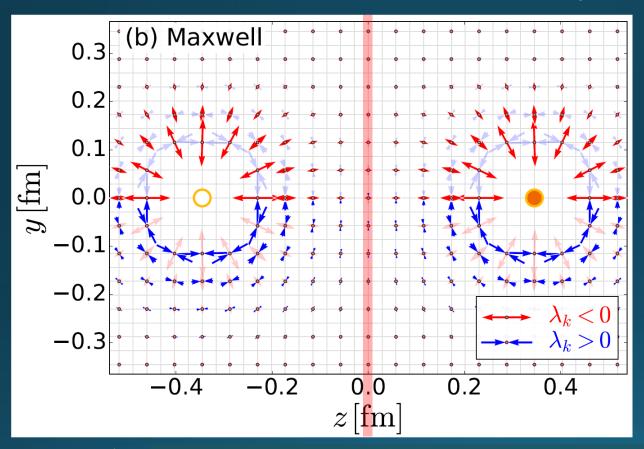
$$T_{ij} = \left(egin{array}{cccc} -E^2 & 0 & 0 \ 0 & E^2 & 0 \ 0 & 0 & E^2 \end{array}
ight)$$





Maxwell Stress

(in Maxwell Theory)



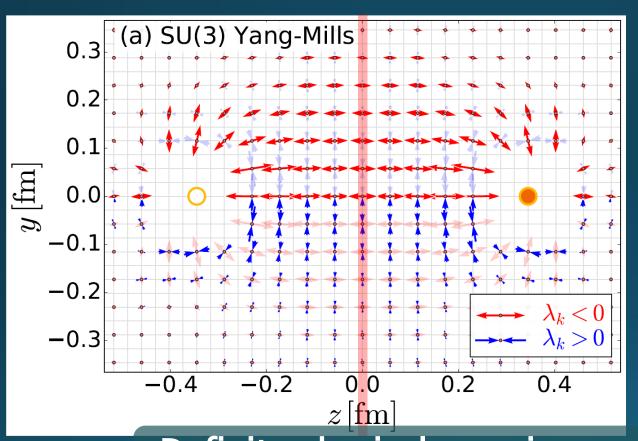
$$T_{ij}v_j^{(k)} = \lambda_k v_i^{(k)}$$
$$(k = 1, 2, 3)$$

length: $\sqrt{|\lambda_k|}$

Definite physical meaning

- Distortion of field, line of the field
- Propagation of the force as local interaction

Stress Tensor in QQ System



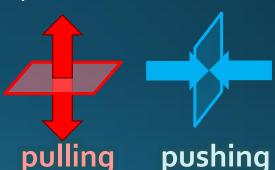
FlowQCD, PLB (2019)

Lattice simulation SU(3) Yang-Mills

a=0.029 fm

R=0.69 fm

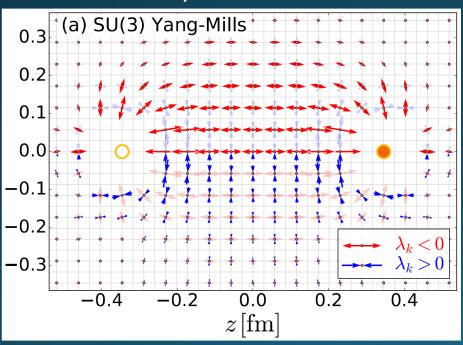
 $t/a^2 = 2.0$



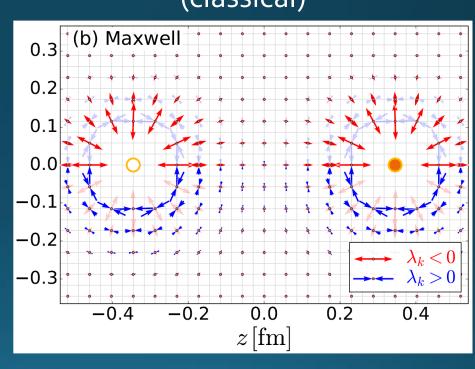
Definite physical meaning

- Distortion of field, line of field
- Propagation of the force as local interaction
- Manifestly gauge invariant

SU(3) YM vs Maxwell



Maxwell (classical)



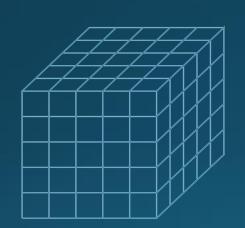
Propagation of the force is clearly different in YM and Maxwell theories!

Flux-Tube Structure

FlowQCD, PLB **789**, 210 (2019)

$T_{\mu \nu}$: nontrivial observable on the lattice

Definition of the operator is nontrivial because of the explicit breaking of translational invariance



ex:
$$T_{\mu\nu} = F_{\mu\rho}F_{\nu\rho} - \frac{1}{4}\delta_{\mu\nu}FF$$

$$F_{\mu\nu} =$$

- 2 Its measurement is noisy due to high dimensionality and etc.
- 10

Yang-Mills Gradient Flow

$$\frac{\partial}{\partial t} A_{\mu}(t, x) = -\frac{\partial S_{\text{YM}}}{\partial A_{\mu}}$$

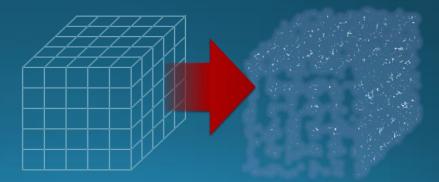
Luscher 2010 Narayanan, Neuberger, 2006 Luscher, Weiss, 2011

$$A_{\mu}(0,x) = A_{\mu}(x)$$

t: "flow time" dim:[length²]

$$\partial_t A_{\mu} = D_{\nu} G_{\mu\nu} = \partial_{\nu} \partial_{\nu} A_{\mu} + \cdots$$

