Revisiting the semi-classical approximation in Yang-Mills and QCD

Alexander Boccaletti and Daniel Nogradi

2001.03383 - JHEP 03 (2020) 045

Eotvos University Budapest

Executive summary

Semi-classical (instanton) calculations are reliable at high ${\it T}$

Temperature dependence of instanton size distribution

$$n(\varrho, T) = n(\varrho)e^{-S(\pi \varrho T)}$$

- $n(\varrho)$: T = 0 instanton calculation
- $S(\lambda)$: determined by function $A(\lambda)$ where $\lambda = \pi \varrho T$

Executive summary

Gross-Pisarski-Yaffe (1981), numerical fit

$$12A_{GPY}(\lambda) = -\log\left(1 + \frac{\lambda^2}{3}\right) + \frac{12\alpha}{\left(1 + \delta\lambda^{-3/2}\right)^8}$$

 $\alpha = 0.01289764$ and $\delta = 0.15858$, absolute precision $< 6 \cdot 10^{-4}$

Used ever since everywhere (without anyone checking it...)

Why this form? Why -3/2, why 8, etc?

Executive summary

Instead of

$$12A_{GPY}(\lambda) = -\log\left(1 + \frac{\lambda^2}{3}\right) + \frac{12\alpha}{\left(1 + \delta\lambda^{-3/2}\right)^8}$$

$$\alpha = 0.01289764, \quad \delta = 0.15858$$

Use rather

$$12A(\lambda) = -p_0 \log(1 + p_1 \lambda^2 + p_2 \lambda^4 + p_3 \lambda^6 + p_4 \lambda^8)$$

$$p_0 = 0.247153244, \quad p_1 = 1.356391323, \quad p_2 = 0.675021523$$

$$p_3 = 0.145446632, \quad p_4 = 0.008359667$$

Motivation

Lattice effort to obtain $\chi(T)$ at high $T \to axion$ physics

Compare with semi-classical results

 $n(\varrho)$ and $A(\lambda)$ needed for that

Not much thought given, everybody uses formulae in literature

Let's check everything from the start \rightarrow nice BSc topic

Surprises along the way ...

Outline

- Yang-Mills theory and QCD at finite temperature
- Semi-classical approach, instantons, historical remarks
- $\chi(T)$ within semi-classical approach
- Surprise 1: over-all prefactor in QCD case $(N_f \neq 0)$
- Surprise 2: temperature dependence → numerical integrals

Sum over all Q topological charge

$$Z = \sum_{Q} \int \mathcal{D}_{Q} A \mathcal{D} \bar{\psi} \mathcal{D} \psi e^{-S_{YM} + fermions}$$

$$Z = \dots Z_{-2} + Z_{-1} + Z_0 + Z_1 + Z_2 + \dots = Z_0 + 2Z_1 + 2Z_2 + \dots$$

Topological susceptibility

$$\chi = \frac{\langle Q^2 \rangle}{V} = \frac{2}{V} \frac{Z_1 + 4Z_2 + 9Z_3 + \dots}{Z_0 + 2Z_1 + 2Z_2 + 2Z_3 + \dots}$$

$$V = L^3/T$$
 space-time volume

$$\chi = \frac{\langle Q^2 \rangle}{V} = \frac{2}{V} \frac{Z_1 + 4Z_2 + 9Z_3 + \dots}{Z_0 + 2Z_1 + 2Z_2 + 2Z_3 + \dots}$$

Assume fixed L^3 finite large 3-volume and T asymptotically large

$$\chi(T) = \frac{2}{V} \frac{Z_1}{Z_0}$$

$$\chi(T) = \frac{2}{V} \frac{Z_1}{Z_0}$$

Position of instanton x_{μ} arbitrary \rightarrow factor V in integral

Size ϱ of instanton \to remaining $d\varrho$ integral

$$\chi(T) = \frac{2}{V} \frac{Z_1}{Z_0} = 2 \int_0^\infty d\varrho n(\varrho, T)$$

 $n(\varrho,T)$: size distribution of instantons at T

$$n(\varrho, T) = n(\varrho)e^{-S(\varrho, T)}$$

Size distribution at T expressed from size distribution $n(\varrho)$ at T=0

T-dependence from $S(\varrho,T)$, dimensionless, depends on $\lambda=\pi\varrho T$

