Revisiting the semi-classical approximation in Yang-Mills and QCD

Alexander Boccaletti and Daniel Nogradi

```
2001.03383 - JHEP 03 (2020) 045
```

Eotvos University Budapest

Executive summary

Semi-classical (instanton) calculations are reliable at high T

Temperature dependence of instanton size distribution

$$
n(\varrho, T)=n(\varrho) e^{-S(\pi \varrho T)}
$$

- $n(\varrho): T=0$ instanton calculation
- $S(\lambda)$: determined by function $A(\lambda)$ where $\lambda=\pi \varrho T$

Executive summary

Gross-Pisarski-Yaffe (1981), numerical fit

$$
12 A_{G P Y}(\lambda)=-\log \left(1+\frac{\lambda^{2}}{3}\right)+\frac{12 \alpha}{\left(1+\delta \lambda^{-3 / 2}\right)^{8}}
$$

$\alpha=0.01289764$ and $\delta=0.15858$, absolute precision $<6 \cdot 10^{-4}$

Used ever since everywhere (without anyone checking it...)

$$
\text { Why this form? Why }-3 / 2 \text {, why } 8 \text {, etc? }
$$

Executive summary

Instead of

$$
\begin{gathered}
12 A_{G P Y}(\lambda)=-\log \left(1+\frac{\lambda^{2}}{3}\right)+\frac{12 \alpha}{\left(1+\delta \lambda^{-3 / 2}\right)^{8}} \\
\alpha=0.01289764, \quad \delta=0.15858
\end{gathered}
$$

Use rather

$$
\begin{gathered}
12 A(\lambda)=-p_{0} \log \left(1+p_{1} \lambda^{2}+p_{2} \lambda^{4}+p_{3} \lambda^{6}+p_{4} \lambda^{8}\right) \\
p_{0}=0.247153244, \quad p_{1}=1.356391323, \quad p_{2}=0.675021523 \\
p_{3}=0.145446632, \quad p_{4}=0.008359667
\end{gathered}
$$

Motivation

Lattice effort to obtain $\chi(T)$ at high $T \rightarrow$ axion physics

Compare with semi-classical results
$n(\varrho)$ and $A(\lambda)$ needed for that

Not much thought given, everybody uses formulae in literature

Let's check everything from the start \rightarrow nice BSc topic

Surprises along the way ...

Outline

- Yang-Mills theory and QCD at finite temperature
- Semi-classical approach, instantons, historical remarks
- $\chi(T)$ within semi-classical approach
- Surprise 1: over-all prefactor in QCD case $\left(N_{f} \neq 0\right)$
- Surprise 2: temperature dependence \rightarrow numerical integrals

Semi-classical calculation

Sum over all Q topological charge

$$
Z=\sum_{Q} \int \mathscr{D}_{Q} A \mathscr{D} \bar{\psi} \mathscr{D} \psi e^{-S_{Y M+\text { fermions }}}
$$

$$
Z=\ldots Z_{-2}+Z_{-1}+Z_{0}+Z_{1}+Z_{2}+\ldots=Z_{0}+2 Z_{1}+2 Z_{2}+\ldots
$$

Topological susceptibility

$$
\chi=\frac{\left\langle Q^{2}\right\rangle}{V}=\frac{2}{V} \frac{Z_{1}+4 Z_{2}+9 Z_{3}+\ldots}{Z_{0}+2 Z_{1}+2 Z_{2}+2 Z_{3}+\ldots}
$$

$V=L^{3} / T$ space-time volume

Semi-classical calculation

$$
\chi=\frac{\left\langle Q^{2}\right\rangle}{V}=\frac{2}{V} \frac{Z_{1}+4 Z_{2}+9 Z_{3}+\ldots}{Z_{0}+2 Z_{1}+2 Z_{2}+2 Z_{3}+\ldots}
$$