- ☐ diffusion equation in 4-dim space
- $lue{}$ diffusion distance $d \sim \sqrt{8t}$
- "continuous" cooling/smearing
- \square No UV divergence at t > 0



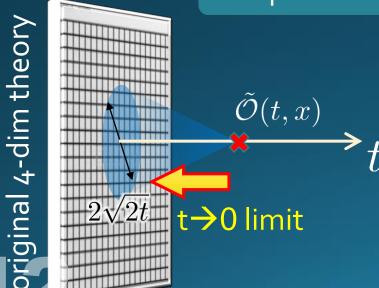
Small Flow-Time Expansion

Luescher, Weisz, 2011 Suzuki, 2013

$$\tilde{\mathcal{O}}(t,x) \xrightarrow[t \to 0]{} \sum_{i} c_i(t) \mathcal{O}_i^R(x)$$

an operator at t>0

remormalized operators of original theory



$$U_{\mu\nu}(t,x) = \alpha_U(t) \left[T_{\mu\nu}^R(x) - \frac{1}{4} \delta_{\mu\nu} T_{\rho\rho}^R(x) \right] + \mathcal{O}(t)$$

$$E(t,x) = \langle E(t,x) \rangle + \alpha_E(t) T_{\rho\rho}^R(x) + \mathcal{O}(t)$$

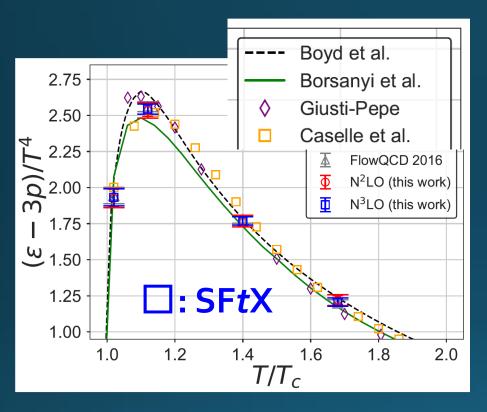


vacuum subtr.

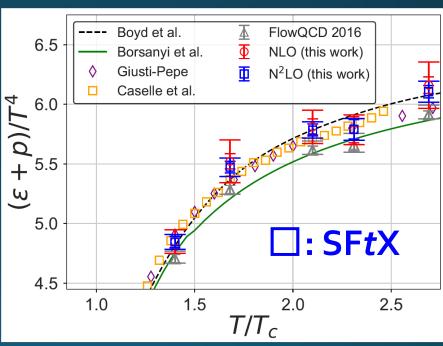
Remormalized EMT

$$T_{\mu\nu}^{R}(x) = \lim_{t\to 0} \left[c_1(t)U_{\mu\nu}(t,x) + \delta_{\mu\nu}c_2(t)E(t,x)_{\text{subt.}} \right]$$

Thermodynamics: $\varepsilon = \langle T_{00} \rangle, \ p = \langle T_{11} \rangle$



Iritani, MK, Suzuki, Takaura, 2019

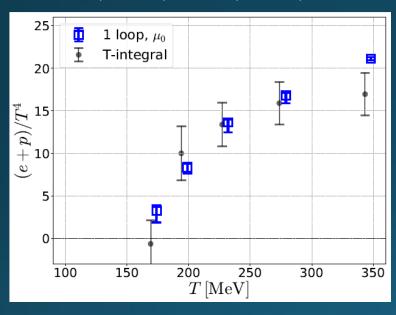


- ☐ Agreement with other methods within 1% level!
- Smaller statistics thanks to smearing by the flow

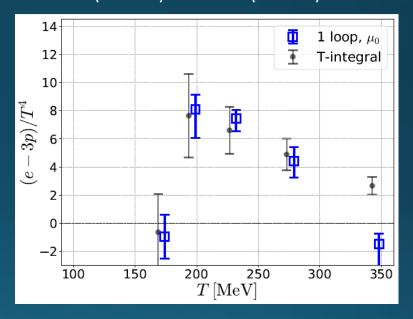
2+1 QCD EoS from Gradient Flow

WHOT-QCD, PRD96 (2017); PRD102 (2020)

$$\langle T_{00} \rangle + \langle T_{11} \rangle$$



$$\langle T_{00} \rangle - 3 \langle T_{11} \rangle$$



- Agreement with integral method
- Substantial suppression of statistical errors

 $m_{PS}/m_{V} \approx 0.63$

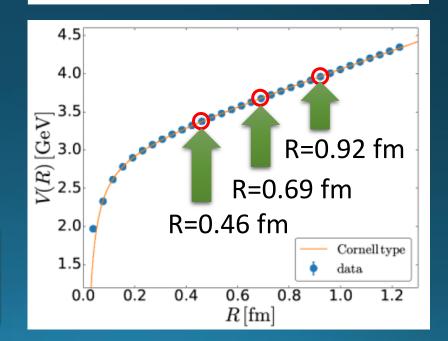
Lattice Setup

FlowQCD, PLB (2019)

- SU(3) Yang-Mills (Quenched)
- Wilson gauge action
- ☐ Clover operator
- EMT around Wilson Loop
- APE smearing / multi-hit
- ☐ fine lattices (a=0.029-0.06 fm)
- □ continuum extrapolation
- Simulation: bluegene/Q@KEK

$$\langle O(x) \rangle_{Q\bar{Q}} = \lim_{T \to \infty} \frac{\langle \delta O(x) \delta W(R, T) \rangle}{\langle W(R, T) \rangle}$$