 \rightarrow Need two ingredients: T = 0 results and T > 0 modifications

Zero temperature 1-loop with light fermions, $m_i/T, m_i/\Lambda \ll 1$

$$n(\varrho) = C \left(\frac{16\pi^2}{g^2(\mu)}\right)^{2N} e^{-\frac{8\pi^2}{g^2(\mu)}} \frac{1}{\varrho^5} (\varrho\mu)^{\beta_1} \prod_{i=1}^{N_f} (\varrho m_i(\mu))$$

 $g(\mu)$ running coupling, $m_i(\mu)$ running masses

Over-all constant coefficient C is scheme-dependent, because renormalization is defined in a particular scheme

Frequently used schemes: Pauli-Villars, MS, MS, etc.

$$n(\varrho) = C \left(\frac{16\pi^2}{g^2(\mu)}\right)^{2N} e^{-\frac{8\pi^2}{g^2(\mu)}} \frac{1}{\varrho^5} (\varrho\mu)^{\beta_1} \prod_{i=1}^{N_f} (\varrho m_i(\mu))$$

Result for C in Pauli-Villars and SU(2):

G. 't Hooft, Phys. Rev. D 14, 3432 (1976)

Unfortunately C incorrect, but only trivial mistake (factors of π), corrected later in erratum

Erratum: [Phys. Rev. D 18, 2199 (1978)]

Pauli-Villars SU(2) result correct

$$n(\varrho) = C \left(\frac{16\pi^2}{g^2(\mu)} \right)^{2N} e^{-\frac{8\pi^2}{g^2(\mu)}} \frac{1}{\varrho^5} (\varrho \mu)^{\beta_1} \prod_{i=1}^{N_f} (\varrho m_i(\mu))$$

Result for C in Pauli-Villars and SU(N)

C. W. Bernard, Phys. Rev. D 19, 3013 (1979).

General SU(N) in Pauli-Villars correct

$$n(\varrho) = C \left(\frac{16\pi^2}{g^2(\mu)}\right)^{2N} e^{-\frac{8\pi^2}{g^2(\mu)}} \frac{1}{\varrho^5} (\varrho\mu)^{\beta_1} \prod_{i=1}^{N_f} (\varrho m_i(\mu))$$

More frequently used schemes: MS and \overline{MS}

Need to convert C to these schemes

$$C_1 = C_2 \left(\frac{\Lambda_2}{\Lambda_1}\right)^{\beta_1}$$

Need to know Λ -parameter ratios

Needed: $\Lambda_{PV}/\Lambda_{MS}$, first given in original

G. 't Hooft, Phys. Rev. D 14, 3432 (1976)

Unfortunately incorrect (not in Erratum either...)

Correct result

$$\frac{\Lambda_{\text{PV}}}{\Lambda_{\text{MS}}} = e^{\frac{1}{2}(\log(4\pi) - \gamma) + \frac{1}{22}}$$

A. Hasenfratz and P. Hasenfratz, Phys. Lett. 93B, 165 (1980)

Confirmed in G. 't Hooft, Phys. Rept. 142, 357 (1986)

Note: incorrect Λ -parameter ratios in

P. Weisz, Phys. Lett. 100B, 331 (1981)

R. F. Dashen and D. J. Gross, Phys. Rev. D 23, 2340 (1981)

In any case, MS result correct since Hasenfratz-Hasenfratz 1980

Most frequently used: $\overline{\text{MS}}$

Conversion MS $\rightarrow \overline{\text{MS}}$ should be straightforward

$$\frac{\Lambda_{\overline{\rm MS}}}{\Lambda_{\rm MS}} = e^{\frac{1}{2}(\log(4\pi) - \gamma)} \qquad \qquad \frac{\Lambda_{\rm PV}}{\Lambda_{\overline{\rm MS}}} = e^{\frac{1}{22}}$$

W. A. Bardeen, A. J. Buras, D. W. Duke and T. Muta, Phys. Rev. D 18, 3998 (1978)

And we have seen

$$C_1 = C_2 \left(\frac{\Lambda_2}{\Lambda_1}\right)^{\beta_1}$$

Explicitly reported in MS

A. Ringwald and F. Schrempp, Phys. Lett. B 438, 217 (1998) [hep-ph/9806528]

Unfortunately incorrect, never corrected before

$$C = \frac{e^{c_0 + c_1 N + c_2 N_f}}{(N-1)!(N-2)!}$$

 c_0 and c_1 correct, but c_2 reported incorrectly

Problem: MS \to $\overline{\rm MS}$ conversion involves β_1 which depends on N_f , conversion used pure Yang-Mills β_1 : c_2 incorrect

