Relativistic hydrodynamics in strong gravitational fields
 Luciano Rezzolla

Institute forTheoretical Physics, Frankfurt
Frankfurt Institute for Advanced Studies, Frankfurt

Plan of the talk

*When hydrodynamics is general relativistic
*Application: binary neutron star mergers
*Where we are now:

- fundamental aspects of GRHD
*Where we are going:
* away from perfect fluids and ideal MHD
- new advanced methods

When hydrodynamics is general relativistic

The goals of general-relativistic hydrodynamics are to describe the dynamics of a self-gravitating fluid in regions with strong and dynamical gravitational fields.

As a result:

- spacetime curvature needs to be taken into account - spacetime curvature varies with time (Einstein eqs.)
- dynamics is necessarily relativistic: $v \sim c$

The equations of GRHD/MHD

$$
\begin{aligned}
R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R=8 \pi T_{\mu \nu}, & \text { (field equations) } \\
\nabla_{\mu} T_{\text {fluid }}^{\mu \nu}=\mathcal{R}_{\text {rad }}^{\nu} & (\text { cons. energy } / \mathrm{mom} \\
\nabla_{\mu}\left(\rho u^{\mu}\right)=0, & \text { (cons. rest mass) } \\
p=p\left(\rho, \epsilon, Y_{e}, \ldots\right), & \text { (equation of state) }
\end{aligned}
$$

$$
\nabla_{\nu} F^{\mu \nu}=I^{\mu}, \quad \nabla_{\nu}^{*} F^{\mu \nu}=0, \quad \text { (Maxwell equations) }
$$

$$
T_{\mu \nu}=T_{\mu \nu}^{\text {fluid }}+T_{\mu \nu}^{\mathrm{EM}}+\ldots \quad(\text { energy }- \text { momentum tensor })
$$

We normally solve the same set of equations:

$$
\nabla_{\mu} T^{\mu \nu}=0
$$

Overall, in general-relativistic hydrodynamics most of the headaches come from

$$
\nabla_{\mu}
$$

Instead, in special-relativistic hydrodynamics most of the headaches come from

$$
T^{\mu \nu}
$$

Hereafter, I will assume a perfect fluid.

What are the challenges?

- On 16 October 2017 the LSC/Virgo collaboration announced detection of the gravitational signal from merging binary neutron-star system: GWI708I7.
-Total mass:

$$
M_{1}+M_{2}=2.74_{-0.01}^{+0.04} M_{\odot}
$$

- Individual masses:

$$
\begin{aligned}
& M_{1}=1.36-1.60 M_{\odot} \\
& M_{2}=1.17-1.36 M_{\odot}
\end{aligned}
$$

What we want to model: GWs

Winning over the noise

Detection in most cases possible only when signal can be extracted from noise: matched filtering

What we want to model: SGRBs

GWI708I7 has confirmed expectation that merger is accompanied by electromagnetic counterpart: short gamma-ray burst (SGRBs).

The techniques of numerical relativity

The basics first

- Einstein equations provide a local solution of spacetime curvature (not of topology)
- Einstein equations are covariant:
-before finding a solution need to find a set of coordinates where to find this solution: $3+1$ standard choice.
- given a set of coordinates, you still have total freedom on how to write equations
- perfectly reasonable choices can lead to weakly hyperbolic systems and hence to problems

First step: foliate the 4D spacetime

Given a manifold \mathcal{M} with with 4 -metric $g_{\mu \nu}$, we want to foliate it via space-like, three-dimensional hypersurfaces, i.e., $\Sigma_{1}, \Sigma_{2}, \ldots$ levelled by a scalar function. The time coordinate t is obvious choice

This defines the "lapse" function which is strictly positive for spacelike hypersurfaces

$$
\alpha\left(t, x^{i}\right)>0
$$

The lapse function allows then to do two important things:
i) define the unit normal vector to the hypersurface Σ

$$
n^{\mu} \equiv-\alpha g^{\mu \nu} \Omega_{\nu}=-\alpha g^{\mu \nu} \nabla_{\nu} t
$$

where

$$
n^{\mu} n_{\mu}=-1
$$

ii) define the spatial metric

$$
\gamma_{\mu \nu} \equiv g_{\mu \nu}+n_{\mu} n_{\nu}
$$

Finding a direction for evolutions

The unit normal \boldsymbol{n} to a spacelike hypersurface Σ is not good time vector because \boldsymbol{n} is not dual to surface one-norm $\boldsymbol{\Omega}$

$$
n^{\mu} \Omega_{\mu}=n^{\mu} \nabla_{\mu} t=-\alpha \Omega^{\mu} \Omega_{\mu}=\frac{1}{\alpha}
$$

Need a vector along which to carry out the time evolutions dual to the surface one-norm. Such a vector is defined as

$$
t^{\mu} \equiv \alpha n^{\mu}+\beta^{\mu}
$$

where $\boldsymbol{\beta}$ is any spatial "shift" vector.
Clearly now the two tensors are dual to each other, ie

$$
t^{\mu} \Omega_{\mu}=\alpha n^{\mu} \Omega_{\mu}+\beta^{\mu} \Omega_{\mu}=\alpha / \alpha=1
$$