β	$a \text{ [fm] } N_{\text{size}}^4 N_{\text{conf}}$			R/a		
	0.058		140	8	12	16
6.465	0.046	48^{4}	440	10	_	20
6.513	0.043	48^{4}	600	_	16	_
6.600	0.038	48^{4}	1,500	12	18	24
6.819	0.029	64^{4}	1,000	16	24	32
		R	R [fm]		0.69	0.92

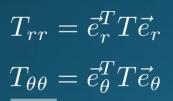


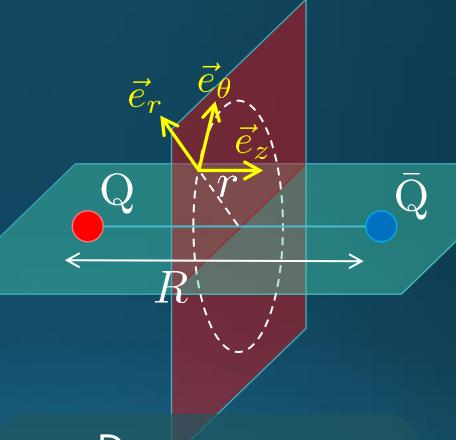
Stress Distribution on Mid-Plane

From rotational symm. & parity

EMT is diagonalized in Cylindrical Coordinates

$$T_{cc'}(r) = \left(egin{array}{c} T_{rr} & & & \ & T_{ heta heta} & & \ & & T_{zz} & \ & & & T_{44} \end{array}
ight)$$

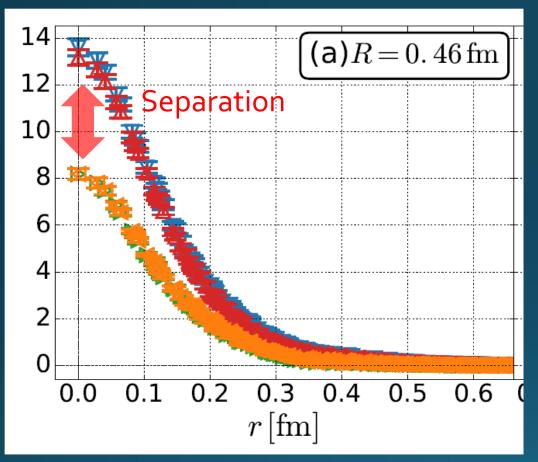




Degeneracy in Maxwell theory

$$T_{rr} = T_{\theta\theta} = -T_{zz} = -T_{44}$$

Mid-Plane



$$oxed{\Delta}$$
 $-\langle \mathcal{T}_{44}^{
m R}(r)
angle_{Qar Q} \left[{
m GeV/fm^3}
ight]$

$$oxdots - ig\langle \mathcal{T}_{zz}^{
m R}(r) ig
angle_{Qar Q} \, [{
m GeV/fm^3}]$$

$$rac{f 4}{f 4}$$
 $ig\langle \mathcal{T}^{
m R}_{rr}(r) ig
angle_{Qar Q} \, [{
m GeV/fm^3}]$

$$lacksquare$$
 $raket{\mathcal{T}_{ heta heta}^{
m R}(r)}_{Qar{Q}}\,[{
m GeV/fm^3}]$

Continuum Extrapolated!

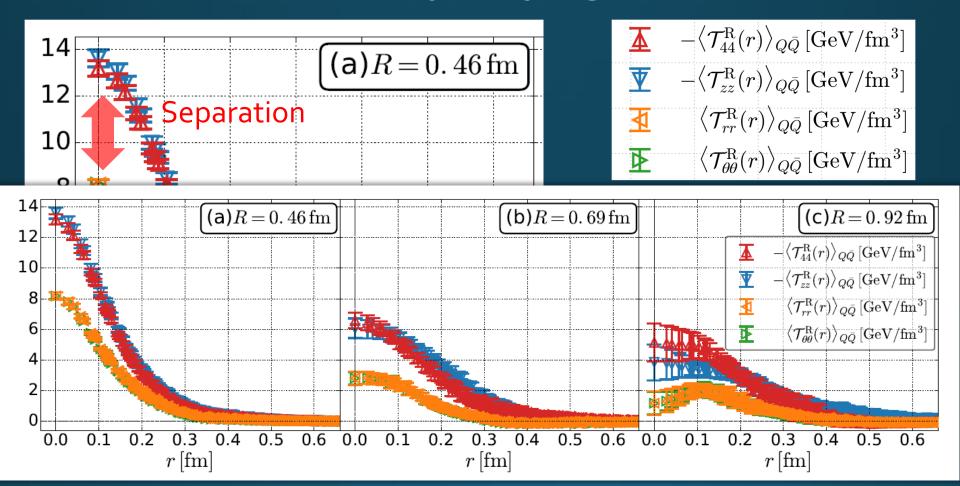
In Maxwell theory

$$T_{rr} = T_{\theta\theta} = -T_{zz} = -T_{44}$$

- lacksquare Degeneracy: $T_{44} \simeq T_{zz}, \quad T_{rr} \simeq \overline{T_{\theta\theta}}$
- $lue{}$ Separation: $T_{zz}
 eq T_{rr}$
- $lue{\Box}$ Nonzero trace anomaly lacksquare $T_{cc}
 eq 0$

$$\sum T_{cc} \neq 0$$

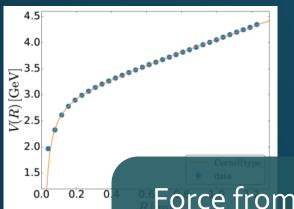
Mid-Plane



- lacksquare Degeneracy: $T_{44} \simeq T_{zz}, \quad T_{rr} \simeq T_{ heta heta}$
- $lue{}$ Separation: $T_{zz}
 eq T_{rr}$
- lacktriangle Nonzero trace anomaly lacktriangle $T_{cc}
 eq 0$