Assume fixed L^{3} finite large 3 -volume and T asymptotically large

$$
\chi(T)=\frac{2}{V} \frac{Z_{1}}{Z_{0}}
$$

Semi-classical calculation

$$
\chi(T)=\frac{2}{V} \frac{Z_{1}}{Z_{0}}
$$

Position of instanton x_{μ} arbitrary \rightarrow factor V in integral

Size ϱ of instanton \rightarrow remaining $d \varrho$ integral

$$
\chi(T)=\frac{2}{V} \frac{Z_{1}}{Z_{0}}=2 \int_{0}^{\infty} d \varrho n(\varrho, T)
$$

$n(\varrho, T)$: size distribution of instantons at T

Semi-classical calculation

$$
n(\varrho, T)=n(\varrho) e^{-S(\varrho, T)}
$$

Size distribution at T expressed from size distribution $n(\varrho)$ at $T=0$
T-dependence from $S(\varrho, T)$, dimensionless, depends on $\lambda=\pi \varrho T$
\rightarrow Need two ingredients: $T=0$ results and $T>0$ modifications

Semi-classical calculation

Zero temperature 1-loop with light fermions, $m_{i} / T, m_{i} / \wedge \ll 1$

$$
n(\varrho)=C\left(\frac{16 \pi^{2}}{g^{2}(\mu)}\right)^{2 N} e^{-\frac{8 \pi^{2}}{g^{2}(\mu)}} \frac{1}{\varrho^{5}}(\varrho \mu)^{\beta_{1}} \prod_{i=1}^{N_{f}}\left(\varrho m_{i}(\mu)\right)
$$

$g(\mu)$ running coupling, $m_{i}(\mu)$ running masses

Over-all constant coefficient C is scheme-dependent, because renormalization is defined in a particular scheme

Frequently used schemes: Pauli-Villars, MS, $\overline{\mathrm{MS}}$, etc.

Semi-classical calculation $T=0$

$$
n(\varrho)=C\left(\frac{16 \pi^{2}}{g^{2}(\mu)}\right)^{2 N} e^{-\frac{8 \pi^{2}}{g^{2}(\mu)}} \frac{1}{\varrho^{5}}(\varrho \mu)^{\beta_{1}} \prod_{i=1}^{N_{f}}\left(\varrho m_{i}(\mu)\right)
$$

Result for C in Pauli-Villars and $S U(2)$:
G. 't Hooft, Phys. Rev. D 14, 3432 (1976)

Unfortunately C incorrect, but only trivial mistake (factors of π), corrected later in erratum

Erratum: [Phys. Rev. D 18, 2199 (1978)]

Pauli-Villars $S U(2)$ result correct

Semi-classical calculation $T=0$

$$
n(\varrho)=C\left(\frac{16 \pi^{2}}{g^{2}(\mu)}\right)^{2 N} e^{-\frac{8 \pi^{2}}{g^{2}(\mu)}} \frac{1}{\varrho^{5}}(\varrho \mu)^{\beta_{1}} \prod_{i=1}^{N_{f}}\left(\varrho m_{i}(\mu)\right)
$$

Result for C in Pauli-Villars and $S U(N)$
C. W. Bernard, Phys. Rev. D 19, 3013 (1979).

General $S U(N)$ in Pauli-Villars correct

Semi-classical calculation $T=0$

$$
n(\varrho)=C\left(\frac{16 \pi^{2}}{g^{2}(\mu)}\right)^{2 N} e^{-\frac{8 \pi^{2}}{g^{2}(\mu)}} \frac{1}{\varrho^{5}}(\varrho \mu)^{\beta_{1}} \prod_{i=1}^{N_{f}}\left(\varrho m_{i}(\mu)\right)
$$

More frequently used schemes: MS and $\overline{M S}$

Need to convert C to these schemes

$$
C_{1}=C_{2}\left(\frac{\Lambda_{2}}{\Lambda_{1}}\right)^{\beta_{1}}
$$

Need to know \wedge-parameter ratios

Scheme change

Needed: $\Lambda_{P V} / \Lambda_{\mathrm{MS}}$, first given in original
G. 't Hooft, Phys. Rev. D 14, 3432 (1976)

Unfortunately incorrect (not in Erratum either...)