Using the expression for the covariant 4-dim covariant metric, the line element is given

$$
\mathrm{d} s^{2}=g_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\mu}=-\left(\alpha^{2}-\beta^{i} \beta_{i}\right) \mathrm{d} t^{2}+2 \beta_{i} \mathrm{~d} x^{i} \mathrm{~d} t+\gamma_{i j} \mathrm{~d} x^{i} \mathrm{~d} x^{j}
$$

$$
\mathrm{d} \tau^{2}=-\alpha^{2}\left(t, x^{j}\right) \mathrm{d} t^{2}
$$

The shift relates spatial coordinates between two adjacent hypersurfaces

$$
x_{t_{0}+\delta t}^{i}=x_{t_{0}}^{i}-\beta^{i}\left(t, x^{j}\right) \mathrm{d} t
$$

spatial metric measures distances between points on hypersurface

$$
\mathrm{d} l^{2}=\gamma_{i j} \mathrm{~d} x^{i} \mathrm{~d} x^{j}
$$

Second step: decompose 4-dim tensors

\boldsymbol{n} and $\boldsymbol{\gamma}$ allow to decompose any 4D tensor into a purely spatial part (hence in Σ) and a purely timelike part

The spatial part is obtained after contracting with the spatial projection operator

$$
\gamma_{\nu}^{\mu}=g^{\mu \alpha} \gamma_{\alpha \nu}=g_{\nu}^{\mu}+n^{\mu} n_{\nu}=\delta_{\nu}^{\mu}+n^{\mu} n_{\nu}
$$

while the timelike part is obtained after contracting with the timelike projection operator

$$
N_{\nu}^{\mu}=-n^{\mu} n_{\nu}
$$

The two projectors are obviously orthogonal

$$
\gamma_{\mu}^{\nu} N_{\nu}^{\mu}=0
$$

It is important not to confuse the 3-dim Riemann tensor
${ }^{(3)} R^{\mu}{ }_{\delta \alpha \beta}$ with the corresponding 4-dim one $R^{\mu}{ }_{\delta \alpha \beta}$
${ }^{(3)} R^{\mu}{ }_{\delta \alpha \beta}$ is purely spatial (spatial derivatives of the spatial metric γ)
$R_{\delta \alpha \beta}^{\mu}$ is a full 4-dimensional object containing also time derivatives of the full 4-dim metric \boldsymbol{g}

Information present in $R_{\delta \alpha \beta}^{\mu}$ and "missing" in ${ }^{(3)} R^{\mu}{ }_{\delta \alpha \beta}$ is contained in another spatial tensor: the extrinsic curvature.

Decomposing the Einstein equations

-The $3+1$ naturally "splits" the Einstein equations into:

* a set which is fully defined on each spatial hypersurfaces (and does not involve therefore time derivatives): "constraint equations"
*a set which instead relates quantities (i.e. the spatial metric and the extrinsic curvature) between two hypersurfaces: "evolution equations"

The (ADM) Einstein eqs in 3+1

$\boldsymbol{n} \cdot \boldsymbol{n} \cdot($ Einstein eqs $)+$ Gauss eqs \Longrightarrow

$$
R+K^{2}-K_{i j} K^{i j}=16 \pi e
$$

Hamiltonian
Constraint
$\boldsymbol{\gamma} \cdot \boldsymbol{n} \cdot($ Einstein eqs $)+$ Codazzi eqs \Longrightarrow

$$
D_{j} K_{i}^{j}-D_{i} K=8 \pi j_{i}
$$

$$
\begin{aligned}
S_{\alpha \beta}=\gamma_{\alpha}^{\mu} \gamma_{\beta}^{\nu} T_{\mu \nu} & S=S_{\mu}^{\mu} \\
e=n^{\mu} n^{\nu} T_{\mu \nu} & j_{\mu}=-\gamma_{\mu}^{\alpha} n^{\beta} T_{\alpha \beta}
\end{aligned}
$$

These are I+3 elliptic (second-order in space), nonlinear partial differential equations: constraint equations

The (ADM) Einstein eqs in $3+1$

Similarly
$\gamma \cdot \gamma \cdot($ Einstein eqs $)+$ Ricci eqs \Longrightarrow

$$
\begin{aligned}
\partial_{t} K_{i j}= & -D_{i} D_{j} \alpha+\alpha\left(R_{i j}-2 K_{i k} K^{k j}+K K_{i j}\right) \\
& -8 \pi \alpha\left(R_{i j}-\frac{1}{2} \gamma_{i j}(S-e)\right)+\mathcal{L}_{\beta} K_{i j} \\
\partial_{t} \gamma_{i j}= & -2 \alpha K_{i j}+\mathcal{L}_{\boldsymbol{\beta}} \gamma_{i j}
\end{aligned}
$$

These are 12 first-order in time, second-order in space, nonlinear partial differential equations: evolution equations

In practice we do not solve them because weakly hyperbolic.