$$T_{rr} \simeq T_{\theta\theta}$$

$$\sum T_{cc} \neq 0$$

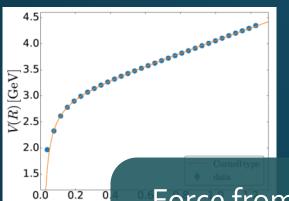


Force

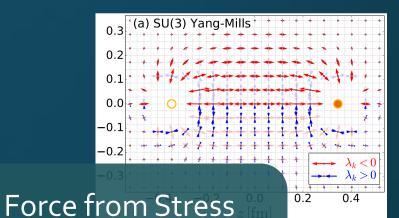
Force from Stress $\frac{0.0}{2}$ $\frac{0.2}{0.1}$ $\frac{0.2}{0.1}$ $\frac{0.2}{0.1}$ $\frac{0.2}{0.1}$ $\frac{0.2}{0.1}$ $\frac{0.2}{0.2}$ $\frac{0.2}{0.4}$

$$F_{\rm pot} = -\frac{dV}{dR}$$

$$F_{\text{stress}} = \int_{\text{mid.}} d^2x T_{zz}(x)$$



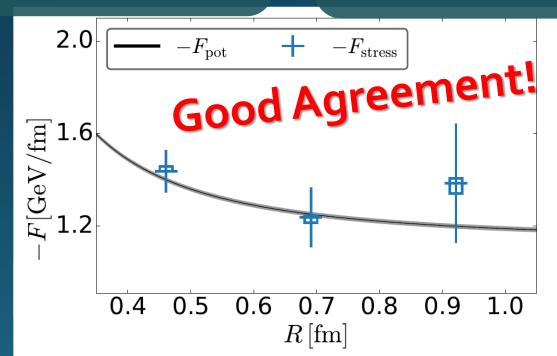
Force



Force from Potential

$$F_{\rm pot} = -\frac{dV}{dR}$$

$$F_{\text{stress}} = \int_{\text{mid.}} d^2x T_{zz}(x)$$



21

EM Conservation,

Dual Superconductor Picture

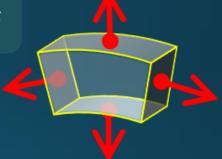
Yanagihara, MK, PTEP2019, 093B02 (2019)

Momentum Conservation

Yanagihara, MK, PTEP2019

In cylindrical coordinats,

$$\partial_i T_{ij} = 0$$
 $\partial_r (rT_{rr}) = T_{\theta\theta} - r\partial_z T_{rz}$



For infinitely-long tube

$$\partial_r(rT_{rr}) = T_{\theta\theta}$$

$$\partial_r(rT_{rr}) = T_{\theta\theta}$$

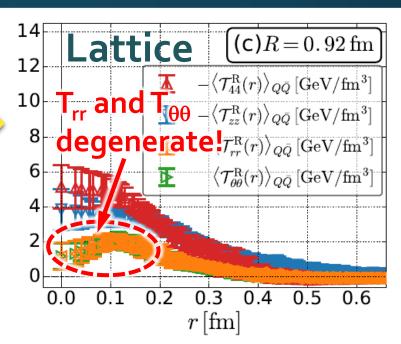
$$\int_0^\infty dr T_{\theta\theta}(r) = \left[rT_{rr}\right]_0^\infty = 0$$

- \square T_{rr} and T_{\theta\theta} must separate!
- \square T₀₀ must change sign!

Momentum Conservation

Yanagihara, MK, PTEP2019

- ☐ Infinitely-long system
 - \blacksquare T_{rr} and T_{$\theta\theta$} must separate
 - \square T₀₀ must change sign

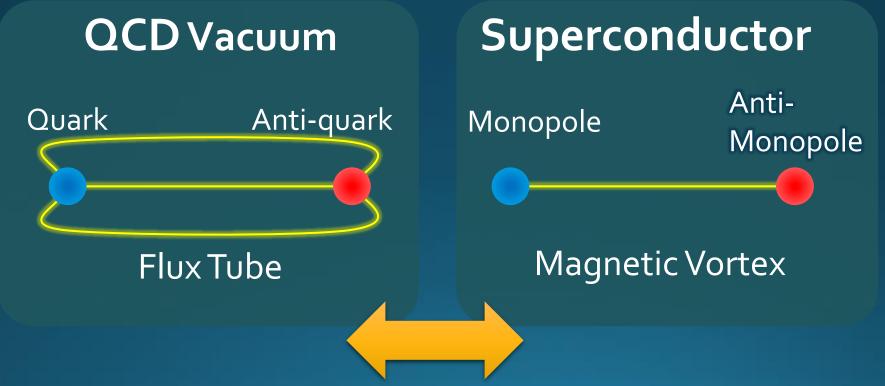


Effect of boundaries is important for the flux tube at R=0.92fm

Dual Superconductor Picture

Nambu, 1970 Nielsen, Olesen, 1973 t 'Hooft, 1981

• •



25

Abelian-Higgs Model

Yanagihara, MK, 2019

Abelian-Higgs Model

$$\mathcal{L}_{AH} = -\frac{1}{4}F_{\mu\nu}^2 + |(\partial_{\mu} + igA_{\mu})\phi|^2 - \lambda(\phi^2 - v^2)^2$$

