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Plan of the talk

*When hydrodynamics is general relativistic
*Application: binary neutron star mergers

*Where we are now:

+ fundamental aspects of GRHD

*Where we are going:

+ away from perfect fluids and ideal MHD

+ new advanced methods



VWhen hyc

FOC

ynamics Is general

relativistic

The goals of general-relativistic hydrodynamics are to
describe the dynamics of a self-gravitating fluid in
regions with strong and dynamical gravitational fields.

As a result:

*spacetime curvature needs to be taken into account

*spacetime curvature varies with time (Einstein eqgs.)

*dynamics Is necessarily relativistic: v ~ ¢



The equations of GRHD/MHD
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(field equations)

(cons. energy /momentum)
(cons. rest mass)
(equation of state)
(Maxwell equations)

(energy — momentum tensor)



We normally solve the same set of equations:
Pl
vV, T =0

Overall, In general-relativistic hydrodynamics most
of the headaches come from

Vi

Instead, In special-relativistic hydrodynamics most
of the headaches come from

Ss

e, | will assume a perfect fluid.

P

Herea



What are the challenges!

Normalized amplitude
0 2 4 §

*On |6 October 2017/ the
LSC/Virgo collaboration
announced detection of the
oravitational signal from
merging binary neutron-star

system: GW 170817,

* [otal mass:
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What we want to model: GWs
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Winning over the noise

Detection In most cases possible only when signal
can be extracted from noise: matched filtering
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What we want to model: SGRBs

GW 17081/ has confirmed expectation that merger Is
accompanied by electromagnetic counterpart: short
gamma-ray burst (SGRBs).

short.GRB.
~-artist impression
(NASA)




The techniques of
numerical relativity



The basics first

* Einstein equations provide a local solution of spacetime
curvature (not of topology)

* Einstein equations are covariant:

*before finding a solution need to find a set of coordinates

where to find this solution: 3+ | standard choice.

*glven a set of coordinates, you still have total freedom on
how to write equations

* perfectly reasona

ble choices can lead to weakly

hyperbolic systems and hence to problems



First step: foliate the 4D spacetime

Given a manifold M with with 4-metric 9uv, we want to foliate it
via space-like, three-dimensional hypersurfaces, i.e., 2i1, 22, . ..

levelled by a scalar function. The time coordinate f Is obvious choice

t = tg + Ot Define therefore

SN

L=t

such that
21

Q° = g"'V itV t = —a 2

This defines the "lapse” function which Is

strictly positive for spacelike hypersurfaces a(t,z) >0



The lapse function allows then to do two important things:
) define the unit normal vector to the hypersurface ¥

n* = —aght’Q, = —ag"”’V ,t

where

v e
nn, = 1

1) define the spatial metric

Yur = Guv T MMy



Finding a direction for evolutions

The unit normal n to a spacell

<e hypersurface 2 I1s not good

time vector because n IS Not C

Bl e

Need a vector along which to
dual to the surface one-norm.

ual to surface one-norm 2

1
= A=

8%
carry out the time evolutions
Such a vector Is defined as

th = ant + g*

where @ Is any spatial “shift” vector.

Clearly now the two tensors are dual to each other, ie
=@ —om O =00 — o ra——l



Using the expression for the covariant 4-dim covariant metric,
the line element Is given

ds® = g, dz"dz" = —(a® — 8'8;)dt? + 283;dz*dt + ;;dz*dx’

t=t,+6t |he lapse measures proper time
between two adjacent hypersurfaces

dr? = —a*(t, 27 )dt?

t =1p

The shift relates spatial coordinates
between two adjacent hypersurfaces

Tioqst = Ty — O (27 )de
spatial metric measures distances between points on hypersurface
dli* = 7;;dz*dz?