New evolution variables are introduced to obtain a set of equations that is strongly hyperbolic
$\phi=\frac{1}{12} \ln \left(\operatorname{det}\left(\gamma_{i j}\right)\right)=\frac{1}{12} \ln (\gamma), \phi$: conformal factor
$\tilde{\gamma}_{i j}=e^{-4 \phi} \gamma_{i j}, \quad \quad \tilde{\gamma}_{i j}$: conformal 3-metric
$K=\gamma^{i j} K_{i j}$,
K : trace of extrinsic curvature
$\tilde{A}_{i j}=e^{-4 \phi}\left(K_{i j}-\frac{1}{3} \gamma_{i j} K\right)$,
$\tilde{A}_{i j}$: trace-free conformal
$\Gamma^{i}=\gamma^{j k} \Gamma_{j k}^{i}$
$\tilde{\Gamma}^{i}=\tilde{\gamma}^{j k} \tilde{\Gamma}_{j k}^{i}$ extrinsic curvature
$\tilde{\Gamma}^{i}$:"Gammas" (aux. variables)
are our new evolution variables
The ADM equations are then rewritten as

$$
\begin{aligned}
\partial_{t} \tilde{\gamma}_{i j}= & -2 \alpha \tilde{A}_{i j}+2 \tilde{\gamma}_{k(i} \partial_{j)} \beta^{k}-\frac{2}{3} \tilde{\gamma}_{i j} \partial_{k} \beta^{k}+\beta^{k} \partial_{k} \tilde{\gamma}_{i j}, \\
\partial_{t} \tilde{A}_{i j}= & \phi^{2}\left[-\nabla_{i} \nabla_{j} \alpha+\alpha\left(R_{i j}+\nabla_{i} Z_{j}+\nabla_{j} Z_{i}\right)\right]^{\mathrm{TF}}+\alpha \tilde{A}_{i j}(K-2 \Theta) \\
& -2 \alpha \tilde{A}_{i l} \tilde{A}_{j}^{l}+2 \tilde{A}_{k(i} \partial_{j)} \beta^{k}-\frac{2}{3} \tilde{A}_{i j} \partial_{k} \beta^{k}+\beta^{k} \partial_{k} \tilde{A}_{i j}, \\
\partial_{t} \phi= & \frac{1}{3} \alpha \phi K-\frac{1}{3} \phi \partial_{k} \beta^{k}+\beta^{k} \partial_{k} \phi, \\
\partial_{t} K= & -\nabla^{i} \nabla_{i} \alpha+\alpha\left(R+2 \nabla_{i} Z^{i}+K^{2}-2 \Theta K\right)+\beta^{j} \partial_{j} K-3 \alpha \kappa_{1}\left(1+\kappa_{2}\right) \Theta, \\
\partial_{t} \Theta= & \frac{1}{2} \alpha\left(R+2 \nabla_{i} Z^{i}-\tilde{A}_{i j} \tilde{A}^{i j}+\frac{2}{3} K^{2}-2 \Theta K\right)-Z^{i} \partial_{i} \alpha+\beta^{k} \partial_{k} \Theta-\alpha \kappa_{1}\left(2+\kappa_{2}\right) \Theta, \\
\partial_{t} \hat{\Gamma}^{i}= & 2 \alpha\left(\tilde{\Gamma}_{j k}^{i} \tilde{A}^{j k}-3 \tilde{A}^{i j} \frac{\partial_{j} \phi}{\phi}-\frac{2}{3} \tilde{\gamma}^{i j} \partial_{j} K\right)+2 \tilde{\gamma}^{k i}\left(\alpha \partial_{k} \Theta-\Theta \partial_{k} \alpha-\frac{2}{3} \alpha K Z_{k}\right)-2 \tilde{A}^{i j} \partial_{j} \alpha+\beta^{k} \partial_{k} \hat{\Gamma}^{i} \\
& +\tilde{\gamma}^{k l} \partial_{k} \partial_{l} \beta^{i}+\frac{1}{3} \tilde{\gamma}^{i k} \partial_{k} \partial_{l} \beta^{l}+\frac{2}{3} \tilde{\Gamma}^{i} \partial_{k} \beta^{k}-\tilde{\Gamma}^{k} \partial_{k} \beta^{i}+2 \kappa_{3}\left(\frac{2}{3} \tilde{\gamma}^{i j} Z_{j} \partial_{k} \beta^{k}-\tilde{\gamma}^{j k} Z_{j} \partial_{k} \beta^{i}\right)-2 \alpha \kappa_{1} \tilde{\gamma}^{i j} Z_{j}, \\
\partial_{t} \alpha= & -\alpha^{2} g(\alpha)\left(K-K_{0}-2 \Theta\right)+\beta^{k} \partial_{k} \alpha, \\
\partial_{t} \beta^{i}= & f b^{2}+\beta^{k} \partial_{k} \beta^{i}, \\
\partial_{t} b^{i}= & \partial_{t} \hat{\Gamma}^{i}-\beta^{k} \partial_{k} \tilde{\Gamma}^{i}+\beta^{k} \partial_{k} b^{i}-\eta b^{i},
\end{aligned}
$$

These equations are known as the conformal covariant Z4 formulation (CCZ4) of the Einstein equations.