GL parameter: $\kappa = \sqrt{\lambda/g}$

- $\left\{ \begin{array}{l} \blacksquare \text{ type-I}: \quad \kappa < 1/\sqrt{2} \\ \blacksquare \text{ type-II}: \quad \kappa > 1/\sqrt{2} \\ \blacksquare \text{ Bogomol'nyi bound}: \end{array} \right.$

$$\kappa = 1/\sqrt{2}$$

Infinitely long tube

degeneracy

$$T_{zz}(r)=T_{44}(r)\,$$
 Luscher, 1981

■ momentum conservation

$$\frac{d}{dr}\left(rT_{rr}\right) = T_{\theta\theta}$$

Stress Tensor in AH Model

infinitely-long flux tube

Type-I

0.20

0.15

0.10

0.05

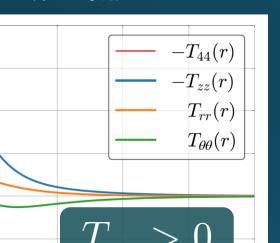
0.00

-0.05

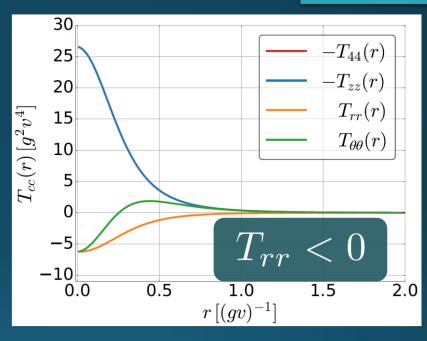
 -0.10^{1}_{0}

 $T_{cc}(r) \left[g^2 \overline{v^4}\right]$

$$\kappa = 0.1$$



 $\kappa = 3.0$



 \blacksquare No degeneracy bw $T_{rr} \& T_{\theta\theta}$

 $r\,[(gv)^{-1}]$

 \Box $T_{\theta\theta}$ changes sign

10

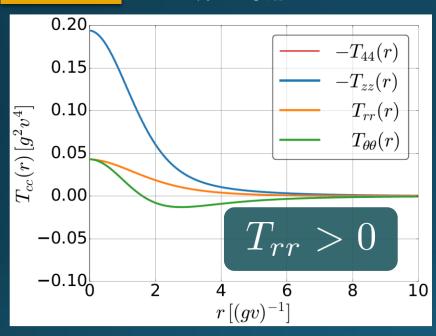
conservation law

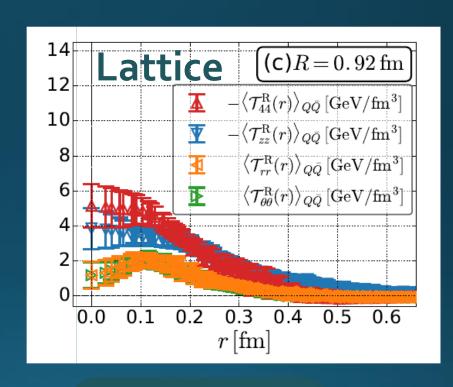
$$\frac{d}{dr}\left(rT_{rr}\right) = T_{\theta\theta}$$

Stress Tensor in AH Model infinitely-long flux tube

Type-I

$$\kappa = 0.1$$





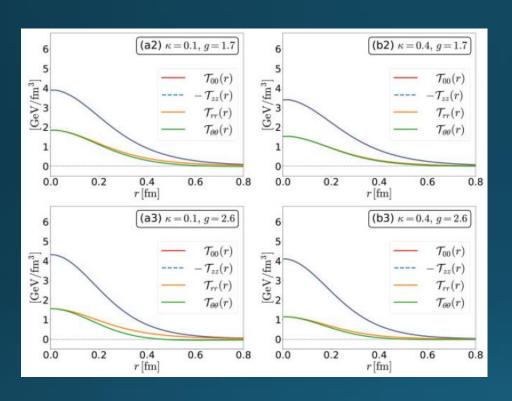
- \square No degeneracy bw $T_{rr} \& T_{\theta\theta}$
- \square T₀₀ changes sign

Inconsistent with lattice result

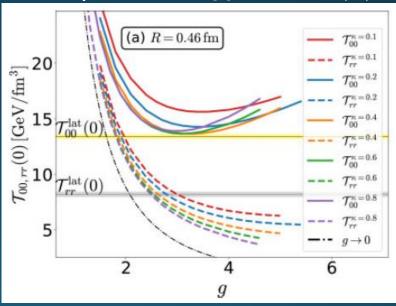
$$T_{rr} \simeq T_{\theta\theta}$$

Flux Tube with Finite Length

Yanagihara, MK (2019)



Comparison: $T_{00}(0)$, $T_{rr}(0)$



- ☐ AH model can reproduce lattice results **qualitatively** by tuning parameters.
- But, quantitatively all parameters are rejected.

Quantum Effects?

- ☐ Classical vortex is unstable against quantum fluctuations
- Quantum effects give rise to
 - Luscher term in potential Luscher (1981)
 - Fattening of the tube Luscher, Munster, Weisz (1981)

How do these effects modify EMT distribution?