Second step: decompose 4-dim tensors

n and v allow to decompose any 4D tensor into a purely
spatial part (hence in¥) and a purely timelike part

he spatial part Is obtained after contracting with the spatial
projection operator

gle=gh ey =gt el =0t Fntns

while the timelike part Is obtained after contracting with

the timelike projection operator
N —— =y

The two projectors are obviously orthogonal

el



[t I1s Important not to confuse the 3-dim Riemann tensor

(S)R“M with the corresponding 4-dim one R Saf3

LR sap 1S purely spatial (spatial derivatives of the spatial
metric?y)

Ru}sag s a full 4-dimensional object containing also time
derivatives of the full 4-dim metric g

nformation present in R; , 3 and “missing”
n 3 RE g Is contained Iin another spatial
tensor: the extrinsic curvature.

parallel transport



Decomposing the tinstein equations

* [The 3+ | naturally “splits” the Einstein equations into:

* a set which is fully defined on each spatial
hypersurfaces (and does not involve therefore time
derivatives): ‘constraint equations”

*a set which instead relates quantities (i.e. the spatial
metric and the extrinsic curvature) between two
hypersurfaces: ‘evolution equations”



The (ADM) Einstein egs in 3+
n - n - (Einstein eqs) + Gauss eqs =

Hamiltonian
[1]

o .
e e i Constraint

~ - n - (Einstein eqs) 4+ Codazzi eqs =

- Momentum
DK’ — D,K = 8nj; ,
e = Constraints [3]
Saﬁ = /Yuoz,yyﬁT,ul/ S == S'U:u
C=er Ju ==Vl Lap

These are |+3 elliptic (second-order in space), nonlinear
partial differential equations; constraint equations




The (ADM) Einstein egs in 3+ |

Similarly
~ -~ - (Einstein eqs) + Ricci eqs =

875[(7;]' — —Dz’DjOé -+ (X(Rij — QKZkKkJ == KKZj)

1 6]

—8ma(Ryj — 57 (S — ) + LKy,

Orvij = —2aK;j + Lgvij [6]

These are |2 first-order in time, second-order in space,
nonlinear partial differential equations: evolution equations

In practice we do not solve them because weakly hyperbolic.



New evolution variables are introduced to obtain a set
of equations that Is strongly hyperbolic

¢ = 1—12 lﬂ(det(%j)) = 1—12 ln( ), gb . conformal factor
Yij =€~ ¢%]7 i : conformal 3-metric
J== W K K :trace of extrinsic curvature
A’ij = K 1 vii K, Aij:trace -free conformal

3 extrinsic curvature
= ijfﬁk "% “Gammas” (aux. variables)
[ = 37T,

are our new evolution variables

The ADM equations are then rewritten as
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These equations are known as the conformal covariant
/4 formulation (CCZ4) of the Einstein equations.



017i; = B*2Dpij + By + ;B — %%BE e (Aij = %%g’tl‘fo =
O:lna = AL, — ag(e)(K — Ky — 20¢),
ey L ST
O:lng = B*P, + é (aK — By) ,
8;Ai; — BYOLA;; — ¢?| —ViVija+a(Ry +ViZ; + vjzi)] + ¢2%% [ — V*Via + (R + 2V, Z5)
= B} + AeBE — 5 Ay Bl + 0di(K —20¢) — 20403 Ay — 77 4y trd

OK — B*OLK + V'Via—a(R+2V;ZY) = aK (K —20c¢) — 3ak1(1 + k2)O

I ! 9 e .
0,0 — 59,0 — 50462(}% + 2V, 2*) = 50462 (§K2 — AijA”> —aBOKc— Z'aA; — ark1(2+ K9)O,
2 - = —— 3 i —= =
oI — B9, I + gow” 0; K — 207" 0,0 — 7" 0 By — = e e Ty il e
o).