$$
\begin{aligned}
\partial_{t} \tilde{\gamma}_{i j}= & \beta^{k} 2 D_{k i j}+\tilde{\gamma}_{k i} B_{j}^{k}+\tilde{\gamma}_{k j} B_{i}^{k}-\frac{2}{3} \tilde{\gamma}_{i j} B_{k}^{k}-2 \alpha\left(\tilde{A}_{i j}-\frac{1}{3} \tilde{\gamma}_{i j} \operatorname{tr} \tilde{A}\right)-\tau^{-1}(\tilde{\gamma}-1) \tilde{\gamma}_{i j}, \\
\partial_{t} \ln \alpha= & \beta^{k} A_{k}-\alpha g(\alpha)\left(K-K_{0}-2 \Theta c\right) \\
\partial_{t} \beta^{i}= & s \beta^{k} B_{k}^{i}+s f b^{i} \\
\partial_{t} \ln \phi= & \beta^{k} P_{k}+\frac{1}{3}\left(\alpha K-B_{k}^{k}\right) \\
\partial_{t} \tilde{A}_{i j}-\beta^{k} \partial_{k} \tilde{A}_{i j}- & \phi^{2}\left[-\nabla_{i} \nabla_{j} \alpha+\alpha\left(R_{i j}+\nabla_{i} Z_{j}+\nabla_{j} Z_{i}\right)\right]+\phi^{2} \frac{1}{3} \frac{\tilde{\gamma}_{i j}}{\phi^{2}}\left[-\nabla^{k} \nabla_{k} \alpha+\alpha\left(R+2 \nabla_{k} Z^{k}\right)\right] \\
= & \tilde{A}_{k i} B_{j}^{k}+\tilde{A}_{k j} B_{i}^{k}-\frac{2}{3} \tilde{A}_{i j} B_{k}^{k}+\alpha \tilde{A}_{i j}(K-2 \Theta c)-2 \alpha \tilde{A}_{i l} \tilde{\gamma}^{l m} \tilde{A}_{m j}-\tau^{-1} \tilde{\gamma}_{i j} \operatorname{tr} \tilde{A}, \\
\partial_{t} K-\beta^{k} \partial_{k} K+ & \nabla^{i} \nabla_{i} \alpha-\alpha\left(R+2 \nabla_{i} Z^{i}\right)=\alpha K(K-2 \Theta c)-3 \alpha \kappa_{1}\left(1+\kappa_{2}\right) \Theta \\
\partial_{t} \Theta-\beta^{k} \partial_{k} \Theta- & \frac{1}{2} \alpha e^{2}\left(R+2 \nabla_{i} Z^{i}\right)=\frac{1}{2} \alpha e^{2}\left(\frac{2}{3} K^{2}-\tilde{A}_{i j} \tilde{A}^{i j}\right)-\alpha \Theta K c-Z^{i} \alpha A_{i}-\alpha \kappa_{1}\left(2+\kappa_{2}\right) \Theta \\
\partial_{t} \hat{\Gamma}^{i}-\beta^{k} \partial_{k} \hat{\Gamma}^{i}+ & \frac{4}{3} \alpha \tilde{\gamma}^{i j} \partial_{j} K-2 \alpha \tilde{\gamma}^{k i} \partial_{k} \Theta-\tilde{\gamma}^{k l} \partial_{(k} B_{l)}^{i}-\frac{1}{3} \tilde{\gamma}^{i k} \partial_{(k} B_{l)}^{l}-s 2 \alpha \tilde{\gamma}^{i k} \tilde{\gamma}^{n m} \partial_{k} \tilde{A}_{n m} \\
= & \frac{2}{3} \tilde{\Gamma}^{i} B_{k}^{k}-\tilde{\Gamma}^{k} B_{k}^{i}+2 \alpha\left(\tilde{\Gamma}_{j k}^{i} \tilde{A}^{j k}-3 \tilde{A}^{i j} P_{j}\right)-2 \alpha \tilde{\gamma}^{k i}\left(\Theta A_{k}+\frac{2}{3} K Z_{k}\right)-2 \alpha \tilde{A}^{i j} A_{j} \\
& -4 s \alpha \tilde{\gamma}^{i k} D_{k}^{n m} \tilde{A}_{n m}+2 \kappa_{3}\left(\frac{2}{3} \tilde{\gamma}^{i j} Z_{j} B_{k}^{k}-\tilde{\gamma}^{j k} Z_{j} B_{k}^{i}\right)-2 \alpha \kappa_{1} \tilde{\gamma}^{i j} Z_{j} \\
\partial_{t} b^{i}-s \beta^{k} \partial_{k} b^{i}= & s\left(\partial_{t} \hat{\Gamma}^{i}-\beta^{k} \partial_{k} \hat{\Gamma}^{i}-\eta b^{i}\right)
\end{aligned}
$$

These equations are known as the first-order conformal covariant Z4 formulation (FO-CCZ4) of the Einstein equations.