Correct result

$$
\frac{\Lambda_{\mathrm{PV}}}{\Lambda_{\mathrm{MS}}}=e^{\frac{1}{2}(\log (4 \pi)-\gamma)+\frac{1}{22}}
$$

A. Hasenfratz and P. Hasenfratz, Phys. Lett. 93B, 165 (1980)

Confirmed in G. 't Hooft, Phys. Rept. 142, 357 (1986)

Scheme change

Note: incorrect \wedge-parameter ratios in
P. Weisz, Phys. Lett. 100B, 331 (1981)
R. F. Dashen and D. J. Gross, Phys. Rev. D 23, 2340 (1981)

Scheme change

In any case, MS result correct since Hasenfratz-Hasenfratz 1980
Most frequently used: $\overline{\mathrm{MS}}$
Conversion $\mathrm{MS} \rightarrow \overline{\mathrm{MS}}$ should be straightforward

$$
\frac{\Lambda_{\overline{\mathrm{MS}}}}{\Lambda_{\mathrm{MS}}}=e^{\frac{1}{2}(\log (4 \pi)-\gamma)} \quad \frac{\Lambda_{\mathrm{PV}}}{\Lambda_{\overline{\mathrm{MS}}}}=e^{\frac{1}{22}}
$$

W. A. Bardeen, A. J. Buras, D. W. Duke and T. Muta, Phys. Rev.

D 18, 3998 (1978)

And we have seen

$$
C_{1}=C_{2}\left(\frac{\Lambda_{2}}{\Lambda_{1}}\right)^{\beta_{1}}
$$

Scheme change

Explicitly reported in $\overline{M S}$
A. Ringwald and F. Schrempp, Phys. Lett. B 438, 217 (1998) [hep-ph/9806528]

Unfortunately incorrect, never corrected before

$$
C=\frac{e^{c_{0}+c_{1} N+c_{2} N_{f}}}{(N-1)!(N-2)!}
$$

c_{0} and c_{1} correct, but c_{2} reported incorrectly
Problem: $\mathrm{MS} \rightarrow \overline{\mathrm{MS}}$ conversion involves β_{1} which depends on N_{f}, conversion used pure Yang-Mills β_{1} : c_{2} incorrect

Mismatch: $\frac{1}{33}=\frac{2}{3} \cdot \frac{1}{22}$ where $\frac{2}{3}$ from N_{f}-dependence of β-function, $\frac{1}{22}$ from $\mathrm{MS}-\overline{\mathrm{MS}} \Lambda$-parameter ratio

Scheme change

Furthermore, another wrong c_{2} reported in
S. Moch, A. Ringwald and F. Schrempp, Nucl. Phys. B 507, 134 (1997) [hep-ph/9609445]
I. I. Balitsky and V. M. Braun, Phys. Rev. D 47, 1879 (1993)

First correct $\overline{M S}$ result

$$
\left.\begin{array}{rl}
C_{\overline{\mathrm{MS}}} & =\frac{e^{c_{0}+c_{1} N+c_{2} N_{f}}}{(N-1)!(N-2)!} \\
c_{0} & =\frac{5}{6}+\log 2-2 \log \pi \\
c_{1} & =4 \zeta^{\prime}(-1)+\frac{11}{36}-\frac{11}{3} \log 2
\end{array}\right)=-2.896766868
$$