1 r 7 Nt AJ A1] ~ k1 2 A1)
2 Bf —T*B} + 2« (ijAJ’f — 34 JPj) — 204" (@Ak + §Kz,f) — 20AY A,

: - O : : -
ST D) I A S (ﬁw ZB = &JijB};) — 2aKk179 Z;
O:bt — sBFOLD = s ((%f’i — Bkﬁkfi — nbi> :

These equations are known as the first-order conformal
covariant Z4 formulation (FO-CCZ4) of the Einstein equations.
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These equations are known as the first-order conformal
covariant Z4 formulation (FO-CCZ4) of the Einstein equations.
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The |2 Einstein egss are therefore written as a system of
58 fields. These eqgs are only for the spacetime part...
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strongly hyperbolic a
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With a proper combination of
the constraints on the auxiliary
variables the set Is cast in a

Sparsity pattern of the system



Solving the hydrodynamics
equations



3+ 1 splitting also for the matter

VWe are not interested In the 4-velocity w but rather its
projection on the spatial slice, 1e the 3-velocity U

Those observers with w parallel
fluid worldlines tom move from one slice to
the next along the normal to
the slice: Eulerian observers.

normal line

They measure a fluid 3-velocrity

Y- u
S—3V==CL

QIS=

Remember that in special relativity

e e e e T
= U =

dr

dt  dr dt 0




3+ 1 splitting also for the matter

To aid comparison with what you are more familiar with, the
contravariant (upstairs) components of this vector are

A

Eulerian
observer

2.3

. S e e
—TNn - U U 84

Using the normalization condition
utu, = —1 one obtains

e 1 = 1
V1—viv, V1 —v?

au

=W
W is the Lorentz factor



The hydrodynamic equations

~ - (VT) =0, (spacelike projection of divergence of T
n-(VT)=0, (timelike projection of divergence of T')
(V-pu) =0, (divergence of mass flux)

p=p(p,e), (equation of state EOS)

Covariant form of the equations does not fix a formulation,
which needs to be conservative for a numerical solution.



Conservative form of the equations

The homogeneous partial differential equation

Ou(z,t) + alu(x, t)|0zu(x,t) =0

s said to be Iin flux-conservative (FC) form if written as

Owu(x,t) + 0. Flu(z,t)] =0

Theorems (Lax, VWWendroff; Hou, LeFloch)

» FC formulation converges to weak solution of the problem

» NFC converges to the wrong weak solution of the problem



The Valencia (conservative) formulation
(Banyuls et al. 97)

= {a[VTE(U)] +A[VAF(U)]} =s(U).

where /—g = \/det(g,w) = a\/det(%,,) = ay/y and

FO(U) = (DaSjvT)T ;

F*(U) = [D(av* — 8*), S;(av* — §°) —|—p5§-, T(av' — B8°) + pv']*

SERE= [O, TH (8,905 + Fi,/g(gj),a(T“O(?u Ina — T“”Fg“)} .

Source terms do not contain derivatives of hydrodynamical
quantities and vanish in a flat spacetime



The Valencia (conservative) formulation

The first step Is the identification of surtable “conserved™
quantities in place of the “primitive” variables (p, €, v7 ).
After lot of algebra...

===t
Sj = phWQUj ]
T = phW?— oW —p

* [ransformation primritive-to-conserved Is algebraic.

* [ransformation conserved-to-primitive Is not.

* [ransformation conserved-to-primitive requires numerical
solution (root finding) at each cell:

* [his Is considerable bottleneck and source of errors.



Follow these instructions,
work for a decade and...



Animations: Breu, Radice, LR

M =2 x 1.35 M
1.5220 EOS



Takami, LR, Baiotti (2014, 2015), LR+ (2016)

What we can do nowadays
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-xtracting information from the EOS

Takami, LR, Baiotti (2014, 2015), LR+ (2016)
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Moving away from
perfect fluids



Neutron star matter

* Astronomical observations show viscosity in neutron stars
s very small: superfluidity needed to explain pulsar glitches.

* During inspiral stars interact gravitationally only: fluid is tidal
distorted but only before merger.

* After merger temperatures increase (10-50 MeV) and a
number of dissipative effects can become important.

*Viscous dissipation Is normally neglected in numerical
modelling on assumption microscopic viscosity too small.

*Should we worry!?