$$
\begin{aligned}
\partial_{t} A_{k}-\beta^{l} \partial_{l} A_{k} & +\alpha g(\alpha)\left(\partial_{k} K-\partial_{k} K_{0}-2 c \partial_{k} \Theta\right)+s \alpha g(\alpha) \tilde{\gamma}^{n m} \partial_{k} \tilde{A}_{n m} \\
& =+2 s \alpha g(\alpha) D_{k}^{n m} \tilde{A}_{n m}-\alpha A_{k}\left(K-K_{0}-2 \Theta c\right)\left(g(\alpha)+\alpha g^{\prime}(\alpha)\right)+B_{k}^{l} A_{l}, \\
\partial_{t} B_{k}^{i}-s \beta^{l} \partial_{l} B_{k}^{i} & -s\left(f \partial_{k} b^{i}+\alpha^{2} \mu \tilde{\gamma}^{i j}\left(\partial_{k} P_{j}-\partial_{j} P_{k}\right)-\alpha^{2} \mu \tilde{\gamma}^{i j} \tilde{\gamma}^{n l}\left(\partial_{k} D_{l j n}-\partial_{l} D_{k j n}\right)\right) \\
& =s B_{k}^{l} B_{l}^{i}, \\
\partial_{t} D_{k i j}-\beta^{l} \partial_{l} D_{k i j} & +s\left(-\frac{1}{2} \tilde{\gamma}_{m i} \partial_{(k} B_{j)}^{m}-\frac{1}{2} \tilde{\gamma}_{m j} \partial_{(k} B_{i)}^{m}+\frac{1}{3} \tilde{\gamma}_{i j} \partial_{(k} B_{m)}^{m}\right)+\alpha \partial_{k} \tilde{A}_{i j}-\alpha \frac{1}{3} \tilde{\gamma}_{i j} \tilde{\gamma}^{n m} \partial_{k} \tilde{A}_{n m} \\
& =B_{k}^{l} D_{l i j}+B_{j}^{l} D_{k l i}+B_{i}^{l} D_{k l j}-\frac{2}{3} B_{l}^{l} D_{k i j}-\alpha \frac{2}{3} \tilde{\gamma}_{i j} D_{k}^{n m} \tilde{A}_{n m}-\alpha A_{k}\left(\tilde{A}_{i j}-\frac{1}{3} \tilde{\gamma}_{i j} \operatorname{tr} \tilde{A}\right), \\
\partial_{t} P_{k}-\beta^{l} \partial_{l} P_{k} & -\frac{1}{3} \alpha \partial_{k} K+\frac{1}{3} \partial_{(k} B_{i)}^{i}-s \frac{1}{3} \alpha \tilde{\gamma}^{n m} \partial_{k} \tilde{A}_{n m} \\
& =\frac{1}{3} \alpha A_{k} K+B_{k}^{l} P_{l}-s \frac{2}{3} \alpha D_{k}^{n m} \tilde{A}_{n m} .
\end{aligned}
$$

These equations are known as the first-order conformal covariant Z4 formulation (FO-CCZ4) of the Einstein equations.

The 12 Einstein eqss are therefore written as a system of 58 fields. These eqs are only for the spacetime part...

$$
\frac{\partial \boldsymbol{Q}}{\partial t}+\boldsymbol{A}_{\mathbf{1}}(\boldsymbol{Q}) \frac{\partial \boldsymbol{Q}}{\partial x_{1}}+\boldsymbol{A}_{\mathbf{2}}(\boldsymbol{Q}) \frac{\partial \boldsymbol{Q}}{\partial x_{2}}+\boldsymbol{A}_{\mathbf{3}}(\boldsymbol{Q}) \frac{\partial \boldsymbol{Q}}{\partial x_{3}}=\boldsymbol{S}(\boldsymbol{Q})
$$

Still don't know anything about properties of these equations

With a proper combination of the constraints on the auxiliary variables the set is cast in a strongly hyperbolic a
Sparsity pattern of the system $\operatorname{matrix} \boldsymbol{A} \cdot \boldsymbol{n}$

Solving the hydrodynamics equations

3+ | splitting also for the matter

We are not interested in the 4 -velocity \boldsymbol{u} but rather its projection on the spatial slice, ie the 3 -velocity \boldsymbol{v}

Those observers with \boldsymbol{u} parallel to \boldsymbol{n} move from one slice to the next along the normal to the slice: Eulerian observers.

They measure a fluid 3 -velocity

$$
v=\frac{\gamma \cdot u}{-\boldsymbol{n} \cdot \boldsymbol{u}}
$$

Remember that in special relativity

$$
u^{i}=\frac{d x^{i}}{d \tau}, \quad v^{i}=\frac{d x^{i}}{d t}=\frac{d x^{i}}{d \tau} \frac{d \tau}{d t}=\frac{u^{i}}{u^{0}}
$$

3+ | splitting also for the matter

To aid comparison with what you are more familiar with, the contravariant (upstairs) components of this vector are

$$
\begin{gathered}
v^{i}=\frac{\gamma^{i} \cdot \boldsymbol{u}}{-\boldsymbol{n} \cdot \boldsymbol{u}}=\frac{\gamma_{\mu}^{i} u^{\mu}}{\alpha u^{0}}=\frac{1}{\alpha}\left(\frac{u^{i}}{u^{0}}+\beta^{i}\right) \\
v_{i}=\gamma_{i j} v^{j}=\gamma_{i j} \frac{1}{\alpha}\left(\frac{u^{j}}{u^{0}}+\beta^{j}\right)
\end{gathered}
$$

