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Relativistic hydrodynamics in 
strong gravitational fields



✴When hydrodynamics is general relativistic

✴Application: binary neutron star mergers

✴Where we are now: 
✦ fundamental aspects of GRHD

✴Where we are going: 
✦ away from perfect fluids and ideal MHD
✦ new advanced methods

Plan of the talk



When hydrodynamics is general 
relativistic

The goals of general-relativistic hydrodynamics are to 
describe the dynamics of a self-gravitating fluid in 
regions with strong and dynamical gravitational fields.

As a result:
•spacetime curvature needs to be taken into account

•spacetime curvature varies with time (Einstein eqs.)
•dynamics is necessarily relativistic: v ⇠ c
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The equations of GRHD/MHD

Rµ⌫ � 1

2
gµ⌫R = 8⇡Tµ⌫ , (field equations)

(cons. energy/momentum)

rµ(⇢u
µ) = 0 , (cons. rest mass)

p = p(⇢, ✏, Ye, . . .) , (equation of state)

(Maxwell equations)

Tµ⌫ = T fluid
µ⌫ + T

EM

µ⌫ + . . .

r⌫F
µ⌫ = Iµ , r⇤

⌫F
µ⌫ = 0 ,

(energy �momentum tensor)

rµT
µ⌫
fluid = R⌫

rad
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rµT
µ⌫ = 0 ,

rµT
µ⌫ = 0 ,

Instead, in special-relativistic hydrodynamics most 
of the headaches come from

Overall, in general-relativistic hydrodynamics most 
of the headaches come from

rµT
µ⌫ = 0 ,

We normally solve the same set of equations:

Hereafter, I will assume a perfect fluid.



•On 16 October 2017 the 
LSC/Virgo collaboration 
announced detection of the 
gravitational signal from 
merging binary neutron-star 
system: GW170817.

•Total mass:

•Individual masses:
M1 +M2 = 2.74+0.04

�0.01M�

M1 = 1.36� 1.60M�

M2 = 1.17� 1.36M�

What are the challenges?



What we want to model:  GWs

inspiral post
merger



Winning over the noise
Detection in most cases possible only when signal 
can be extracted from noise: matched filtering 



short GRB, 
artist impression 

(NASA)

What we want to model:  SGRBs

GW170817 has confirmed expectation that merger is 
accompanied by electromagnetic counterpart: short 
gamma-ray burst (SGRBs).



The techniques of 
numerical relativity



•Einstein equations provide a local solution of spacetime 
curvature (not of topology)

•Einstein equations are covariant: 
•before finding a solution need to find a set of coordinates 
where to find this solution: 3+1 standard choice.

•given a set of coordinates, you still have total freedom on 
how to write equations

•perfectly reasonable choices can lead to weakly 
hyperbolic systems and hence to problems

The basics first



Given a manifold      with with 4-metric      , we want to foliate it 
via space-like, three-dimensional hypersurfaces, i.e.,                 
levelled by a scalar function. The time coordinate t is obvious choice

First step: foliate the 4D spacetime

Define therefore

such that

This defines the ”lapse” function which is 
strictly positive for spacelike hypersurfaces 



ii) define the spatial metric

where

i) define the unit normal vector to the hypersurface

The lapse function allows then to do two important things:



The unit normal    to a spacelike hypersurface     is not good 
time vector because    is not dual to surface one-norm

Finding a direction for evolutions

Need a vector along which to carry out the time evolutions 
dual to the surface one-norm. Such a vector is defined as

where     is any spatial “shift” vector. 
Clearly now the two tensors are dual to each other, ie



Using the expression for the covariant 4-dim covariant metric, 
the line element is given

spatial metric measures distances between points on hypersurface

The shift relates spatial coordinates 
between two adjacent hypersurfaces

The lapse measures proper time 
between two adjacent hypersurfaces



             allow to decompose any 4D tensor into a purely 
spatial part (hence in   ) and a purely timelike part

while the timelike part is obtained after contracting with 
the timelike projection operator

The two projectors are obviously orthogonal

Second step: decompose 4-dim tensors

The spatial part is obtained after contracting with the spatial 
projection operator



It is important not to confuse the 3-dim Riemann tensor 
with the corresponding 4-dim one

is a full 4-dimensional object containing also time 
derivatives of the full 4-dim metric 

(3)Rµ
�↵�
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is purely spatial (spatial derivatives of the spatial 
metric   )

(3)Rµ
�↵�
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Information present in          and “missing” 
in             is contained in another spatial 
tensor: the extrinsic curvature.