EMT Distr. in Simple Systems

 ϕ^4 Theory in 1+1d

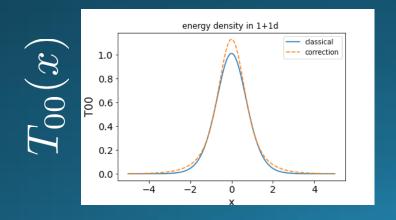
$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} \phi)^2 - \frac{\lambda}{4} \left(\phi^2 - \frac{m^2}{\lambda} \right)^2 \qquad \phi(x) = \frac{m}{\sqrt{\lambda}} \tanh \frac{mx}{\sqrt{2}}$$

Talk by H. Ito Wednesday

☐ Soliton (kink)

$$\phi(x) = \frac{m}{\sqrt{\lambda}} \tanh \frac{mx}{\sqrt{2}}$$

☐ Quantum effect on EMT at 1-loop order



Confirmation of **EMT** conservation

$$\partial_x T_{11}(x) = 0$$

Flux Tube @ Nonzero T, Single Q System

FlowQCD, PRD **102**, 114522 (2020)

Motivations

- $\square T < T_c$: Heavy-light meson
- EMT distribution in the meson
- $\Box T > T_c$: Single charge
- Screening
- Running coupling
- $\Box T \approx T_c$
- Confinement transition

This study: $T > T_c$ in pure YM

Lattice Setup

- SU(3) Yang-Mills (Quenched)
- Wilson gauge action
- ☐ Clover operator
- Analysis above Tc
- ☐ Simulation on a Z₃ minimum
- EMT around a Polyakov loop

$$\langle O(x)\rangle_{\mathcal{Q}} = \frac{\langle \delta O(x)\delta\Omega(0)\rangle}{\langle \Omega(0)\rangle}$$

Ω: Polyakov loop

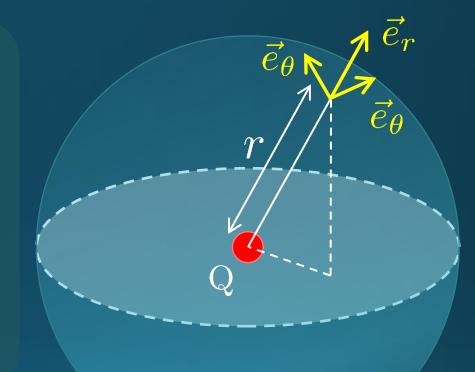
☐ continuum extrapolation

T/T_c	N_s	N_{τ}	β	a [fm]	$N_{\rm conf}$
1.20	40	10	6.336	0.0551	500
	48	12	6.467	0.0460	650
	56	14	6.581	0.0394	840
	64	16	6.682	0.0344	1,000
	72	18	6.771	0.0306	1,000
1.44	40	10	6.465	0.0461	500
	48	12	6.600	0.0384	650
	56	14	6.716	0.0329	840
	64	16	6.819	0.0288	1,000
	72	18	6.910	0.0256	1,000
2.00	40	10	6.712	0.0331	500
	48	12	6.853	0.0275	650
	56	14	6.973	0.0236	840
	64	16	7.079	0.0207	1,000
	72	18	7.173	0.0184	1,000
2.60	40	10	6.914	0.0255	500
	48	12	7.058	0.0212	650
	56	14	7.182	0.0182	840
	64	16	7.290	0.0159	1,000
	72	18	7.387	0.0141	1,000

Spherical Coordinates

EMT is diagonalized in Spherical Coordinates

$$T_{cc'}(r) = \left(egin{array}{c} T_{rr} & & & \ & T_{ heta heta} & & \ & & T_{ heta heta} & \ & & & T_{44} \end{array}
ight)$$

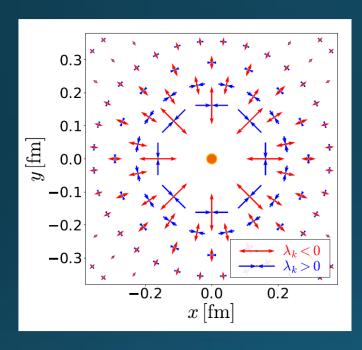


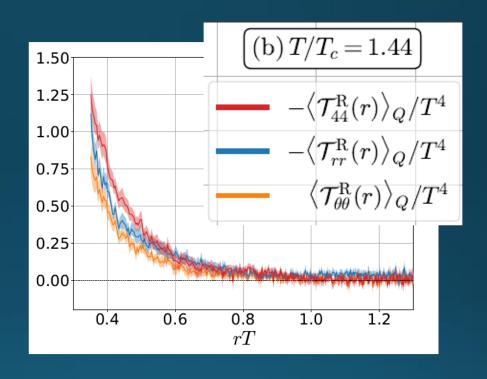
■ Maxwell theory

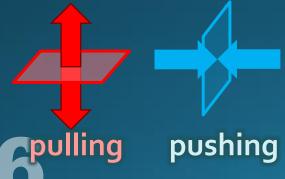
$$T_{44} = T_{rr} = -T_{\theta\theta} = -\frac{|\mathbf{E}|^2}{2} = -\frac{\alpha}{8\pi} \frac{1}{r^4}$$

Stress Tensor Around a Quark

 $T=1.44T_c$



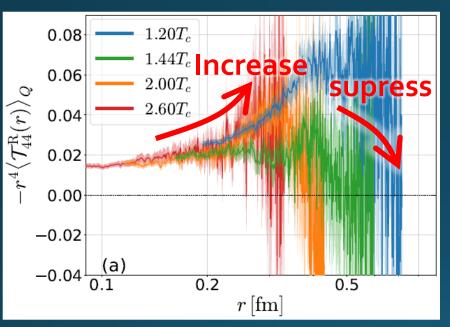




- Suppression at large distance
- Separation of different channels

r Dependence

$$r^4 \langle T_{00}(r) \rangle$$



Leading order perturbation

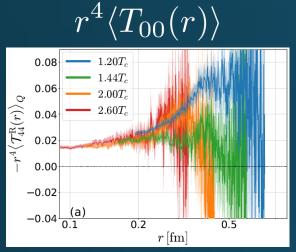
$$\langle \mathcal{T}_{44}(r) \rangle = \langle \mathcal{T}_{rr}(r) \rangle = -\langle \mathcal{T}_{\theta\theta}(r) \rangle$$
$$= -\frac{C_F}{8\pi} \alpha_s \frac{(m_D r + 1)^2}{r^4} e^{-2m_D r}$$