Mismatch: $\frac{1}{33}=\frac{2}{3}\cdot\frac{1}{22}$ where $\frac{2}{3}$ from N_f -dependence of β -function, $\frac{1}{22}$ from MS-MS Λ -parameter ratio

Furthermore, another wrong c_2 reported in

- S. Moch, A. Ringwald and F. Schrempp, Nucl. Phys. B 507, 134 (1997) [hep-ph/9609445]
- I. I. Balitsky and V. M. Braun, Phys. Rev. D 47, 1879 (1993)

First correct MS result

$$C_{\overline{\text{MS}}} = \frac{e^{c_0 + c_1 N + c_2 N_f}}{(N-1)!(N-2)!}$$

$$c_0 = \frac{5}{6} + \log 2 - 2 \log \pi = -0.76297926$$
 $c_1 = 4\zeta'(-1) + \frac{11}{36} - \frac{11}{3} \log 2 = -2.89766868$
 $c_2 = -4\zeta'(-1) - \frac{67}{396} - \frac{1}{3} \log 2 = 0.26144360$

Ringwald-Schrempp: $c_2 = 0.291746$

Moch-Ringwald-Schrempp, Balitsky-Braun: $c_2 = 0.153$

First correct MS result

$$n(\varrho) = C_{\overline{\text{MS}}} \left(\frac{16\pi^2}{g^2(\mu)} \right)^{2N} e^{-\frac{8\pi^2}{g^2(\mu)}} \frac{1}{\varrho^5} (\varrho \mu)^{\beta_1} \prod_{i=1}^{N_f} (\varrho m_i(\mu))$$

Finally T=0 instanton size distribution in $\overline{\rm MS}$ at 1-loop

Once $C_{\overline{\rm MS}}$ okay, (partial) 2-loop result from literature can be taken over

$$n(\varrho, T) = n(\varrho)e^{-S(\lambda)}$$
 $\lambda = \pi \varrho T$

$$S(\lambda) = \frac{1}{3}\lambda^{2}(2N + N_{f}) + 12A(\lambda)\left(1 + \frac{N - N_{f}}{6}\right)$$

D. J. Gross, R. D. Pisarski and L. G. Yaffe, Rev. Mod. Phys. 53, 43 (1981)

$$12A(\lambda) = \frac{1}{16\pi^2} \left[\int_{S^1 \times R^3} \left(\frac{\partial_{\mu} \Pi \partial_{\mu} \Pi}{\Pi^2} \right)^2 - \int_{R^4} \left(\frac{\partial_{\mu} \Pi_0 \partial_{\mu} \Pi_0}{\Pi_0^2} \right)^2 \right]$$

$$12A(\lambda) = \frac{1}{16\pi^2} \left[\int_{S^1 \times R^3} \left(\frac{\partial_{\mu} \Pi \partial_{\mu} \Pi}{\Pi^2} \right)^2 - \int_{R^4} \left(\frac{\partial_{\mu} \Pi_0 \partial_{\mu} \Pi_0}{\Pi_0^2} \right)^2 \right]$$

- Π_0 from 1-insanton solution on R^4 : $\Pi_0 = 1 + \frac{\varrho^2}{t^2 + r^2}$
- Π is from Harrington-Sheppard 1-instanton solution on $S^1 \times R^3$

Because of spherical symmetry, $A(\lambda)$ is a 2-dimensional integral

Analytically not possible, numerical form from Gross-Pisarski-Yaffe:

$$12A_{GPY}(\lambda) = -\log\left(1 + \frac{\lambda^2}{3}\right) + \frac{12\alpha}{\left(1 + \gamma\lambda^{-3/2}\right)^8}$$

$$\alpha = 0.01289764 \qquad \gamma = 0.15858$$

Claimed absolute numerical uncertainty: $6 \cdot 10^{-4}$

Once $A(\lambda)$ is known, the full $\chi(T)$ is known semi-classically

Above A_{GPY} used in **all** works

New results for $A(\lambda)$

Main motivation was to understand the peculiar form of $A(\lambda)$

In Gross-Pisarski-Yaffe no details are given

Technically: difference of two 2D integrals, both are divergent, difference finite