(3)Rµ
�↵�

<latexit sha1_base64="HpHmFJPRhLHDsWq7lkcj3A79BqU=">AAACDnicbVA9SwNBEN3z2/gVtbRZDII24U4FLYM2liomBnJJmNtMksW9D3bnhHDcL7Dxr9hYKGJrbee/cfNRqPHBMI/3ZtidFyRKGnLdL2dmdm5+YXFpubCyura+Udzcqpk41QKrIlaxrgdgUMkIqyRJYT3RCGGg8Da4Ox/6t/eojYyjGxok2AyhF8muFEBWahf3Wtn+0UF+3cr8MM3bmc/9DioC7oNK+rYFSJC3iyW37I7Ap4k3ISU2wWW7+Ol3YpGGGJFQYEzDcxNqZqBJCoV5wU8NJiDuoIcNSyMI0TSz0Tk537NKh3djbSsiPlJ/bmQQGjMIAzsZAvXNX28o/uc1UuqeNjMZJSlhJMYPdVPFKebDbHhHahSkBpaA0NL+lYs+aBBkEyzYELy/J0+T2mHZc8ve1XGpcjaJY4ntsF22zzx2wirsgl2yKhPsgT2xF/bqPDrPzpvzPh6dcSY72+wXnI9vYy2bsA==</latexit><latexit sha1_base64="HpHmFJPRhLHDsWq7lkcj3A79BqU=">AAACDnicbVA9SwNBEN3z2/gVtbRZDII24U4FLYM2liomBnJJmNtMksW9D3bnhHDcL7Dxr9hYKGJrbee/cfNRqPHBMI/3ZtidFyRKGnLdL2dmdm5+YXFpubCyura+Udzcqpk41QKrIlaxrgdgUMkIqyRJYT3RCGGg8Da4Ox/6t/eojYyjGxok2AyhF8muFEBWahf3Wtn+0UF+3cr8MM3bmc/9DioC7oNK+rYFSJC3iyW37I7Ap4k3ISU2wWW7+Ol3YpGGGJFQYEzDcxNqZqBJCoV5wU8NJiDuoIcNSyMI0TSz0Tk537NKh3djbSsiPlJ/bmQQGjMIAzsZAvXNX28o/uc1UuqeNjMZJSlhJMYPdVPFKebDbHhHahSkBpaA0NL+lYs+aBBkEyzYELy/J0+T2mHZc8ve1XGpcjaJY4ntsF22zzx2wirsgl2yKhPsgT2xF/bqPDrPzpvzPh6dcSY72+wXnI9vYy2bsA==</latexit><latexit sha1_base64="HpHmFJPRhLHDsWq7lkcj3A79BqU=">AAACDnicbVA9SwNBEN3z2/gVtbRZDII24U4FLYM2liomBnJJmNtMksW9D3bnhHDcL7Dxr9hYKGJrbee/cfNRqPHBMI/3ZtidFyRKGnLdL2dmdm5+YXFpubCyura+Udzcqpk41QKrIlaxrgdgUMkIqyRJYT3RCGGg8Da4Ox/6t/eojYyjGxok2AyhF8muFEBWahf3Wtn+0UF+3cr8MM3bmc/9DioC7oNK+rYFSJC3iyW37I7Ap4k3ISU2wWW7+Ol3YpGGGJFQYEzDcxNqZqBJCoV5wU8NJiDuoIcNSyMI0TSz0Tk537NKh3djbSsiPlJ/bmQQGjMIAzsZAvXNX28o/uc1UuqeNjMZJSlhJMYPdVPFKebDbHhHahSkBpaA0NL+lYs+aBBkEyzYELy/J0+T2mHZc8ve1XGpcjaJY4ntsF22zzx2wirsgl2yKhPsgT2xF/bqPDrPzpvzPh6dcSY72+wXnI9vYy2bsA==</latexit><latexit sha1_base64="HpHmFJPRhLHDsWq7lkcj3A79BqU=">AAACDnicbVA9SwNBEN3z2/gVtbRZDII24U4FLYM2liomBnJJmNtMksW9D3bnhHDcL7Dxr9hYKGJrbee/cfNRqPHBMI/3ZtidFyRKGnLdL2dmdm5+YXFpubCyura+Udzcqpk41QKrIlaxrgdgUMkIqyRJYT3RCGGg8Da4Ox/6t/eojYyjGxok2AyhF8muFEBWahf3Wtn+0UF+3cr8MM3bmc/9DioC7oNK+rYFSJC3iyW37I7Ap4k3ISU2wWW7+Ol3YpGGGJFQYEzDcxNqZqBJCoV5wU8NJiDuoIcNSyMI0TSz0Tk537NKh3djbSsiPlJ/bmQQGjMIAzsZAvXNX28o/uc1UuqeNjMZJSlhJMYPdVPFKebDbHhHahSkBpaA0NL+lYs+aBBkEyzYELy/J0+T2mHZc8ve1XGpcjaJY4ntsF22zzx2wirsgl2yKhPsgT2xF/bqPDrPzpvzPh6dcSY72+wXnI9vYy2bsA==</latexit>

parallel transport 



Decomposing the Einstein equations

•The 3+1 naturally “splits” the Einstein equations into:

✴ a set which is fully defined on each spatial 
hypersurfaces (and does not involve therefore time 
derivatives): “constraint equations”

✴a set which instead relates quantities (i.e. the spatial 
metric and the extrinsic curvature) between two 
hypersurfaces: “evolution equations”



The (ADM) Einstein eqs in 3+1

These are 1+3 elliptic (second-order in space), nonlinear 
partial differential equations: constraint equations

[1]Hamiltonian 
Constraint

[3]Momentum 
Constraints

S↵� = �µ
↵�

⌫
�Tµ⌫ S = Sµ

µ

jµ = ��↵
µn

�T↵�



[6]

[6]

These are 12 first-order in time, second-order in space, 
nonlinear partial differential equations: evolution equations

Similarly

In practice we do not solve them because weakly hyperbolic.

The (ADM) Einstein eqs in 3+1



     : conformal factor  
     : conformal 3-metric 
     : trace of extrinsic curvature
     : trace-free conformal      
extrinsic curvature 
     :“Gammas” (aux. variables)

�

�̃ij

K

Ãij

�̃i

The ADM equations are then rewritten as

New evolution variables are introduced to obtain a set 
of equations that is strongly hyperbolic

are our new evolution variables



These equations are known as the conformal covariant 
Z4 formulation (CCZ4) of the Einstein equations.

3

The CCZ4 formulation, as presented in [21], introduces the conformal factor � := (det(�ij))�1/6 to define the conformal
3-metric �̃ij := �

2
�ij , with unit determinant. As in the BSSNOK system, the extrinsic curvature is decomposed into its trace

K = Kij�
ij and a trace-free part Ãij , which are promoted to primary evolution variables i.e.,
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2

✓
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The second-order version of the vacuum CCZ4 equations, including the evolution equations for the 1 + log slicing [Eq. (4g)]
and Gamma-driver shift condition [Eqs. (4h)–(4i)], is reported here for clarity, using essentially the same notation as in [21]
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TF + ↵Ãij (K � 2⇥)

�2↵ÃilÃ
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with the contracted Christoffel symbols �̃i := �̃
ij�̃i

jk = �̃
ij
�̃
kl
@l�̃jk, the shorthand �̂i := �̃i+2�̃ij

Zj , and the use of the upper
index TF to indicate a quantity whose trace has been removed.

We recall that the four-vector Zµ is an extra dynamical field specifically introduced to account for the energy and momentum
constraints of the Einstein equations [17, 18, 54]. Its temporal component is Z0 = ⇥/↵ and the indices of its spatial part may
be raised and lowered with the spatial physical metric �ij . Following [21], the Hamiltonian constraint H and the momentum
constraint Mi of the CCZ4 system read as usual, namely

H := R�KijK
ij +K

2
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where of course H = 0 = Mi in the continuum limit.

B. Introduction of the auxiliary variables and resulting ordering constraints

We introduce the following 33 auxiliary variables, which involve first spatial derivatives of the metric terms,
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An immediate consequence of (6) and the Schwarz theorem on the symmetry of second-order derivatives are the following
second order ordering constraints [55], which read:
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i
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k = 0 ,
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Since Ãij is by construction trace-free, the following additional constraint holds: �̃ij
Ãij = 0, and thus
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⇣
�̃
ij
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These equations are known as the first-order conformal 
covariant Z4 formulation (FO-CCZ4) of the Einstein equations.
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@tÃij � �
k
@kÃij � �

2


�rirj↵+ ↵ (Rij +riZj +rjZi)

�
+ �

2 1

3

�̃ij

�2


�r

k
rk↵+ ↵(R+ 2rkZ

k)

�
(12e)

= ÃkiB
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with the PDEs for the auxiliary variables given by:
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Indicated in red in the equations above are those terms that have been added to the PDE to obtain an approximate symmetrization
of the sparsity pattern of the system matrices (see discussion in Sec. II D and Fig. 1).