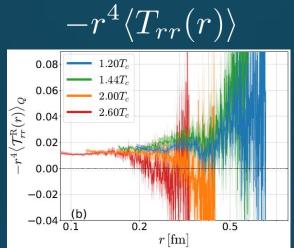
Higher order terms:

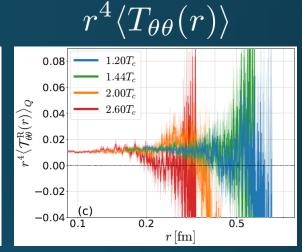
M. Berwein, in progress

- $lue{}$ Increase at short r / suppression at larger r
- \blacksquare T dependence is suppressed at r < 1/T
- lacksquare Too noisy at large r for extracting screening mass $m_{
 m D}$

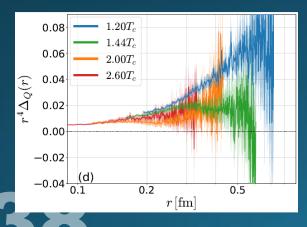
Channel Dependence







$$r^4 \Delta(r) = -r^4 \langle T_{\mu\mu} \rangle$$



■ Separation b/w channels becomes clearer for smaller *T*

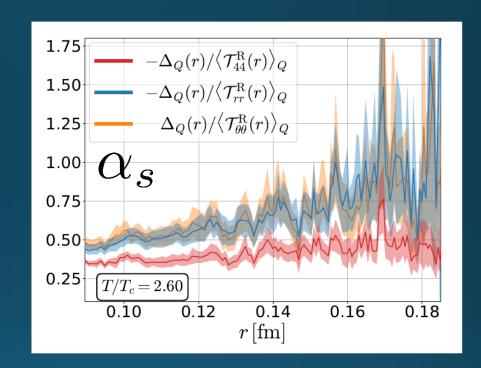
Running Coupling

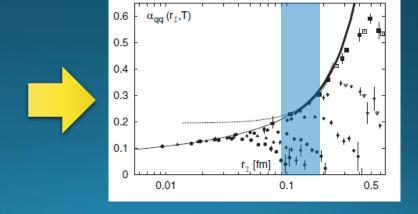
\square Estimate of α_s

$$\left| \frac{\langle T_{\mu\mu} \rangle}{\langle \mathcal{T}_{44,rr,\theta\theta}(r) \rangle} \right| = \frac{11}{2\pi} \alpha_s + \mathcal{O}(g^3),$$

- by the formula at the leading-order perturbation theory
- channel dependent

 \square Consistent with the estimate from $Q\overline{Q}$ potential



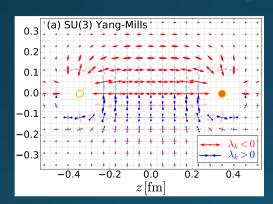


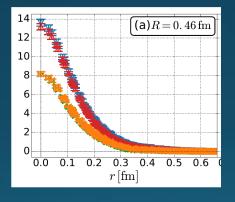
39

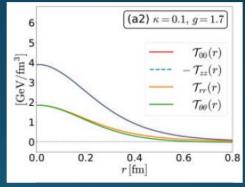
Kaczmarek, Karsch, Zantow, 2004

Summary

- Now, lattice simulation of EMT around the flux tube is available thanks to SFtX (gradient flow) method.
- EMT distribution of the flux tube tells us many interesting features of this system.







□ Future studies

- ☐ Theoretical understanding of the lattice results
- \square QQQ, QQ, etc. / T dependence / hadrons

backup

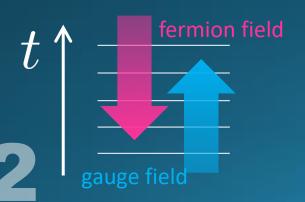
Fermion Propagator

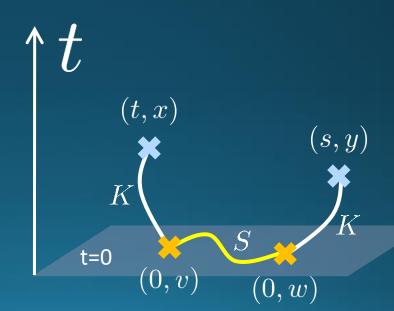
$$S(t, x; s, y) = \langle \chi(t, x)\bar{\chi}(s, y)\rangle$$

$$= \sum_{v, w} K(t, x; 0, v)S(v, w)K(s, y; 0, w)^{\dagger}$$

$$\left(\partial_t - D_\mu D_\mu\right) K(t, x) = 0$$

- propagator of flow equation
- Inverse propagator is needed

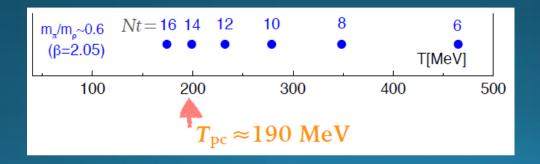




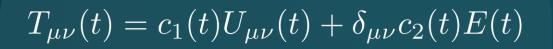
N_f=2+1 QCD Thermodynamics

Taniguchi+ (WHOT-QCD), PR**D96**, 014509 (2017)

- N_f=2+1 QCD, Iwasaki gauge + NP-clover
- m_{PS}/m_V ≈ o.63 / almost physical s quark mass
- T=o: CP-PACS+JLQCD (ß=2.05, 283x56, a≈o.07fm)
- T>0: $32^3 \times N_t$, $N_t = 4, 6, ..., 14, 16$):
- T≈174-697MeV
- t→o extrapolation only (No continuum limit)



