

Conservation Laws on the Cooper-Frye Surface and Hadronic Rescattering

Hannah Petersen May 11, 2018, ECT*, Trento, Italy

Motivation and Outline

- Hybrid transport+hydrodynamics approaches are successfully applied for the description of the dynamics of heavy ion collisions
- There are 2 ad hoc transitions
 - Initial assumption on local equilibration
 - Coarse-grained transport approach
 - Final Cooper-Frye sampling/Particlization
 - Negative contributions: How large?
 - Global and local conservation laws
 - Broad spectral functions for resonances
- Hadronic rescattering within SMASH
 - High viscosity in the hadron gas phase

Evolution of Heavy Ion Reactions

Nuclei at 99 % speed of light

Quark gluon plasma

Observable fragments in the detector

1-10 fm/c

10-30 fm/c

- Initial and final state require non-equilibrium treatment
- Nearly ideal hydrodynamics provides framework for the hot and dense stage of the evolution including a phase transition
- There are 2 crucial interfaces: Initial state for hydrodynamic evolution and Cooper-Frye particlization

Local Equilibration

What is Usually Done?

D. Oliinychenko and HP, PRC93(2016)

 To calculate the energy-momentum tensor and four-current from particles a smearing kernel (Gaussian) is used:

$$T_{init}^{\mu\nu}(r) = \sum_{i} \frac{p_{i}^{\mu} p_{i}^{\nu}}{p_{i}^{0}} K(\boldsymbol{r} - \boldsymbol{r_{i}}, \boldsymbol{p})$$

$$j_{init}^{\mu}(r) = \sum_{i} \frac{p_{i}^{\mu}}{p_{i}^{0}} K(\boldsymbol{r} - \boldsymbol{r_{i}}, \boldsymbol{p})$$

 Assuming that the resulting tensor has the form for relativistic ideal fluid dynamics, the following equations are solved iteratively

$$\begin{cases} T^{00} = (\epsilon + p)\gamma^2 - p \\ T^{0i} = (\epsilon + p)\gamma^2 \mathbf{v} \\ j_B^0 = n\gamma \\ p = p_{EoS}(n, \epsilon) \end{cases}$$

 The other option: Solve the eigenvalue problem and decompose the tensor in the Landau frame

Coarse-Grained UrQMD

D. Oliinychenko and HP, PRC93(2016)

- 1. Several thousands Au+Au collisions at $E_{lab} = 5-160$ AGeV beam energy and different centralities
- 2. Calculate T^{µv} on a space-time grid
- 3. Transform to the Landau rest frame
- Investigate locally two measures of isotropization:
 - Pressure anisotropy:

$$X \equiv \frac{|T_L^{11} - T_L^{22}| + |T_L^{22} - T_L^{33}| + |T_L^{33} - T_L^{11}|}{T_L^{11} + T_L^{22} + T_L^{33}} \ll 1$$

Off-diagonality:

$$Y \equiv \frac{3(|T_L^{12}| + |T_L^{23}| + |T_L^{13}|)}{T_L^{11} + T_L^{22} + T_L^{33}} \ll 1$$

• $X,Y \le 0.3 \rightarrow viscous hydrodynamics applicable$

Time Evolution

- E_{lab} = 80A GeV, b=6 fm, pressure anisotropy
- After initial collisions anisotropy develops minimum over a large region in space
- Later stages: Rise due to resonance decays

Initial Switching Time

D. Oliinychenko and HP, PRC93(2016)

 Isotropization time deviates from geometrical overlap criterion for higher beam energies

• Centrality dependence is weaker than expected from geometry $t_0(b) = t_0(b=0) + \frac{R}{\gamma v}(\hat{1} - \sqrt{1-(b/2R)^2})$

Particlization

Freeze-out Procedure

- Deconfinement/Confinement transition happens through equation of state in hydrodynamics
- Transition from hydro to transport when temperature/energy density is smaller than critical value
- Particle distributions are generated according to the Cooper-Frye formula $E\frac{dN}{d^3p} = \int_{\sigma} f(x,p) p^{\mu} d\sigma_{\mu}$
- Same EoS on both sides of the transition hypersurface
- Rescatterings and final decays calculated via hadronic cascade
 - Separation of chemical and kinetic freeze-out is taken into account
 - Large viscosity in hadron gas stage!