A few remarks should be made now. First, the function g(↵) in the PDE for the lapse ↵ controls the slicing condition, where
g(↵) = 1 leads to harmonic slicing and g(↵) = 2/↵ leads to the so-called 1+log slicing condition, see [57]. Second, in order to
obtain the advective terms along the shift vector in the evolution equations of the auxiliary variables, we have used the identities
(7). We stress that it is important to use the second-order ordering constraints (7) in an appropriate way to guarantee strong
hyperbolicity, since a naive first-order formulation of the second-order CCZ4 system that just uses the auxiliary variables in order
to remove the second-order spatial derivatives will only lead to a weakly hyperbolic system (see [55] for a detailed discussion
on the use of second-order ordering constraints in second order in space first order in time hyperbolic systems). Third, we have
found that the use of first and second-order ordering constraints alone is not enough, but that one must also literally derive the
PDE (12l) for Dkij from (4a) by explicitly exploiting the fact that Ãij is trace-free via the use of the constraint Tk by adding
Eq. (8) to Eq. (12l). Without the use of Tk in Eq. (12l), the system immediately loses its strong hyperbolicity (see also [58] for
a similar observation in the Z4c system). Once again, these important additional terms in the FO-CCZ4 system related to the
constraints (7) and (8) have been highlighted in red in Eqs. (12a)-(12m).

We also have introduced several additional constants compared to the original second-order CCZ4 system. In particular:
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with the PDEs for the auxiliary variables given by:
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Indicated in red in the equations above are those terms that have been added to the PDE to obtain an approximate symmetrization
of the sparsity pattern of the system matrices (see discussion in Sec. II D and Fig. 1).

A few remarks should be made now. First, the function g(↵) in the PDE for the lapse ↵ controls the slicing condition, where
g(↵) = 1 leads to harmonic slicing and g(↵) = 2/↵ leads to the so-called 1+log slicing condition, see [57]. Second, in order to
obtain the advective terms along the shift vector in the evolution equations of the auxiliary variables, we have used the identities
(7). We stress that it is important to use the second-order ordering constraints (7) in an appropriate way to guarantee strong
hyperbolicity, since a naive first-order formulation of the second-order CCZ4 system that just uses the auxiliary variables in order
to remove the second-order spatial derivatives will only lead to a weakly hyperbolic system (see [55] for a detailed discussion
on the use of second-order ordering constraints in second order in space first order in time hyperbolic systems). Third, we have
found that the use of first and second-order ordering constraints alone is not enough, but that one must also literally derive the
PDE (12l) for Dkij from (4a) by explicitly exploiting the fact that Ãij is trace-free via the use of the constraint Tk by adding
Eq. (8) to Eq. (12l). Without the use of Tk in Eq. (12l), the system immediately loses its strong hyperbolicity (see also [58] for
a similar observation in the Z4c system). Once again, these important additional terms in the FO-CCZ4 system related to the
constraints (7) and (8) have been highlighted in red in Eqs. (12a)-(12m).

We also have introduced several additional constants compared to the original second-order CCZ4 system. In particular:



The 12 Einstein eqss are therefore written as a system of 
58 fields. These eqs are only for the spacetime part…

4

similar to the ideas outlined in [6], makes maximum use of the first-order ordering constraints, so that the variables defining the
4-metric (↵, �i, � and �̃ij) are only evolved by a nonlinear system of ordinary differential equations (ODEs) and where the rest
of the dynamics is written in terms of non-conservative products. The coefficients of these non-conservative products are only
functions of ↵, �i, � and �̃ij and no differential terms in these variables appear. The dynamical variables of the FO-CCZ4 system
with Gamma-driver shift condition are then: Ãij , K, ⇥, �̂i, bi (the bi vector is an auxiliary field used to write the Gamma-driver
gauge condition [6, 20]) and the auxiliary variables Ak, Bi

k, Pk and Dkij . In this paper we will follow the second approach,
i.e., the final system of 58 evolution equations will consist of 11 ODEs and 47 PDEs and will have a very special structure
discussed later in Section II D.

C. Strongly hyperbolic first-order form of the CCZ4 system

The most natural first-order formulation of the CCZ4 system is non-conservative and appears in the following form discussed
later in more detail

@Q

@t
+A1(Q)

@Q

@x1
+A2(Q)

@Q

@x2
+A3(Q)

@Q

@x3
= S(Q), (9)

where one has the state vector Q, the system matrices Ai and the purely algebraic source terms S(Q). To obtain a strongly
hyperbolic first order system from the second-order CCZ4 formulation of Alic et al. [20] given by (4a)-(4i) we systematically
use the constraints (7) and (8) and make maximum possible use of the auxiliary variables Eq. (6). In other words, our first-order
CCZ4 system does not contain any spatial derivatives of ↵, �i, �̃ij and � any more, but all these terms have been moved to the
purely algebraic source term S(Q) by using (6). This has the immediate consequence that the evolution equations (10a), (10b),
(10c) and (10d) reduce to ordinary differential equations instead of partial differential equations.

Our final non-conservative first-order CCZ4 system reads as follows:
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with the PDEs for the auxiliary variables given by:
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4. use of the logarithms of ↵ and � as evolution variables, in order to guarantee positivity for ↵ and � in a simple and natural
way. These evolution quantities are consistent with the definitions of the auxiliary variables Ak and Pk.
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FIG. 1: Sparsity pattern of the system matrix A · n with n = (1, 1, 1)/
p
3 for randomly perturbed flat Minkowski spacetime using the

Gamma-driver shift condition (s = 1) and 1+ log slicing (g(↵) = 2/↵), without the use of the constraints (7) and (8) (blue dots) and with the
use of these constraints (blue & red dots). The achieved approximate symmetrization of the sparsity pattern is evident. Note also the complete
absence of non-zero entries in the first 11 lines and columns corresponding to the variables �̃ij ,↵, �i and �, which clearly highlights the special
structure of our FO-CCZ4 system that can be split into a set of pure ODEs and a reduced PDE system, as discussed in Section II D.

D. Strong hyperbolicity

As already shown briefly above, the FO-CCZ4 system (10a)-(10m) can be written in compact matrix-vector form (9), where
the complete state vector is given by QT :=

⇣
�̃ij , ln↵,�i

, ln�, Ãij ,K,⇥, �̂i
, b

i
, Ak, B

i
k, Dkij , Pk

⌘
, containing a total of 58

variables that have to be evolved in time. For clarity, we show the full sequential form of all 58 variables in vector Q in
Appendix A. The vector Q can be split as QT = (V T

,UT ) into a vector V of the 11 quantities that define the 4-metric, V T :=

(�̃ij , ln↵,�i
, ln�), and a vector U of the remaining 47 dynamic variables UT :=

⇣
Ãij ,K,⇥, �̂i

, b
i
, Ak, B

i
k, Dkij , Pk

⌘
. From

(10a)-(10m) and Fig. 1 it is obvious that the vector V is evolved in time only via ODEs of the type

@V

@t
= S0(Q), (27)

where S0(Q) contains the first 11 elements of the vector of purely algebraic source terms S(Q). Therefore, the eigenvalues
associated with the ODE subsystem for V are trivially zero. Since in our formulation of the FO-CCZ4 system we have made
maximum use of the first-order ordering constraints, Eqs. (10a)–(10m) do not contain any spatial derivative of the quantities in

With a proper combination of 
the constraints on the auxiliary 
variables the set is cast in a  
strongly hyperbolic a
Sparsity pattern of the system 
matrix A · n 

Still don’t know anything about 
properties of these equations



Solving the hydrodynamics 
equations



We are not interested in the 4-velocity     but rather its 
projection on the spatial slice, ie the 3-velocity 

3+1 splitting also for the matter

normal line
fluid worldlines

Those observers with    parallel 
to    move from one slice to 
the next along the normal to 
the slice: Eulerian observers.