Using the normalization condition $u^{\mu} u_{\mu}=-1 \quad$ one obtains

$$
\alpha u^{0}=\frac{1}{\sqrt{1-v^{i} v_{i}}}=\frac{1}{\sqrt{1-v^{2}}} \equiv W
$$

The hydrodynamic equations

$$
\boldsymbol{\gamma} \cdot(\nabla \boldsymbol{T})=0, \quad \text { spacelike projection of divergence of } \boldsymbol{T})
$$

$\boldsymbol{n} \cdot(\nabla \boldsymbol{T})=0, \quad($ timelike projection of divergence of $\boldsymbol{T})$

$$
\begin{aligned}
& (\nabla \cdot \rho \boldsymbol{u})=0, \quad \text { (divergence of mass flux) } \\
& p=p(\rho, \epsilon), \quad \text { (equation of state EOS) }
\end{aligned}
$$

Covariant form of the equations does not fix a formulation, which needs to be conservative for a numerical solution.

Conservative form of the equations

The homogeneous partial differential equation

$$
\partial_{t} u(x, t)+a[u(x, t)] \partial_{x} u(x, t)=0
$$

is said to be in flux-conservative (FC) form if written as

$$
\partial_{t} u(x, t)+\partial_{x} F[u(x, t)]=0
$$

Theorems (Lax, Wendroff; Hou, LeFloch)

- FC formulation converges to weak solution of the problem
- NFC converges to the wrong weak solution of the problem

The Valencia (conservative) formulation

(Banyuls et al. 97)

$$
\frac{1}{\sqrt{-g}}\left\{\partial_{t}\left[\sqrt{\gamma} \mathbf{F}^{0}(\mathbf{U})\right]+\partial_{i}\left[\sqrt{\gamma} \mathbf{F}^{i}(\mathbf{U})\right]\right\}=\mathbf{s}(\mathbf{U})
$$

where $\sqrt{-g}=\sqrt{\operatorname{det}\left(g_{\mu \nu}\right)}=\alpha \sqrt{\operatorname{det}\left(\gamma_{\mu \nu}\right)}=\alpha \sqrt{\gamma}$ and

$$
\begin{aligned}
& \mathbf{F}^{0}(\mathbf{U})=\left(D, S_{j}, \tau\right)^{T} \\
& \mathbf{F}^{i}(\mathbf{U})=\left[D\left(\alpha v^{i}-\beta^{i}\right), S_{j}\left(\alpha v^{i}-\beta^{i}\right)+p \delta_{j}^{i}, \tau\left(\alpha v^{i}-\beta^{i}\right)+p v^{i}\right]^{T} \\
& \mathbf{s}(\mathbf{U})=\left[0, T^{\mu \nu}\left(\partial_{\mu} g_{\nu j}+\Gamma_{\mu \nu}^{\delta} g_{\delta j}\right), \alpha\left(T^{\mu 0} \partial_{\mu} \ln \alpha-T^{\mu \nu} \Gamma_{\nu \mu}^{0}\right)\right]
\end{aligned}
$$

Source terms do not contain derivatives of hydrodynamical quantities and vanish in a flat spacetime

The Valencia (conservative) formulation

The first step is the identification of suitable "conserved" quantities in place of the "primitive" variables (ρ, ϵ, v^{j}). After lot of algebra...

$$
\begin{aligned}
D & =\rho W \\
S_{j} & =\rho h W^{2} v_{j} \\
\tau & =\rho h W^{2}-\rho W-p
\end{aligned}
$$

- Transformation primitive-to-conserved is algebraic.
-Transformation conserved-to-primitive is not.
- Transformation conserved-to-primitive requires numerical solution (root finding) at each cell:
-This is considerable bottleneck and source of errors.

Follow these instructions,

 work for a decade and...Animations: Breu, Radice, LR

$$
\begin{array}{r}
M=2 \times 1.35 M_{\odot} \\
\text { LS220 EOS }
\end{array}
$$

What we can do nowadays

Takami, LR, Baiotti (2014, 2015), LR+ (2016)

Extracting information from the EOS
Takami, LR, Baiotti (20|4, 20|5), LR+ (20|6)

There are lines! Logically not different from emission lines from stellar atmospheres. This is GW spectroscopy!

Moving away from perfect fluids

Neutron star matter

- Astronomical observations show viscosity in neutron stars is very small: superfluidity needed to explain pulsar glitches.
- During inspiral stars interact gravitationally only: fluid is tidal distorted but only before merger.
- After merger temperatures increase ($10-50 \mathrm{MeV}$) and a number of dissipative effects can become important.
- Viscous dissipation is normally neglected in numerical modelling on assumption microscopic viscosity too small.
-Should we worry?