H.P. et al, Phys.Rev. C78 (2008) 044901

Hypersurface Finding

- Cornelius: 3D hypersurface in 4 dimensions
- Constant energy density
- Avoiding holes and doublecounting
- Applicable as a subroutine
 - Input: 16-tuples of spatiotemporal information
 - Output: Hypersurface vectors and interpolated thermodynamic quantities

P. Huovinen, HP, EPJA 48, 2012 Fortran and C++ subroutines, cornelius, implementations of this algorithm in 3D and 4D, are available at https://karman.physics.purdue.edu/OSCAR

Negative Contributions

 $d\sigma_{\mu}$ - normal 4-vector $u_{\mu} = (\gamma, \gamma \overrightarrow{v})$ - 4-velocity T - temperature μ - chemical potential

Definition:

- Particles outward: $p^{\mu}d\sigma_{\mu} > 0$

- Particles inward: $p^{\mu}d\sigma_{\mu} < 0$

Different options:

Account for feedback in hydro
 K. Bugaev, Phys Rev Lett. 2003; L. Czernai, Acta Phys. Hung., 2009

K. Bugaev, Phys Rev Lett. 2003; L. Czernai, Acta Phys. Hung., 2005
 Account effectively by weights in transport

 S. Pratt, Phys. Rev. C89 (2014) 2, 024910

- Neglect them and violate conservation laws
- Systematic study of the size of negative contributions by comparison to actual transport

Energy Dependence

• Iso-energy density hypersurfaces ($\varepsilon_c = 0.3 \text{ GeV/fm}^3$)

D. Oliinychenko and HP, PRC91(2015) $(dN^{-}/dy)/(dN^{+}/dy)$ @ |y| < 0.055A GeV 40A GeV t = |z|10*A* GeV 80*A* GeV 20A GeV 160A GeV [fm/c]Cooper-Frye by particles 5 (a) 150 175 100 -20 -10 10 20 z[fm]E_{lab} [GeV/nucleon]

- Maximum at E_{lab}~25 AGeV, decreasing at higher energies
- Actual particles are always less likely to fly inward

Global Conservation Laws

Why Conservation Laws?

- Event-by-event hybrid approach
 - One initial state (with fluctuations), one hydro run, one (or multiple) sample(s) of particles in the final state
 - Finite net baryon number B, net strangeness S, electric charge Z and energy E in initial state
- In nature quantum numbers are conserved
- Hydrodynamic evolution conserves energy and net baryon number explicitly
- Apply global conservation laws to sampling
 - No effect on single particle observables expected
 - Important for correlation and fluctuation observables, e.g. higher moments at low beam energies

Lower Beam Energies

- Loop through all cells (allcells):
 - Total quantum numbers fluctuate
- Randomly choose cells, until total energy is conserved (mode), reproduce finite S, B, Q

Steps for the Particle Production

1) Numbers of each particle species in the element

$$-N_i = j^{\mu} d\sigma_{\mu} = n_i u^{\mu} d\sigma_{\mu} \qquad n_i = \frac{4\pi g_i m_i^2 T}{(2\pi^3)} \exp\left(\frac{\mu}{T}\right) K_2\left(\frac{m_i}{T}\right)$$

- 2) Sum to get the total particle number
- 3) Particle production according to Poisson distribution
- 4) Particle type chosen according to respective probabilities
- 5) Isospin randomly assigned
- 6) Generate four-momenta (rejection method)

$$-rac{dN(x)}{d^3p}=rac{1}{E}f(x,p)p^\mu d\sigma_\mu$$
 with $f(x,p)p^\mu d\sigma_\mu>0$

7) Particle vector information is transferred to hadronic transport approach

Mode Sampling

- Seven loops over the hypersurface elements:
 - 1) Strange particles

HP et al., PRC 78, 2008 P. Huovinen, HP, EPJA 48, 2012

- 2) Anti-strange particles
- 3) Non-strange anti-baryons
- 4) Non-strange baryons
- 5) Negatively charged non-strange mesons
- 6) Positively charged non-strange mesons
- 7) Neutral non-strange mesons
- Loops 1,3,5 and 7 are cut by energy conservation
- Other loops by respective conservation laws
- Has been successfully applied within UrQMD hybrid approach at finite net baryon densities

SPREW Sampling

- Single Particle Rejection with Exponential Weights
- If a certain particle is chosen to be produced, ΔX is calculated for each quantum number, where

$$\Delta X = X_{particles} - X_{hypersurface}$$

• If ΔX and the X_i have the same sign, the particle is rejected with probability

$$1 - e^{|\Delta X|}$$

- Energy and momenta are rescaled to fit the values on the hypersurface
- Test the performance of both algorithms in single cell