They measure a fluid 3-velocity

Remember that in special relativity



To aid comparison with what you are more familiar with, the 
contravariant (upstairs) components of this vector are

Using the normalization condition
one obtains

     is the Lorentz factor

vi = �ijv
j = �ij

1
↵

✓
uj

u0
+ �j

◆

3+1 splitting also for the matter



Covariant form of the equations does not fix a formulation, 
which needs to be conservative for a numerical solution.

The hydrodynamic equations



Conservative form of the equations
The homogeneous partial differential equation

is said to be in flux-conservative (FC) form if written as

Theorems (Lax, Wendroff; Hou, LeFloch) 
• FC formulation converges to weak solution of the problem 
• NFC converges to the wrong weak solution of the problem 



where                                                                and

The Valencia (conservative) formulation

Source terms do not contain derivatives of hydrodynamical 
quantities and vanish in a flat spacetime

(Banyuls et al. 97)



The first step is the identification of suitable “conserved” 
quantities in place of the “primitive” variables             . 
After lot of algebra…

•Transformation primitive-to-conserved is algebraic.
•Transformation conserved-to-primitive is not.
•Transformation conserved-to-primitive requires numerical 
solution (root finding) at each cell: 

•This is considerable bottleneck and source of errors.

The Valencia (conservative) formulation



Follow these instructions, 
work for a decade and…



Animations: Breu, Radice, LR

M = 2⇥ 1.35M�

LS220 EOS



What we can do nowadays
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Extracting information from the EOS



Moving away from 
perfect fluids



Neutron star matter
• Astronomical observations show viscosity in neutron stars 
is very small: superfluidity needed to explain pulsar glitches.

• During inspiral stars interact gravitationally only: fluid is tidal 
distorted but only before merger.

• After merger temperatures increase (10-50 MeV) and a 
number of dissipative effects can become important.

•Viscous dissipation is normally neglected in numerical 
modelling on assumption microscopic viscosity too small. 

•Should we worry?



GW spectroscopy

merger 
frequency

f3



GW spectroscopy

f3

f3

merger 
frequency



•Possible channels of micro/macroscopic viscosity are: 
1. nuclear-matter shear viscosity
2. nuclear-matter bulk viscosity
3. neutrino shear viscosity (Guilet+ 2016)
4. “MRI-induced” viscosity (Radice2017, Shibata+2017a, b)

• Channels 3. and 4. act on timescales typical of MRI, which 
depends on B-field and very uncertain still.

• Impact of MRI on GWs depends on the value for viscous 
angular momentum transport.

• This is presently essentially unknown:                         ?

Potential viscous contributions

⌧ & 10� 100ms

Alford+(2018)



Viscous contributions: 1. shear viscosity 

T . 10MeV

• Low-temperature, electron-dominated regime, i.e. 

⌧ (e)⌘ ⇡ 1.6⇥108 s
⇣ ztyp
1 km

⌘2✓ T
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◆5
3
✓
n0
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9
✓
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xp

◆14
9

,

• High-temperature, neutrino-dominated regime, i.e. 
T & 10MeV

⌧ (⌫)⌘ ⇡ 54 s

✓
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m⇤

n

0.8mn

◆2✓ µe

2µ⌫
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⌘2✓ T
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◆2

,

Hence, shear viscosity not relevant unless neutrinos dominate 
and flow is turbulent with                          ; not likely.ztyp ⇠ 10� 100m



•Impact of bulk viscosity depends sensitively on process 
responsible for flavor re-equilibration.

•If direct-Urca dominates, bulk viscosity will be very small: 
never possible for softer EOSs, hard for stiff EOS at small T.

Viscous contributions: 2. bulk viscosity 

texp ⇠ bulk-dissipation timescale of internal energy

•If modified-Urca dominates, then 
bulk viscosity 

Ecomp ⇡ Kn̄(�n/n̄)2/18

: nuclear compressibility at     ; K n0

    : en. density variation due comp. Ecomp ⇡ Kn̄(�n/n̄)2/18

⌧⇣ ⌘ Ecomp/ (dE/dt)bulk ⇡ Kn̄ t2exp/(36⇡
2 ⇣̄)

⇡ 7ms

✓
texp
1ms

◆ ✓
K

250MeV

◆✓
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Y⇣

◆

⌧⇣ ⌘ Ecomp/ (dE/dt)bulk ⇡ Kn̄ t2exp/(36⇡
2 ⇣̄)

⇡ 7ms

✓
texp
1ms

◆ ✓
K

250MeV

◆✓
0.1MeV

Y⇣

◆

: bulk viscosity prefactor
key!



Viscous contributions

instantaneous bulk-
dissipation timescale 
can be measured in 
simulations.

right after merger 

Soon after merger bulk-dissipation 
timescale comparable with 
dynamical timescale in large 
portions of the object: cannot be 
ignored.

the time of merger [43]. Figure 3 uses a color code to show
the expansion flow time scale tflow ≡ 1=hj∇⃗ · v⃗ji ¼ ρ=Dtρ
where hi represents a time average over a 2 ms timewindow
and where Dt is the Lagrangian time derivative in
Newtonian hydrodynamics [44]. This quantity is easily
measured and, for a harmonic density oscillation, it is
related to Eqs. (7) and (8) by tdens ≈ð4Δn=n̄Þtflow. Figure 3
reports tflow 2.4 ms after the merger, where the post-merger
object is in its violent and shock-dominated transient phase,
(see [43] for a toy model of this phase). Inside the green
contour, the rest-mass density is above nuclear saturation.
The red and gray lines are temperature contours at 4 MeV
and 7 MeV, respectively. Overall, Fig. 3 shows that there
are significant regions where Eq. (8) is a valid estimate of
the dissipation time because the density is high and the
temperature is in the range that maximizes bulk viscosity
[Eq. (6)]. Since in these regions tflow ∼ 0.1–1 ms and
Δn=n̄ ∼ 1, we conclude that tdens ≈ð4Δn=n̄Þtflow ∼ tflow,
is indeed in the millisecond range.
This conclusion is reinforced by Fig. 4, which shows the

evolution of various local properties of representative tracer
particles in the inner region of themerger product [45]. From
the top panel, which reports the evolution of the temperature,
we see that all tracers pass through the temperature range of
large bulk viscosity (dark and light-gray shaded areas,
showing the regions of maximum and up to an order of
magnitude smaller dissipation) during the first few milli-
seconds. The second panel reports the evolution of the
normalized rest-mass density and shows that at early times
(t≲ 5 ms) there are variations of order 100% in the rest-
mass density on a time scale ofmilliseconds, confirming that
tdens is in that range. The third panel shows the average of
tflow for the tracers, which is at early times in the 0.1–1 ms
range, as expected from Fig. 3. Finally, the bottom panel of