GW spectroscopy

GW spectroscopy

Potential viscous contributions

- Possible channels of micro/macroscopic viscosity are:
I. nuclear-matter shear viscosity

2. nuclear-matter bulk viscosity
3. neutrino shear viscosity (Guilet+ 2016)
4. "MRI-induced" viscosity (Radice2017, Shibata+2017a, b)

- Channels 3. and 4. act on timescales typical of MRI, which depends on B-field and very uncertain still.
- Impact of MRI on GWs depends on the value for viscous angular momentum transport.
- This is presently essentially unknown: $\tau \gtrsim 10-100 \mathrm{~ms}$?

Viscous contributions: I. shear viscosity

- Low-temperature, electron-dominated regime, i.e.

$$
\begin{aligned}
& T \lesssim 10 \mathrm{MeV} \\
& \tau_{\eta}^{(e)} \approx 1.6 \times 10^{8} \mathrm{~s}\left(\frac{z_{\mathrm{typ}}}{1 \mathrm{~km}}\right)^{2}\left(\frac{T}{1 \mathrm{MeV}}\right)^{\frac{5}{3}}\left(\frac{n_{0}}{n_{B}}\right)^{\frac{5}{9}}\left(\frac{0.1}{x_{p}}\right)^{\frac{14}{9}},
\end{aligned}
$$

- High-temperature, neutrino-dominated regime, i.e.

$$
T \gtrsim 10 \mathrm{MeV}
$$

$$
\tau_{\eta}^{(\nu)} \approx 54 \mathrm{~s}\left(\frac{0.1}{x_{p}}\right)\left(\frac{m_{n}^{*}}{0.8 m_{n}}\right)^{2}\left(\frac{\mu_{e}}{2 \mu_{\nu}}\right)^{4}\left(\frac{z_{\mathrm{typ}}}{1 \mathrm{~km}}\right)^{2}\left(\frac{T}{10 \mathrm{MeV}}\right)^{2}
$$

Hence, shear viscosity not relevant unless neutrinos dominate and flow is turbulent with $z_{\text {typ }} \sim 10-100 \mathrm{~m}$; not likely.

Viscous contributions: 2. bulk viscosity

 - Impact of bulk viscosity depends sensitively on process responsible for flavor re-equilibration.- If direct-Urca dominates, bulk viscosity will be very small: never possible for softer EOSs, hard for stiff EOS at small T.
- If modified-Urca dominates, then bulk viscosity
$\mathcal{E}_{\text {comp }}$: en. density variation due comp.

$$
\mathcal{E}_{\mathrm{comp}} \approx K \bar{n}(\Delta n / \bar{n})^{2} / 18
$$

$$
\tau_{\zeta} \equiv \mathcal{E}_{\mathrm{comp}} /(d \mathcal{E} / d t)_{\mathrm{bulk}} \approx K \bar{n} t_{\exp }^{2} /\left(36 \pi^{2} \bar{\zeta}\right)
$$

$$
\approx 7 \mathrm{~ms}\left(\frac{t_{\mathrm{exp}}}{1 \mathrm{~ms}}\right)\left(\frac{K}{250 \mathrm{MeV}}\right)\left(\frac{0.1 \mathrm{MeV}}{Y_{\zeta}}\right)
$$

$t_{\exp } \sim$ bulk-dissipation timescale of internal energy key! K : nuclear compressibility at $n_{0} ; \quad Y_{\zeta}$: bulk viscosity prefactor

Viscous contributions

instantaneous bulkdissipation timescale can be measured in simulations.

Soon after merger bulk-dissipation timescale comparable with dynamical timescale in large portions of the object: cannot be ignored.

Viscous contributions

$$
\left\langle t_{\text {flow }}\right\rangle:=\left\langle\frac{\rho}{D_{t} \rho}\right\rangle=\left\langle\frac{1}{\nabla \cdot \overrightarrow{\boldsymbol{v}}}\right\rangle
$$

right after merger

$$
t_{\text {flow }} \lesssim \tau_{\text {dyn }}=\frac{R}{c_{s}}
$$

Soon after merger bulk-dissipation timescale comparable with dynamical timescale in large portions of the object: cannot be ignored.

Moving away from hydrodynamics: ideal-MHD

Electromagnetic counterparts

- EM counterparts can boost understanding of BNSs and SGRBs.
- EM counterparts via B-fields or radioactive decay (kilonova).
- B- fields may be too weak to be "visible" in inspiral waveforms.
- Pre-merger interaction of magnetosphere may be too weak.
- Best chances are after BH formation: jet launching.

This requires extending the equations to ideal-MHD (IMHD)

$$
\begin{aligned}
& T_{\mu \nu}=(e+p) u_{\mu} u_{\nu}+p g_{\mu \nu}+F_{\mu}{ }^{\lambda} F_{\nu \lambda}-\frac{1}{4} g_{\mu \nu} F^{\lambda \alpha} F_{\lambda \alpha} \\
& \nabla^{\nu} T_{\mu \nu}=0 \quad E^{i}=-\epsilon^{i j k} v_{j} B_{k}
\end{aligned}
$$

$$
\nabla_{\nu}\left(F^{\mu \nu}+g^{\mu \nu} \psi\right)=I^{\mu}-\kappa n^{\mu} \psi, \quad \nabla_{\nu}\left({ }^{*} F^{\mu \nu}+g^{\mu \nu} \phi\right)=-\kappa n^{\mu} \phi,
$$

```
LR+20II
```