Ringwald-Schrempp: $c_{2}=0.291746$

Moch-Ringwald-Schrempp, Balitsky-Braun: $c_{2}=0.153$

First correct $\overline{\mathrm{MS}}$ result

$$
n(\varrho)=C_{\overline{\mathrm{MS}}}\left(\frac{16 \pi^{2}}{g^{2}(\mu)}\right)^{2 N} e^{-\frac{8 \pi^{2}}{g^{2}(\mu)}} \frac{1}{\varrho^{5}}(\varrho \mu)^{\beta_{1}} \prod_{i=1}^{N_{f}}\left(\varrho m_{i}(\mu)\right)
$$

Finally $T=0$ instanton size distribution in $\overline{\mathrm{MS}}$ at 1-loop

Once $C_{\overline{\mathrm{MS}}}$ okay, (partial) 2-Ioop result from literature can be taken over

Semi-classical calculation $T>0$

$$
\begin{gathered}
n(\varrho, T)=n(\varrho) e^{-S(\lambda)} \quad \lambda=\pi \varrho T \\
S(\lambda)=\frac{1}{3} \lambda^{2}\left(2 N+N_{f}\right)+12 A(\lambda)\left(1+\frac{N-N_{f}}{6}\right)
\end{gathered}
$$

D. J. Gross, R. D. Pisarski and L. G. Yaffe, Rev. Mod. Phys. 53, 43 (1981)

$$
12 A(\lambda)=\frac{1}{16 \pi^{2}}\left[\int_{S^{1} \times R^{3}}\left(\frac{\partial_{\mu} \Pi \partial_{\mu} \Pi}{\Pi^{2}}\right)^{2}-\int_{R^{4}}\left(\frac{\partial_{\mu} \Pi_{0} \partial_{\mu} \Pi_{0}}{\Pi_{0}^{2}}\right)^{2}\right]
$$

Semi-classical calculation $T>0$

$$
12 A(\lambda)=\frac{1}{16 \pi^{2}}\left[\int_{S^{1} \times R^{3}}\left(\frac{\partial_{\mu} \Pi \partial_{\mu} \Pi}{\Pi^{2}}\right)^{2}-\int_{R^{4}}\left(\frac{\partial_{\mu} \Pi_{0} \partial_{\mu} \Pi_{0}}{\Pi_{0}^{2}}\right)^{2}\right]
$$

- Π_{0} from 1-insanton solution on $R^{4}: \Pi_{0}=1+\frac{\varrho^{2}}{t^{2}+r^{2}}$
- Π is from Harrington-Sheppard 1-instanton solution on $S^{1} \times R^{3}$

Semi-classical calculation $T>0$

Because of spherical symmetry, $A(\lambda)$ is a 2-dimensional integral

Analytically not possible, numerical form from Gross-Pisarski-Yaffe:

$$
\begin{gathered}
12 A_{G P Y}(\lambda)=-\log \left(1+\frac{\lambda^{2}}{3}\right)+\frac{12 \alpha}{\left(1+\gamma \lambda^{-3 / 2}\right)^{8}} \\
\alpha=0.01289764 \quad \gamma=0.15858
\end{gathered}
$$

Claimed absolute numerical uncertainty: $6 \cdot 10^{-4}$

Once $A(\lambda)$ is known, the full $\chi(T)$ is known semi-classically

Above $A_{G P Y}$ used in all works

New results for $A(\lambda)$

Main motivation was to understand the peculiar form of $A(\lambda)$

In Gross-Pisarski-Yaffe no details are given

Technically: difference of two 2D integrals, both are divergent, difference finite

We do three things:

- Evaluate numerically to high precision
- Obtain analytic $\lambda \ll 1$ and $\lambda \gg 1$ series
- Fit numerical result with simple function

New results for $A(\lambda)$

Technically: reduce to 1-dimensional integral

$$
12 A(\lambda)=\frac{1}{2} \int_{0}^{\infty} d r r^{2}\left(I(r)-I_{0}(r)\right)
$$

$I(r)$ and $I_{0}(r)$ analytically
r-integrals separately divergent, difference finite, large cancellation