Fig. 4 is a spectrogram averaging the power spectral
densities of the normalized rest-mass densities in the second
panel and showing how, throughout the first 20 ms, the
merger product has oscillation with a significant power at
frequencies in the kHz range.
The results shown in Figs. 3 and 4, combined with

Eq. (8), suggest that if direct-Urca processes remain sup-
pressed, then significant bulk viscous dissipation may
occur on time scales of a few milliseconds, which is fast
enough to affect the flow of nuclear material, and hence the
emitted gravitational-wave signal. Full numerical-relativity
simulations accounting for bulk viscosity are necessary to
quantify the amount of such dissipation and its impact on
the gravitational-wave signal.
Conclusions.—Material properties can only play a sig-

nificant role in neutron-star mergers if the relevant dis-
sipation time is comparable with or shorter than the survival
time of the post-merger object. Using typical values found
in numerical simulations, we find that shear viscosity and
thermal conductivity are not likely to play a major role in
post-merger dynamics unless neutrino trapping occurs,
which requires T ≳ 10 MeV, and ztyp ≲ 0.01 km. On the
other hand, if direct-Urca processes remain suppressed,

FIG. 3. The flow time scale tflow obtained from a numerical-
relativity simulation of two 1.35 M⊙ neutron stars [39]. The red
(4 MeV) and gray (7 MeV) contours show the boundaries of the
temperature range in which the bulk viscosity roughly takes its
maximum value, while the green contour shows the inner region
where the rest-mass density exceeds nuclear saturation density.

FIG. 4. Comoving time variation of physical properties of post-
merger material from selected tracers in the same merger as shown
inFig. 3. Toppanel: temperature [the shaded regions arewhere bulk
viscosity is maximal, see Eq. (6)]. Second panel: rest-mass density.
Third panel: flow time scale tflow. Bottom panel: spectrogram
averaging the rest-mass density evolutions in the second panel.
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Viscous contributions

the time of merger [43]. Figure 3 uses a color code to show
the expansion flow time scale tflow ≡ 1=hj∇⃗ · v⃗ji ¼ ρ=Dtρ
where hi represents a time average over a 2 ms timewindow
and where Dt is the Lagrangian time derivative in
Newtonian hydrodynamics [44]. This quantity is easily
measured and, for a harmonic density oscillation, it is
related to Eqs. (7) and (8) by tdens ≈ð4Δn=n̄Þtflow. Figure 3
reports tflow 2.4 ms after the merger, where the post-merger
object is in its violent and shock-dominated transient phase,
(see [43] for a toy model of this phase). Inside the green
contour, the rest-mass density is above nuclear saturation.
The red and gray lines are temperature contours at 4 MeV
and 7 MeV, respectively. Overall, Fig. 3 shows that there
are significant regions where Eq. (8) is a valid estimate of
the dissipation time because the density is high and the
temperature is in the range that maximizes bulk viscosity
[Eq. (6)]. Since in these regions tflow ∼ 0.1–1 ms and
Δn=n̄ ∼ 1, we conclude that tdens ≈ð4Δn=n̄Þtflow ∼ tflow,
is indeed in the millisecond range.
This conclusion is reinforced by Fig. 4, which shows the

evolution of various local properties of representative tracer
particles in the inner region of themerger product [45]. From
the top panel, which reports the evolution of the temperature,
we see that all tracers pass through the temperature range of
large bulk viscosity (dark and light-gray shaded areas,
showing the regions of maximum and up to an order of
magnitude smaller dissipation) during the first few milli-
seconds. The second panel reports the evolution of the
normalized rest-mass density and shows that at early times
(t≲ 5 ms) there are variations of order 100% in the rest-
mass density on a time scale ofmilliseconds, confirming that
tdens is in that range. The third panel shows the average of
tflow for the tracers, which is at early times in the 0.1–1 ms
range, as expected from Fig. 3. Finally, the bottom panel of

Fig. 4 is a spectrogram averaging the power spectral
densities of the normalized rest-mass densities in the second
panel and showing how, throughout the first 20 ms, the
merger product has oscillation with a significant power at
frequencies in the kHz range.
The results shown in Figs. 3 and 4, combined with

Eq. (8), suggest that if direct-Urca processes remain sup-
pressed, then significant bulk viscous dissipation may
occur on time scales of a few milliseconds, which is fast
enough to affect the flow of nuclear material, and hence the
emitted gravitational-wave signal. Full numerical-relativity
simulations accounting for bulk viscosity are necessary to
quantify the amount of such dissipation and its impact on
the gravitational-wave signal.
Conclusions.—Material properties can only play a sig-

nificant role in neutron-star mergers if the relevant dis-
sipation time is comparable with or shorter than the survival
time of the post-merger object. Using typical values found
in numerical simulations, we find that shear viscosity and
thermal conductivity are not likely to play a major role in
post-merger dynamics unless neutrino trapping occurs,
which requires T ≳ 10 MeV, and ztyp ≲ 0.01 km. On the
other hand, if direct-Urca processes remain suppressed,

FIG. 3. The flow time scale tflow obtained from a numerical-
relativity simulation of two 1.35 M⊙ neutron stars [39]. The red
(4 MeV) and gray (7 MeV) contours show the boundaries of the
temperature range in which the bulk viscosity roughly takes its
maximum value, while the green contour shows the inner region
where the rest-mass density exceeds nuclear saturation density.

FIG. 4. Comoving time variation of physical properties of post-
merger material from selected tracers in the same merger as shown
inFig. 3. Toppanel: temperature [the shaded regions arewhere bulk
viscosity is maximal, see Eq. (6)]. Second panel: rest-mass density.
Third panel: flow time scale tflow. Bottom panel: spectrogram
averaging the rest-mass density evolutions in the second panel.
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right after merger 

Soon after merger bulk-dissipation 
timescale comparable with 
dynamical timescale in large 
portions of the object: cannot be 
ignored.

htflowi :=
⌧

⇢

Dt⇢

�
=

⌧
1

r · ~v

�
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tflow . ⌧dyn =
R
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Moving away from 
hydrodynamics: ideal-MHD



• EM counterparts can boost understanding of BNSs and SGRBs.
• EM counterparts via B-fields or radioactive decay (kilonova).
• B- fields may be too weak to be “visible” in inspiral waveforms.
• Pre-merger interaction of magnetosphere may be too weak.
• Best chances are after BH formation: jet launching.