C. Schwarz et al., JPG 452018

Au+Au at 200 GeV

• Two different algorithms (mode and SPREW) are compared to conventional sampling

C. Schwarz et al., JPG 452018 Hypersurface Hypersurface Hypersurface 4.0 Conventional · 15.6 Conventional · 14.9 Conventional · 13.5 0.12 **SPREW SPREW SPREW** 3.5 Mode · 14.1 Mode · 16.1 Mode density 0.08 density 3.0 probability density mean: mean: mean: 54223.3 GeV -21.6 GeV 0.1 GeV probability c probability 54121.3±14.0 GeV -34.1±14.0 GeV -0.7±0.5 GeV 54223.3 GeV -21.6 GeV 0.1 GeV -22.4±14.2 GeV 54240.3±0.2 GeV 0.8±0.5 GeV 1.0 0.02 0.5 0.00 -300 0.0 -200200 E (TeV) p_z (TeV) p_x (GeV) 0.18 0.12 0.14 Hypersurface Hypersurface Hypersurface Conventional · 13.6 Conventional · 17.1 Conventional · 14.1 0.12 0.10 SPREW **SPREW SPREW** Mode Mode density o 10 density density 80'0 mean: mean: mean: 0.0 0.0 0.0 probability e probability 60.0 90.0 probability 0.1 ± 0.3 0.3 ± 0.6 0.5 ± 0.5 0.0 0.0 0.0 0.0 0.02 0.02

Q

300

-200

200

-100

-200

-100

150

Thermal Box

 Even in small system (5fm length), SPREW reproduces the proper multiplicities including fluctuations

Bias in mode sampling appears in small systems

C. Schwarz et al., JPG 452018

Pions in Heavy Ion Collision

 Comparison of the full distribution for pion production in Au+Au at 200 GeV

C. Schwarz et al., JPG 452018

SPREW sampling minimizes bias by conservation laws

Hadronic Rescattering and Broad Spectral Functions

Resonance Masses

- Typically resonances are sampled only with their pole masses at particlization
- In hadronic transport approaches spectral functions are used, usually Breit-Wigner distributions
- Vector meson masses as shown below:

Influences dilepton emission from hadronic afterburner

Hadronic transport approach:

J. Weil et al, PRC 94 (2016)

- Includes all mesons and baryons up to ~2 GeV
- Geometric collision criterion
- Binary interactions: Inelastic collisions through resonance/string excitation and decay
- Infrastructure: C++, Git, Redmine, Doxygen, (ROOT)

* Simulating Many Accelerated Strongly-Interacting Hadrons

Hannah Petersen ECT*, 11.05.18 25

Influence of Global Conservation

 Comparison between hydrodynamic calculation only with resonance decays and with full hadronic rescattering

 Global conservation laws do not affect single particle observables as expected

Comparison SMASH vs UrQMD

 SMASH rescattering yields qualitatively similar results as UrQMD afterburner

MUSIC+UrQMD from S. Ryu et al, PRC 97 (2018)

 Results are sensitive to missing baryon-antibaryon annihilation and AQM cross-sections

Shear Viscosity of the Hadron Gas

Transport Coefficients

 Within hydrodynamics/hybrid approaches the shear viscosity is an input parameter

 Application of Bayesian techniques allows extraction of temperature dependence

Existing Results - Discrepancy

 Long standing question: Why are the results so different from each other?

Hannah Petersen ECT*, 11.05.18

Shear Viscosity over Entropy Density

- Box with periodic boundary condition in chemical and thermal equilibrium
- Entropy is calculated via Gibbs formula from thermodynamic properties
- The shear viscosity is extracted following the Green-Kubo formalism:

$$\eta = \frac{V}{T} \int_0^\infty C^{xy}(t)dt$$

$$T^{\mu
u} = rac{1}{V} \sum_{i}^{N_{part}} rac{p_i^{\mu} p_i^{
u}}{p_i^0}$$

$$C^{xy}(t) = \frac{1}{N} \sum_{s}^{N} T^{xy}(s) T^{xy}(s+t)$$

$$C^{xy}(t) \simeq C^{xy}(0) \exp\left(-\frac{t}{\tau}\right)$$

$$\eta = \frac{VC^{xy}(0)\tau}{T}$$

Resonance Dynamics

 Energy-dependence of cross-sections is modelled via resonances

Point-like in analytic calculation and finite lifetime in

transport approach

 Agreement recovered by decreasing ρ meson lifetime

J.-B. Rose et al., arXiv:1709.00369 and arXiv:1709.03826

Comparison to Literature

J.-B. Rose et al., arXiv:1709.00369 and arXiv:1709.03826

Closest similarity to Bass/Demir result as expected

Point-like Interactions

 Adding a constant elastic cross section leads to agreement with B3D result

 Approximately linear relationship between relaxation time and mean free time is recovered