Neutron stars Masses: 1.5 suns
Diameters: 17 miles (27 km) Separation: 11 miles $[18 \mathrm{~km}$)

7.4 milliseconds

13.8 milliseconds

These simulations have shown that the merger of a magnetised binary has all the basic features behind SGRBs

$$
J / M^{2}=0.83 \quad \mathrm{M}_{\mathrm{tor}}=0.063 M_{\odot} \quad \mathrm{t}_{\mathrm{accr}} \simeq M_{\mathrm{tor}} / M \simeq 0.3 \mathrm{~s}
$$

With due differences, other groups confirm this picture

Beyond IMHD: Resistive Magnetohydrodynamics

 Dionysopoulou, Alic, LR (2015)- Ideal MHD is a good approximation in the inspiral, but not after the merger; match to electro-vacuum not possible.
- Main difference in resistive regime is the current, which is dictated by Ohm's law but microphysics is poorly known.
- We know conductivity σ is a tensor but hardly know it as a scalar (prop. to density and inversely prop. to temperature).
- A simple prescription with scalar (isotropic) conductivity:

$$
J^{i}=q v^{i}+W \sigma\left[E^{i}+\epsilon^{i j k} v_{j} B_{k}-\left(v_{k} E^{k}\right) v^{i}\right],
$$

$\sigma \rightarrow \infty$ ideal-MHD (IMHD)
$\sigma \neq 0 \quad$ resistive-MHD (RMHD)
$\sigma=f\left(\rho, \rho_{\min }\right)$
$\sigma \rightarrow 0$ electrovacuum

New methods in relativistic hydrodynamics/MHD

State of the art

- Present state-of-the-art codes can handle in 3D:
* GRHD
* GRMHD (ideal and resistive)
* Sophisticated equations of state: $p=p\left(\rho, \epsilon, Y_{e}, \ldots\right)$
* Neutrino emission/absorption
- Standard numerical methods are:
* finite difference for Einstein eqs. (also spectral methods)
* finite-difference, finite-volume for HD/MHD

- Example of dependence of waveform on resolution: clear phase difference is observable during inspiral.
- Even larger differences appear after merger.

- Modern codes have "low" convergence orders before the inspiral and very low convergence orders after merger.
- Numerical methods are sophisticated and require intense exchange of information across neighbouring cells.
- As a result: codes scale poorly beyond few thousands cores

More advanced methods

- Slowly but surely the consensus is that most promising methods are discontinuous Galerkin methods
- Advantages are:
* arbitrary order of accuracy
* exponential convergence
* natural treatment of shocks

* in ADER approach algebra is fully local (boundary exchanges limited to the minimum)
- At least four codes have been developed since initial work in I + I D (Radice, LR 20II)

DG methods in a nutshell

$$
\partial_{t} \boldsymbol{U}+\partial_{\xi} \boldsymbol{F}^{*}(\boldsymbol{U})=0
$$

$$
\boldsymbol{U}_{j}(\xi, t)=\sum_{k=0}^{p-1} \hat{\boldsymbol{U}}_{k}(t) \Psi_{k}(\xi),
$$

$\int_{0}^{1}\left(\Psi_{l} \partial_{t} \boldsymbol{U}+\Psi_{l} \partial_{\xi} \boldsymbol{F}^{*}\right) d \xi=0$

Take representative hyperbolic eq. in I +ID

Expand solution $\boldsymbol{U}(t)$ at each cell $\boldsymbol{U}_{j}(t)$ in terms of known polynomial basis (Legendre)

Integrate over reference spacetime volume and integrate by parts

$$
\sum_{k=0}^{p-1}\left(\int_{0}^{1} \Psi_{l} \Psi_{k} d \xi\right) d_{t} \hat{\boldsymbol{U}}_{k}+\left[\Psi_{l} \boldsymbol{F}^{*}\right]_{0}^{1}-\int_{0}^{1} \boldsymbol{F}^{*}(\boldsymbol{U}(\xi, t)) d_{\xi} \Psi_{l} d \xi=0
$$

This is a system of (coupled) ordinary differential equations in time for the degrees of freedom $\hat{\boldsymbol{U}}_{l}(t)$

-Shown in grey is standard finite volume representation

- Circles are nodes of polynomial basis
- Blue line is reconstructed polynomial inside the cell
- Polynomials across different cells are naturally discontinuous
-Jumps are initial conditions for Riemann problems.

Conclusions

* General-relativistic HD and MHD combine complexity of solution of Einstein eqs with those of hydrodynamics.
*As in heavy-ion collisions: developments are driven by comparison with observations (now possible!).
* Several challenges have been tackled: 3D, HD/MHD, resistive effects, EOSs, neutrinos, etc.
* Dynamics of binary neutron stars is sufficiently accurate and robust to compare with observations and make predictions.
* Many points remain open:
\uparrow improve formulation of Einstein/HD/MHD eqs.
\uparrow improve description of dissipative effects: could be important.
- improve description of EM effects: essential for astrophysics.
\uparrow improve convergence order and scalability of codes: DG

Future is exciting!