GW spectroscopy
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Potential viscous contributions

Alford+(2018)

* Possible channels of micro/macroscopic viscosity are:

E=mEE
). NUC

cdar-mat

‘er shear viscosity

car-md

tter bulk viscosity

3. neutrino shear viscosity (Guilet+ 2016)
4. "MRI-induced” viscosity (Radice201/, Shibata+201 /3, b)

» Channels 3. and 4. act on timescales typical of MRI, which
depends on B-field and very uncertain still.

* Impact of MRl on GWs depends on the value for viscous
angular momentum transport.

* This Is presently essentially unknown: 7 2 10 — 100 ms ¢



Viscous contributions: |. shear viscosity

* Low-temperature, electron-dominated regime, 1.e.
T < 10 MeV : = =

2 T \3(ng\9/0.1\ 9
(©) 7 1.6x10°s (22 ) L
T e MeV /) \ng T ’
* High-temperature, neutrino-dominated regime, 1.€.
T > 10 MeV

s, 4 2
V) ~ 545 E Ll fle ( “typ )2 I
1 z, J\0.8my,/) \2u,/ \1km/ \10MeV /)

Hence, shear viscosity not relevant unless neutrinos dominate
and flow is turbulent with ztyp ~ 10 — 100 m; not likely.




Viscous contributions: 2. bulk viscosity

*Impact of bulk viscosity depends sensitively on process
responsible for flavor re-equilibration.

* |t direct-Urca dominates, bulk viscosity will be very small:
never possible for softer EOSs, hard for stiff EOS at small T.

*[f modified-Urca dominates, then
bulk viscosity -j_
: en. density variation due comp.

Y McV |

gcomp

Ecomp ~ KTi(An/7)?/18 ot R

. — TMA NL3
H

¢ = Ecomp/ (AE/db) e = KRt /(36m°C) o s

Yarao K 0.1 MeV
RS
1 ms 250 MeV i

texp ~ bulk-dissipation timescale of internal energy ke)’!
K nuclear compressibility at ng;  Y¢: bulk viscosity prefactor




Viscous contributions

et 3 s =<5 0 D 10 15
x [km]

instantaneous bulk-

Soon after merger bulk-dissipation
timescale comparable with
dynamical timescale in large
portions of the object: cannot be
ignored.

dissipation timescale
can be measured In
simulations.




Viscous contributions
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Moving away from
hydrodynamics: ideal-MHD



tlectromagnetic counterparts

v counterparts can boost understanding of BNSs and SGRBs.

v counterparts via B-fields or radioactive decay (kilonova).

* B- fields may be too weak to be “visible™ in inspiral waveform:s.

* Pre-merger interaction of magnetosphere may be too weak.

* Best chances are after BH formation: jet launching.

This requires extending the equations to ideal-MHD (IMHD)

1
e ke =P, D FMAFM — — Gl FAF\ .

4
N ==l Ry
VU(FMV AR gij) =i /{nuwa vl/(*FW/ a5 g,ul/¢) - _Iinu¢7



LR+ 201 |

Neutron stars
Masses: 1.5suns
Diameters: 17 miles (27 km)
Separation: 11 miles (1B km)

Simu'ation begins 7.4 milliseconds 13.8 milliseconds

/ Jet llke
Iu ok magneticﬂeld

, f.»'«’- 3
? g4 ¥
% i
- A~

- These simulations have shovvn that the merger of a

Hor

@ Magnetised binary has all the basic features behind SGRBS

~ezzolla

J/M? = 0.83 Mior = 0.063Ms  tacer = Mioyr /M =~ 0.3



With due differences, other groups confirm this picture

K1y

~
-

Kiuchi+ 2014

t/M = 1691 t/M = 4606

Ruiz+ 2016

Kawamura+2016

Dionysopoulou+ 2015

| — t = 18.537 ms
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Beyond IMHD: Resistive Magnetohydrodynamics

Dionysopoulou, Alic, LR (2015)

*ldeal MHD Is a good approximation in the inspiral, but not
after the merger; match to electro-vacuum not possible.