New results for $A(\lambda)$

Numerical evaluation of r-integrals: trapezoid or Simpsons on $(0,8)$, semi-analytic or $(8, \infty) \rightarrow$ absolute precision $O\left(10^{-6}\right)$

Essential: $O(100)$ significant digits because of large cancellations between $I(r)$ and $I_{0}(r)$ and also inside $I(r)$ for small λ

New results for $A(\lambda)$ - asymptotics

Small λ asymptotics - log still a bit mysterious
$12 A(\lambda)=-\frac{1}{3} \lambda^{2}+\frac{1}{18} \lambda^{4}-\frac{1}{81} \lambda^{6}+O\left(\lambda^{7}\right)=-\log \left(1+\frac{\lambda^{2}}{3}\right)+O\left(\lambda^{7}\right)$

Large λ asymptotics

$$
\begin{aligned}
12 A(\lambda) & =-\log \left(\lambda^{2}\right)+C_{1}-\frac{\log \left(\lambda^{2}\right)}{\lambda^{2}}-\frac{C_{2}}{\lambda^{2}}+O\left(\frac{1}{\lambda^{3}}\right) \\
C_{1} & =2\left(\frac{1}{3}-\frac{\pi^{2}}{36}-\gamma+\log \pi\right)=1.25338375 \\
C_{2} & =1+\log 2+\frac{\pi^{2}}{36}+\gamma-\log \pi=1.39978864
\end{aligned}
$$

New results for $A(\lambda)$ - asymptotics

These look good - let's compare with Gross-Pisarski-Yaffe

New results for $A(\lambda)$ - comparison with GPY

$8 \cdot 10^{-2}$, two orders of magnitude worse than claimed!

GPY: 2D integral numerically

New results for $A(\lambda)$ - useful parametrization

$$
\begin{gathered}
-12 A_{\operatorname{param}}(\lambda)=p_{0} \log \left(1+p_{1} \lambda^{2}+p_{2} \lambda^{4}+p_{3} \lambda^{6}+p_{4} \lambda^{8}\right) \\
p_{0}=0.247153244, \quad p_{1}=1.356391323 \\
p_{2}=0.675021523, \quad p_{3}=0.145446632, \quad p_{4}=0.008359667
\end{gathered}
$$

Absolute precision $2 \cdot 10^{-4}$

Biggest deviation from GPY: $\lambda=O(1)$ because of large cancellations inside $I(r) \rightarrow$ the most sensitive region for ϱ-integral in $\chi(T)$
\rightarrow potentially large effect

Absolute and relative precision

Absolute precision on $A(\lambda) \rightarrow$
Relative precision on $n(\varrho, T) \sim e^{-12 A(\lambda)\left(1+\frac{N-N_{f}}{6}\right)} \rightarrow$

Relative precision on $\chi(T)$

Discrepancy $A_{G P Y}$ vs. our $A_{\text {param }}$ in $\chi(T)$:

- $S U(3) N_{f}=0,2,3,4: 10 \%, 7 \%, 6 \%, 4 \%$
- $S U(10)$ pure Yang-Mills: 22\%
- $S U(20)$ pure Yang-Mills: 40% (scales with N)

Accounting for $T=0$ and $T>0$ discrepancies in QCD
$T=0$ from $C_{\overline{\mathrm{MS}}}$: approx 5% (correct smaller)
$T>0$ from $A(\lambda)$: approx 5\% (correct larger)

But in opposite directions ... nearly cancel

Eventually very small effect in QCD

But at least now the semi-classical result is fully correct

Summary

- Obtained $n(\varrho, T)$ at high temperature semi-classically
- Needed to correct $T=0 \overline{\mathrm{MS}}$-results in literature
- Needed to correct $T>0$ 1-loop fluctuation determinant
- Makes $\chi(T)$ comparison with lattice possible
- Exactly zero new or original idea :)
- Nevertheless interesting outcome from simple BSc thesis topic

Thank you for your attention!