We do three things:

- Evaluate numerically to high precision
- ullet Obtain analytic $\lambda \ll 1$ and $\lambda \gg 1$ series
- Fit numerical result with simple function

New results for $A(\lambda)$

Technically: reduce to 1-dimensional integral

$$12A(\lambda) = \frac{1}{2} \int_0^\infty dr \, r^2 \, \left(I(r) - I_0(r) \right)$$

I(r) and $I_0(r)$ analytically

r-integrals separately divergent, difference finite, large cancellation

New results for $A(\lambda)$

Numerical evaluation of r-integrals: trapezoid or Simpsons on (0,8), semi-analytic or $(8,\infty) \to \text{absolute precision } O(10^{-6})$

Essential: O(100) significant digits because of large cancellations between I(r) and $I_0(r)$ and also inside I(r) for small λ

New results for $A(\lambda)$ - asymptotics

Small λ asymptotics - log still a bit mysterious

$$12A(\lambda) = -\frac{1}{3}\lambda^2 + \frac{1}{18}\lambda^4 - \frac{1}{81}\lambda^6 + O(\lambda^7) = -\log\left(1 + \frac{\lambda^2}{3}\right) + O(\lambda^7)$$

Large λ asymptotics

$$12A(\lambda) = -\log(\lambda^2) + C_1 - \frac{\log(\lambda^2)}{\lambda^2} - \frac{C_2}{\lambda^2} + O\left(\frac{1}{\lambda^3}\right)$$

$$C_1 = 2\left(\frac{1}{3} - \frac{\pi^2}{36} - \gamma + \log \pi\right) = 1.25338375$$

$$C_2 = 1 + \log 2 + \frac{\pi^2}{36} + \gamma - \log \pi = 1.39978864$$

New results for $A(\lambda)$ - asymptotics

These look good - let's compare with Gross-Pisarski-Yaffe

New results for $A(\lambda)$ - comparison with GPY

 $8 \cdot 10^{-2}$, two orders of magnitude worse than claimed!

GPY: 2D integral numerically

New results for $A(\lambda)$ - useful parametrization

$$-12A_{param}(\lambda) = p_0 \log(1 + p_1 \lambda^2 + p_2 \lambda^4 + p_3 \lambda^6 + p_4 \lambda^8)$$

$$p_0 = 0.247153244, \quad p_1 = 1.356391323$$

$$p_2 = 0.675021523, \quad p_3 = 0.145446632, \quad p_4 = 0.008359667$$

Absolute precision $2 \cdot 10^{-4}$

Biggest deviation from GPY: $\lambda=O(1)$ because of large cancellations inside $I(r)\to$ the most sensitive region for ϱ -integral in $\chi(T)\to$ potentially large effect

Absolute and relative precision

Absolute precision on $A(\lambda) \rightarrow$

Relative precision on
$$n(\varrho,T)\sim e^{-12A(\lambda)\left(1+\frac{N-N_f}{6}\right)}$$
 \rightarrow

Relative precision on $\chi(T)$

Discrepancy A_{GPY} vs. our A_{param} in $\chi(T)$:

- SU(3) $N_f = 0, 2, 3, 4$: 10%, 7%, 6%, 4%
- SU(10) pure Yang-Mills: 22%
- SU(20) pure Yang-Mills: 40% (scales with N)

Accounting for T=0 and T>0 discrepancies in QCD

T = 0 from $C_{\overline{\text{MS}}}$: approx 5% (correct smaller)

T > 0 from $A(\lambda)$: approx 5% (correct larger)

But in opposite directions ... nearly cancel

Eventually very small effect in QCD

But at least now the semi-classical result is fully correct

Summary

- Obtained $n(\varrho,T)$ at high temperature semi-classically
- Needed to correct T = 0 $\overline{\text{MS}}$ -results in literature
- Needed to correct T > 0 1-loop fluctuation determinant
- Makes $\chi(T)$ comparison with lattice possible
- Exactly **zero** new or original idea :)
- Nevertheless interesting outcome from simple BSc thesis topic

Thank you for your attention!