*Main difference In resistive regime is the current, which is
dictated by Ohm's law but microphysics is poorly known.

* We know conductivity o is a tensor but hardly know It as a
scalar (prop.to density and inversely prop. to temperature).

* A simple prescription with scalar (isotropic) conductivity:
J' = qu' + WolE" + €7%; By, — (v E¥)v"],

o — 00 ideal-MHD (IMHD)
o #0 resistive-MHD (RMHD) o = f(p, Pmin)

o — 0 electrovacuum phenomenological prescription
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New methods in relativistic

ics/MHD

hydrodynam
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State of the art

* Present state-of-the-art codes can handle in 3D:
* GRHD

* GRMHD (ideal and resistive)
* Sophisticated equations of state:p = p(p, €, Ye, . . .)

* Neutrino emission/absorption

* Standard numerical methods are:

* finite difference for Einstein egs. (also spectral methods)

* finite-difference, finite-volume for HD/MHD



— Az =02Mg
—— Az =0.16 M,
024 —— Az =0.1328 Mg

—0.2 A

rhy [M]

1000 1250 1500 1750 2000 2250 2500 2750 3000
t, [M]

* Example of dependence of waveform on resolution: clear
phase difference I1s observable during inspiral.

* bven larger differences appear after merger.



4.0 1

3.0 F

Convergence order

2.0 F

L5 | H — FIL
— FIL. - HR

1 | 1 1
g 1000 1500 2000

t —r [M]

1.0

* Modern codes have “low” convergence orders before the
inspiral and very low convergence orders after merger.

* Numerical methods are sophisticated and require intense
exchange of information across neighbouring cells.

* As a result: codes scale poorly beyond few thousands cores



More advanced methods

* Slowly but surely the consensus Is that most promising

MeEl

‘hods are discontinuous Galerkin methods

* AC

* arbrtrary order of accuracy
* exponential convergence

* natural treatment of shocks i

vantages are:

[DCE 10.7 002ifid 402 <

e 38

* in ADER approach algebra is fully local (boundary
exchanges limited to the minimum)

o At
A=

least four codes have been developed since initial work
+ | D (Radice, LR 201 1



DG methods In a nutshell

lake representative hyperbolic

U + 0 F"(U) =0 ag.ir el D

i
—

Expand solution U (t) at each
U;(&,t) =) Upt) V&), cell U,(t)in terms of known
polynomial basis (Legendre)

i
)

Integrate over reference spacetime

1
/0 O IR = volume and integrate by parts

p—1 1 A 1 )
,;; </0 AVIg% df) d;U . + [\Isz }0 —/O F*(U(£,1)) deWy dé =0

This is a system of (coupled) ordinary differential equations in
time for the degrees of freedom U (t)



1.0

*Shown In grey Is standard
finite volume representation

*Circles are nodes of
bolynomial basis

*Blue line Is reconstructed
bolynomial inside the cell

06 a0 Cell1  Cell2 Ceil 3
1.2
1.0
* Polynomials across different cells |
are naturally discontinuous 0e
*Jumps are Initial conditions for 0.4

Riemann problems. 05

T'
0.0 | W\bﬁa.
_aee vu'/i“"\ | |
/EI‘\’O/Celll Cell2  Cell 3

p—1 1
2 (/0 o dg) ds F*(U(&,t)) deWy d€ =0




Conclusions

* General-relativistic HD and MHD combine complexity of
solution of Einstein egs with those of hydrodynamics.

*As In heavy-ion collisions: developments are driven by
comparison with observations (now possiblel).

* Several challenges have been tackled: 3D, HD/MHD, resistive
effects, EOSs, neutrinos, etc.

* Dynamics of binary neutron stars Is sufficiently accurate and

'O

bust to compare wit

any points remain o

N observations and make predictions.
IS

brove formulation of Einstein/HD/MHD egs.

brove description of dissipative effects: could be important.
brove description of EM effects: essential for astrophysics.
brove convergence order and scalability of codes: DG

Future is exciting!