J.-B. Rose et al., arXiv:1709.00369 and arXiv:1709.03826

Summary

- Hybrid approaches based on relativistic hydrodynamics and hadron transport provide realistic dynamical description
- Two transitions have been studied systematically using coarsegrained UrQMD calculations
- Different algorithms to conserve quantum numbers globally at the particlization transition have been proposed
- SPREW sampling is computationally efficient and reproduces the mean values and fluctuations properly
- Broad spectral functions are employed in the sampling process
- Hadronic rescattering within SMASH yields similar results as within UrQMD
- Hadron gas viscosity is sensitive to the lifetimes of the resonances
- Outlook: Electromagnetic emission from non-equilibrium hadronic stage

Backup

Influence of Statistics

 From N random thermal pions, the effect of finite particle statistics on the deviations of the energy-momentum tensor from equilibrium can be estimated

Parameter Sensitivities

 Comparison of coarse-grained transport with Cooper-Frye calculation vs actual particles

- No significant dependence on cell sizes
- Saturation for large enough number of events
- Dependence on σ due to **smearing** of surface velocities

Hypersurface Results

- Energy and net baryon number conservation on hypersurface $E = \int_{-T}^{0\mu} d\sigma_{\mu} \text{ and } B = \int_{-T}^{0} n_B u^{\mu} d\sigma_{\mu},$
- where $d\sigma_\mu T^{\mu 0} \gtrless 0$ and $d\sigma_\mu n_B u^\mu \gtrless 0$ specify the positive and negative contributions
- Results at RHIC for central and mid-central collisions

	E [GeV]			В		
	total	pos.	neg.	total	pos.	neg.
initial final	5431 5430	5861	-431	93.23 92.74	97.74	-5.00
initial final	2327 2336	2455	-119	35.84 35.80	37.10	-1.30

Dashed lines indicate possible positions of elements with negative contributions

$$d\sigma_{\mu}u^{\mu} < 0$$

see also Oliinychenko et al arXiv:1411.3912

Negative Contributions

- The elements with particle flow inwards are located at high fluid velocities
- Coincides with peak in space-like surface elements with outward particle flow
- At midrapidity positive particle flux is dominant

Pion Spectra

Largest effect on low p_T pions

Different Approaches

Model	Initial condition	Hydro	Switching criterion	Smearing kernel	Getting $T^{\mu\nu}_{ideal}$
UrQMD hybrid [12]	UrQMD cascade	ideal 3+1D, SHASTA	$t_{CM}[\text{fm/c}] = max(2R\sqrt{\frac{E_{lab}}{2m_N}}, 1.0)$	Gaussian z-contracted	$T^{\mu 0},j^0$
Skokov-Toneev hybrid [13]	Quark-Gluon- String-Model	ideal 3+1D, SHASTA	t_{CM} such that $S/Q_B = \text{const}$	not mentioned	$T^{\mu 0},j^0$
EPOS [15]	Strings (Regge-Gribov model)	ideal 3+1D	au	Gaussian z-contracted	Landau frame
NeXSPheRIO hybrid [16, 17]	Strings (Regge-Gribov model)	ideal 3+1D, SPH	$\tau = 1 \text{ fm } [18]$	Gaussian in $x, y, \tau \eta$	Landau frame
Gale et al [19]	IP-glasma	viscous 3+1D, MUSIC	$\tau = 0.2 \text{ fm/c}$ $(\sqrt{s_{NN}} = 2.76 \text{ TeV})$	not mentioned	Landau frame
Karpenko hybrid [20]	UrQMD cascade	viscous 3+1D	$ au_{geom}$	Gaussian with σ_{\perp} and σ_{η}	$T^{\mu 0},j^0$
Pang et al hybrid [21]	AMPT	ideal 3+1D, SHASTA	au	Gaussian with σ_{\perp} and σ_{η}	$T^{\mu 0},j^0$