Perturbative Coefficients



	LO	1 -loop	2-loop	3-loop
$c_1(t)$	O	O	0	
$c_2(t)$	X zero	0	0	O

Suzuki, PTEP 2013, 083B03 Harlander+, 1808.09837 Iritani, MK, Suzuki, Takaura, PTEP 2019

Iritani, MK, Suzuki, Takaura, 2019

Suzuki (2013) Harlander+(2018)

Choice of the scale of g²

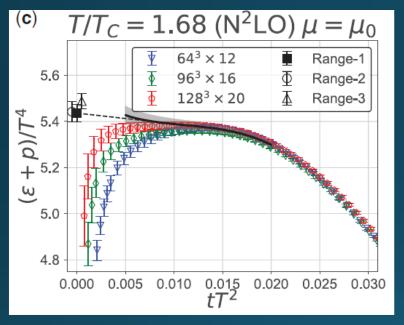
$$c_1(t) = c_1 \Big(g^2 \big(\mu(t) \big) \Big)$$

Previous:
$$\mu_d(t) = 1/\sqrt{8t}$$

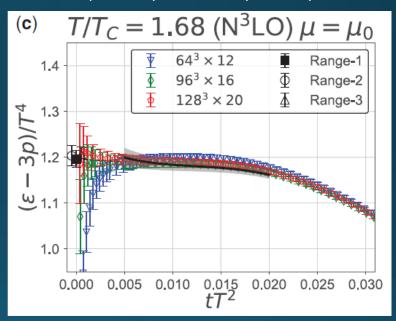
Improved:
$$\mu_0(t) = 1/\sqrt{2e^{\gamma_E}t}$$

t Dependence

$$\langle T_{00} \rangle + \langle T_{11} \rangle$$



$$\langle T_{00} \rangle - 3 \langle T_{11} \rangle$$



Iritani, MK, Suzuki, Takaura, PTEP 2019

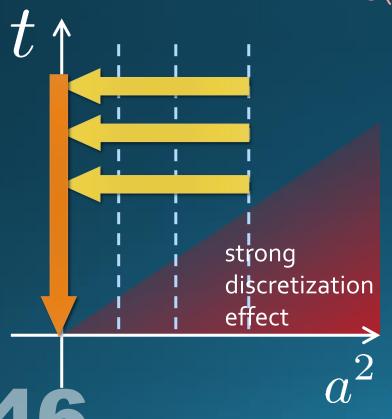
■ Existence of "linear window" at intermediate t

Double Extrapolation

 $t \rightarrow 0, a \rightarrow 0$

$$\langle T_{\mu\nu}(t)\rangle_{\rm latt} = \langle T_{\mu\nu}(t)\rangle_{\rm phys} + C_{\mu\nu}t + \left[D_{\mu\nu}(t)\frac{a^2}{t}\right]$$

O(t) terms in SFTE lattice discretization



Continuum extrapolation

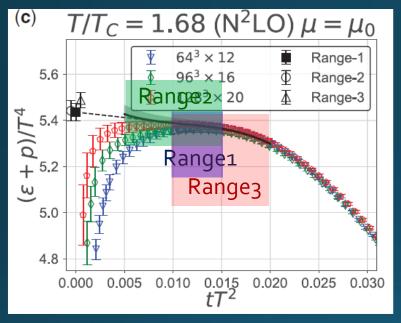
$$\langle T_{\mu\nu}(t)\rangle_{\rm cont} = \langle T_{\mu\nu}(t)\rangle_{\rm lat} + C(t)a^2$$

Small t extrapolation

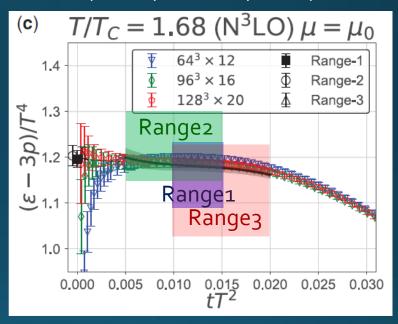
$$\langle T_{\mu\nu}\rangle = \langle T_{\mu\nu}(t)\rangle + C't$$

Thermodynamics: ε+p & ε-3p

$$\langle T_{00} \rangle + \langle T_{11} \rangle$$



$$\langle T_{00} \rangle - 3 \langle T_{11} \rangle$$



Iritani, MK, Suzuki, Takaura, PTEP 2019

- Existence of "linear window" at intermediate t
- ☐ Stable t→0 extrapolation
- \square Systematic errors: fit range, uncertaintyof Λ (\pm 3%), ...

EMT on the Lattice: Conventional

Lattice EMT Operator Caracciolo+, 1990

$$T_{\mu\nu} = Z_6 T_{\mu\nu}^{[6]} + Z_3 T_{\mu\nu}^{[3]} + Z_1 \left(T_{\mu\nu}^{[1]} - \langle T_{\mu\nu}^{[1]} \rangle \right)$$

$$T_{\mu\nu}^{[6]} = (1 - \delta_{\mu\nu}) F_{\mu\rho}^a F_{\nu\rho}^a, \ T_{\mu\nu}^{[3]} = \delta_{\mu\nu} \left(F_{\mu\rho}^a F_{\nu\rho}^a - \frac{1}{4} F_{\rho\sigma}^a F_{\rho\sigma}^a \right), \ T_{\mu\nu}^{[1]} = \delta_{\mu\nu} F_{\rho\sigma}^a F_{\rho\sigma}^a$$

- Determination of Zs are necessary.
- Non-pert. Determination of Zs
 - Shifted-boundary method
 - Full QCD with fermions

Giusti, Pepe, 2014~; Borsanyi+, 2018 Brida, Giusti, Pepe, 2020