Electromagnetic counterparts

Tµ⌫ = (e+ p)uµu⌫ + pgµ⌫ + Fµ
�F⌫� � 1

4
gµ⌫ F�↵F�↵,

r⌫(F
µ⌫ + gµ⌫ ) = Iµ � nµ , r⌫(

⇤Fµ⌫ + gµ⌫�) = �nµ�,

r⌫Tµ⌫ = 0

This requires extending the equations to ideal-MHD (IMHD)

Ei = �✏ijkvjBk



J/M2 = 0.83 Mtor = 0.063M� taccr ' Mtor/Ṁ ' 0.3 s

LR+ 2011

These simulations have shown that the merger of a 
magnetised binary has all the basic features behind SGRBs



Figure 2 plots the magnetic-field energy as a function
of time for H4B15 runs, H4B14d70, and H4B16d70. Soon
after the onset of the merger, the magnetic-field energy is
steeply amplified because the KH vortices develop in

the shear layer. The growth rate is higher for the higher-
resolution runs, because the growth rate of the KH
instability is proportional to the wave number and hence
the smaller-scale vortices have the larger growth rate. We
analyze the maximum magnetic-field strength and plot the
amplification factor in the merger as a function of Δx7 in
the lower panel of Fig. 2. This clearly shows that the
amplification factor depends on the grid resolution but not
on the initial magnetic-field strength. This is consistent
with the amplification mechanism due to the KH vortices
and qualitatively consistent with the local shearing-box
simulation in Ref. [22]. The magnetic-field energy at
t− tmrg ≈ 5 ms in the high-resolution run is 40–50 times
as large as that of the low-resolution run.
In the HMNS stage, the magnetic-field strength grows

significantly in the high- and middle-resolution runs but not
in the low-resolution run. We analyze the field amplifica-
tion by foliating the HMNS in terms of the rest-mass
density, i.e., calculating the magnetic-field energy for ρ1 ≤
ρ ≤ ρ2 varying ρ1 and ρ2. The left panel of Fig. 3 plots
magnetic-field energy of a radial component for H4B15
runs with ρ1 ¼ 1011 g=cm3 and ρ2 ¼ 1012 g=cm3. We find
that it grows in the middle- and high-resolution runs but
not significantly in the low-resolution run. We also find
the high- and middle-resolution runs satisfy the criterion
λφMRI=Δx7 ≥ 10 where λφMRI is the MRI wavelength of the
fastest growing mode for the toroidal magnetic field,
whereas the low-resolution run does not satisfy this
criterion.
We fit the growth rate of the magnetic-field energy by

∝ e2σðt−tmrgÞ for 8≲ t− tmrg ≲ 14ms for the high-resolution
run and find that σ ≈ 140 Hz (for the middle-resolution run,
it is ≈130 Hz for 8≲ t− tmrg ≲ 16 ms) which is several
percents of the rotational frequency. This frequency agrees
approximately with that of the nonaxisymmetric MRI [23].
The right panel of Fig. 3 plots the magnetic-field energy

FIG. 1 (color online). Snapshots of the density, magnetic-field strength and magnetic-field lines for H4B15d70 at t− tmrg ≈ 0.0 ms
(left panel), at t− tmrg ≈ 5.5 ms (middle panel), and at t− tmrg ≈ 38.8 ms (right panel). tmrg is a time when the amplitude of the
gravitational waves becomes maximum. The left, middle, and right panels show the configuration just after the onset of the merger, for
the HMNS phase, and for a BH surrounded by an accretion torus, respectively. In each panel, the white curves are the magnetic-field
lines. In the left panel, the cyan represents the magnetic fields stronger than 1015.6 G. In the middle panel, the yellow, green, and dark
blue represent the density iso-surface of 1014, 1012, and 1010 g=cm3, respectively. In the right panel, the light and dark blue are the
density iso-surface of 1010.5 and 1010 g=cm3, respectively.
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FIG. 2 (color online). (Top) The total magnetic-field energies as
a function of time for H4B15 runs with three grid resolutions
(B15-70m, B15-110m, B15-150m), for H4B14d70 (B14-70m),
and for H4B16d70 (B16-70m). The thin vertical lines denote the
formation time of the BH. EB is calculated by a volume integral
only outside the BH horizon. (Bottom) The dependence of the
amplification factor of the maximum toroidal magnetic field in
the merger on the grid resolution for all the models.
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RAPID COMMUNICATIONS

Kiuchi+ 2014

With due differences, other groups confirm this picture

Kawamura+2016

Ruiz+ 2016
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•Ideal MHD is a good approximation in the inspiral, but not 
after the merger; match to electro-vacuum not possible.

•Main difference in resistive regime is the current, which is 
dictated by Ohm’s law but microphysics is poorly known. 

• We know conductivity    is a tensor but hardly know it as a 
scalar (prop. to density and inversely prop. to temperature).

� ! 1 ideal-MHD (IMHD)

� ! 0 electrovacuum
� 6= 0 resistive-MHD (RMHD)

Dionysopoulou, Alic, LR (2015)

�

J i = qvi +W�[Ei + ✏ijkvjBk � (vkE
k)vi] ,

• A simple prescription with scalar (isotropic) conductivity:

Beyond IMHD: Resistive Magnetohydrodynamics

phenomenological prescription 

� = f(⇢, ⇢min)



RMHDIMHD



New methods in relativistic 
hydrodynamics/MHD

see Dum
bser’s ta

lk!



• Present state-of-the-art codes can handle in 3D:
✴ GRHD
✴ GRMHD (ideal and resistive)
✴ Sophisticated equations of state:  
✴ Neutrino emission/absorption

• Standard numerical methods are:
✴ finite difference for Einstein eqs. (also spectral methods)

✴ finite-difference, finite-volume for HD/MHD

State of the art

p = p(⇢, ✏, Ye, . . .)
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• Example of dependence of waveform on resolution: clear 
phase difference is observable during inspiral.

• Even larger differences appear after merger.



WP6.A

Convergence order okay during inspiral, breaks down after merger (t>2000)

High order methods essential for comparing with observational data

Grand Challenges in Astrophysics 6

Most et al. in prep

• Modern codes have “low” convergence orders before the 
inspiral and very low convergence orders after merger.

•Numerical methods are sophisticated and require intense 
exchange of information across neighbouring cells.

• As a result: codes scale poorly beyond few thousands cores



• Slowly but surely the consensus is that most promising 
methods are discontinuous Galerkin methods

• Advantages are:
✴ arbitrary order of accuracy
✴ exponential convergence
✴ natural treatment of shocks
✴ in ADER approach algebra is fully local (boundary 
exchanges limited to the minimum)

• At least four codes have been developed since initial work 
in 1+1 D (Radice, LR 2011)

More advanced methods



DG methods in a nutshell

Discontinuous Galerkin methods 473

The one-dimensional computational domain I is partitioned into the union of a number of
intervals Ij , i.e., I =

S
j
Ij , with Ij := [xj�1/2, xj+1/2],8 so that Eq. (9.1) can now be

rewritten on the spatial reference element E = [0, 1] as

@tU + @⇠F
⇤(U) = 0 . (10.10)

In the DG approach, the p-th order accurate solution approximating U can be expanded over
a polynomial basis as

U j(⇠, t) =
p�1X

k=0

Ûk(t) k(⇠) , (10.48)

where the basis functions  k contain the spatial dependence only and belong to a finite func-
tional space Vh, while the coefficients Ûk(t) contain the temporal dependence only and are
again called the degrees of freedom. A weak formulation of Eq. (10.10) is now obtained after
multiplying it by a test function9  l 2 Vh, and then integrating over the reference element E ,
to obtain Z 1

0
( l@tU + l@⇠F

⇤)d⇠ = 0 . (10.49)

Integration by parts in space then gives
Z 1

0
 l@tU d⇠ +

h
 lF

⇤
i1
0
�
Z 1

0
F

⇤
d⇠ l d⇠ = 0 , (10.50)

where the representation in terms of the test functions  l, which usually have jumps at the
edges of the reference element E , is ultimately responsible for jumps in the solution itself
and explain why the method is qualified as “discontinuous”. Substituting (10.48) into (10.50)
yields the expression

p�1X

k=0

✓Z 1

0
 l k d⇠

◆
dtÛk +

h
 lF

⇤
i1
0
�

Z 1

0
F

⇤(U(⇠, t)) d⇠ l d⇠ = 0 , (10.51)

which represents a system of (coupled) ordinary differential equations in time for the degrees
of freedom Û l(t). The advantage of this procedure is that the basis functions  l are known
analytically, so that also their derivatives, d⇠ l, are also known analytically. As a result, the
integral in the first term in (10.51) is analytic and needs to be calculated only once. As an
example, let us consider the case of a fourth-order representation, namely with p = 3, of the
function U(⇠, t) with respect to the modal basis of orthogonal Legendre polynomials already
introduced in Section 10.2.1, [cf., Eqs. (10.12)] i.e.,

U(⇠, t) = Û0(t) 0(⇠) + Û1(t) 1(⇠) + Û2(t) 2(⇠) + Û3(t) 3(⇠) . (10.52)

8Note the distinction between the interval Ii of the stencil Sl
j introduced in Eq. (10.1) and the interval Ij of the

one-dimensional grid.
9In general, the functional space Vh of functions over which U is expanded can be different from that of the test

functions  l. When this happens the method is more appropriately referred to as the Petrov–Galerkin method.

Take representative hyperbolic 
eq. in 1+1D

Discontinuous Galerkin methods 473

The one-dimensional computational domain I is partitioned into the union of a number of
intervals Ij , i.e., I =

S
j
Ij , with Ij := [xj�1/2, xj+1/2],8 so that Eq. (9.1) can now be

rewritten on the spatial reference element E = [0, 1] as

@tU + @⇠F
⇤(U) = 0 . (10.10)

In the DG approach, the p-th order accurate solution approximating U can be expanded over
a polynomial basis as

U j(⇠, t) =
p�1X

k=0

Ûk(t) k(⇠) , (10.48)

where the basis functions  k contain the spatial dependence only and belong to a finite func-
tional space Vh, while the coefficients Ûk(t) contain the temporal dependence only and are
again called the degrees of freedom. A weak formulation of Eq. (10.10) is now obtained after
multiplying it by a test function9  l 2 Vh, and then integrating over the reference element E ,
to obtain Z 1

0
( l@tU + l@⇠F

⇤)d⇠ = 0 . (10.49)

Integration by parts in space then gives
Z 1

0
 l@tU d⇠ +

h
 lF

⇤
i1
0
�
Z 1

0
F

⇤
d⇠ l d⇠ = 0 , (10.50)

where the representation in terms of the test functions  l, which usually have jumps at the
edges of the reference element E , is ultimately responsible for jumps in the solution itself
and explain why the method is qualified as “discontinuous”. Substituting (10.48) into (10.50)
yields the expression
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⇤(U(⇠, t)) d⇠ l d⇠ = 0 , (10.51)

which represents a system of (coupled) ordinary differential equations in time for the degrees
of freedom Û l(t). The advantage of this procedure is that the basis functions  l are known
analytically, so that also their derivatives, d⇠ l, are also known analytically. As a result, the
integral in the first term in (10.51) is analytic and needs to be calculated only once. As an
example, let us consider the case of a fourth-order representation, namely with p = 3, of the
function U(⇠, t) with respect to the modal basis of orthogonal Legendre polynomials already
introduced in Section 10.2.1, [cf., Eqs. (10.12)] i.e.,

U(⇠, t) = Û0(t) 0(⇠) + Û1(t) 1(⇠) + Û2(t) 2(⇠) + Û3(t) 3(⇠) . (10.52)

8Note the distinction between the interval Ii of the stencil Sl
j introduced in Eq. (10.1) and the interval Ij of the

one-dimensional grid.
9In general, the functional space Vh of functions over which U is expanded can be different from that of the test

functions  l. When this happens the method is more appropriately referred to as the Petrov–Galerkin method.

Integrate over reference spacetime 
volume and integrate by parts
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The one-dimensional computational domain I is partitioned into the union of a number of
intervals Ij , i.e., I =

S
j
Ij , with Ij := [xj�1/2, xj+1/2],8 so that Eq. (9.1) can now be

rewritten on the spatial reference element E = [0, 1] as

@tU + @⇠F
⇤(U) = 0 . (10.10)

In the DG approach, the p-th order accurate solution approximating U can be expanded over
a polynomial basis as

U j(⇠, t) =
p�1X

k=0

Ûk(t) k(⇠) , (10.48)

where the basis functions  k contain the spatial dependence only and belong to a finite func-
tional space Vh, while the coefficients Ûk(t) contain the temporal dependence only and are
again called the degrees of freedom. A weak formulation of Eq. (10.10) is now obtained after
multiplying it by a test function9  l 2 Vh, and then integrating over the reference element E ,
to obtain Z 1

0
( l@tU + l@⇠F

⇤)d⇠ = 0 . (10.49)

Integration by parts in space then gives
Z 1

0
 l@tU d⇠ +

h
 lF

⇤
i1
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�
Z 1

0
F

⇤
d⇠ l d⇠ = 0 , (10.50)

where the representation in terms of the test functions  l, which usually have jumps at the
edges of the reference element E , is ultimately responsible for jumps in the solution itself
and explain why the method is qualified as “discontinuous”. Substituting (10.48) into (10.50)
yields the expression
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⇤(U(⇠, t)) d⇠ l d⇠ = 0 , (10.51)

which represents a system of (coupled) ordinary differential equations in time for the degrees
of freedom Û l(t). The advantage of this procedure is that the basis functions  l are known
analytically, so that also their derivatives, d⇠ l, are also known analytically. As a result, the
integral in the first term in (10.51) is analytic and needs to be calculated only once. As an
example, let us consider the case of a fourth-order representation, namely with p = 3, of the
function U(⇠, t) with respect to the modal basis of orthogonal Legendre polynomials already
introduced in Section 10.2.1, [cf., Eqs. (10.12)] i.e.,

U(⇠, t) = Û0(t) 0(⇠) + Û1(t) 1(⇠) + Û2(t) 2(⇠) + Û3(t) 3(⇠) . (10.52)

8Note the distinction between the interval Ii of the stencil Sl
j introduced in Eq. (10.1) and the interval Ij of the

one-dimensional grid.
9In general, the functional space Vh of functions over which U is expanded can be different from that of the test

functions  l. When this happens the method is more appropriately referred to as the Petrov–Galerkin method.

This is a system of (coupled) ordinary differential equations in 
time for the degrees of freedom Û l(t)
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Discontinuous Galerkin methods 473

The one-dimensional computational domain I is partitioned into the union of a number of
intervals Ij , i.e., I =

S
j
Ij , with Ij := [xj�1/2, xj+1/2],8 so that Eq. (9.1) can now be

rewritten on the spatial reference element E = [0, 1] as

@tU + @⇠F
⇤(U) = 0 . (10.10)

In the DG approach, the p-th order accurate solution approximating U can be expanded over
a polynomial basis as

U j(⇠, t) =
p�1X

k=0

Ûk(t) k(⇠) , (10.48)

where the basis functions  k contain the spatial dependence only and belong to a finite func-
tional space Vh, while the coefficients Ûk(t) contain the temporal dependence only and are
again called the degrees of freedom. A weak formulation of Eq. (10.10) is now obtained after
multiplying it by a test function9  l 2 Vh, and then integrating over the reference element E ,
to obtain Z 1

0
( l@tU + l@⇠F

⇤)d⇠ = 0 . (10.49)

Integration by parts in space then gives
Z 1

0
 l@tU d⇠ +

h
 lF

⇤
i1
0
�
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0
F

⇤
d⇠ l d⇠ = 0 , (10.50)

where the representation in terms of the test functions  l, which usually have jumps at the
edges of the reference element E , is ultimately responsible for jumps in the solution itself
and explain why the method is qualified as “discontinuous”. Substituting (10.48) into (10.50)
yields the expression
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⇤(U(⇠, t)) d⇠ l d⇠ = 0 , (10.51)

which represents a system of (coupled) ordinary differential equations in time for the degrees
of freedom Û l(t). The advantage of this procedure is that the basis functions  l are known
analytically, so that also their derivatives, d⇠ l, are also known analytically. As a result, the
integral in the first term in (10.51) is analytic and needs to be calculated only once. As an
example, let us consider the case of a fourth-order representation, namely with p = 3, of the
function U(⇠, t) with respect to the modal basis of orthogonal Legendre polynomials already
introduced in Section 10.2.1, [cf., Eqs. (10.12)] i.e.,

U(⇠, t) = Û0(t) 0(⇠) + Û1(t) 1(⇠) + Û2(t) 2(⇠) + Û3(t) 3(⇠) . (10.52)

8Note the distinction between the interval Ii of the stencil Sl
j introduced in Eq. (10.1) and the interval Ij of the

one-dimensional grid.
9In general, the functional space Vh of functions over which U is expanded can be different from that of the test

functions  l. When this happens the method is more appropriately referred to as the Petrov–Galerkin method.

Expand solution         at each 
cell           in terms of known 
polynomial basis (Legendre)

U j(t)
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•Jumps are initial conditions for 
Riemann problems.
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The one-dimensional computational domain I is partitioned into the union of a number of
intervals Ij , i.e., I =

S
j
Ij , with Ij := [xj�1/2, xj+1/2],8 so that Eq. (9.1) can now be

rewritten on the spatial reference element E = [0, 1] as

@tU + @⇠F
⇤(U) = 0 . (10.10)

In the DG approach, the p-th order accurate solution approximating U can be expanded over
a polynomial basis as

U j(⇠, t) =
p�1X

k=0

Ûk(t) k(⇠) , (10.48)

where the basis functions  k contain the spatial dependence only and belong to a finite func-
tional space Vh, while the coefficients Ûk(t) contain the temporal dependence only and are
again called the degrees of freedom. A weak formulation of Eq. (10.10) is now obtained after
multiplying it by a test function9  l 2 Vh, and then integrating over the reference element E ,
to obtain Z 1

0
( l@tU + l@⇠F

⇤)d⇠ = 0 . (10.49)

Integration by parts in space then gives
Z 1

0
 l@tU d⇠ +
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⇤
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⇤
d⇠ l d⇠ = 0 , (10.50)

where the representation in terms of the test functions  l, which usually have jumps at the
edges of the reference element E , is ultimately responsible for jumps in the solution itself
and explain why the method is qualified as “discontinuous”. Substituting (10.48) into (10.50)
yields the expression
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⇤(U(⇠, t)) d⇠ l d⇠ = 0 , (10.51)

which represents a system of (coupled) ordinary differential equations in time for the degrees
of freedom Û l(t). The advantage of this procedure is that the basis functions  l are known
analytically, so that also their derivatives, d⇠ l, are also known analytically. As a result, the
integral in the first term in (10.51) is analytic and needs to be calculated only once. As an
example, let us consider the case of a fourth-order representation, namely with p = 3, of the
function U(⇠, t) with respect to the modal basis of orthogonal Legendre polynomials already
introduced in Section 10.2.1, [cf., Eqs. (10.12)] i.e.,

U(⇠, t) = Û0(t) 0(⇠) + Û1(t) 1(⇠) + Û2(t) 2(⇠) + Û3(t) 3(⇠) . (10.52)

8Note the distinction between the interval Ii of the stencil Sl
j introduced in Eq. (10.1) and the interval Ij of the

one-dimensional grid.
9In general, the functional space Vh of functions over which U is expanded can be different from that of the test

functions  l. When this happens the method is more appropriately referred to as the Petrov–Galerkin method.
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✴General-relativistic HD and MHD combine complexity of 
solution of Einstein eqs with those of hydrodynamics.

✴As in heavy-ion collisions: developments are driven by 
comparison with observations (now possible!).

✴ Several challenges have been tackled: 3D, HD/MHD, resistive 
effects, EOSs, neutrinos, etc.

✴ Dynamics of binary neutron stars is sufficiently accurate and 
robust to compare with observations and make predictions.

✴ Many points remain open:
✦ improve formulation of Einstein/HD/MHD eqs.
✦ improve description of dissipative effects: could be important.
✦ improve description of EM effects: essential for astrophysics.
✦ improve convergence order and scalability of codes: DG 

Conclusions

Future is exciting!


