ECT* Workshop @ Trento May. 10, 2018

Anomalous-Viscous Fluid Dynamics (AVFD)

Jinfeng Liao

Indiana University, Physics Dept. & CEEM

Research Supported by U.S. NSF & DOE

Chinese Physics C Vol. 42, No. 1 (2018) 011001 **arXiv:1611.0** 4586 Quantifying the chiral magnetic effect from anomalous-viscous fluid dynamics * Yin Jiang(姜寅)¹ Shuzhe Shi(施舒哲)² Yi Yin(尹伊)³ Jinfeng Liao(廖劲峰)^{2,4;1)} ¹ School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, China ² Physics Department and Center for Exploration of Energy and Matter, Indiana University, 2401 N Milo B. Sampson Lane, Bloomington, IN 47408, USA ³ Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA ⁴ Institute of Particle Physics and Key Laboratory of Quark & Lepton Physics (MOE), Central China Normal University, Wuhan 430079, China Manals of Physics 394 (2018) 50-72 Shuzhe Shi

Contents lists available at ScienceDirect

Annals of Physics

journal homepage: www.elsevier.com/locate/aop

Anomalous chiral transport in heavy ion collisions from Anomalous-Viscous Fluid Dynamics

ANNALS

PHYSICS

Shuzhe Shi ^{a,}*, Yin Jiang ^{b,c}, Elias Lilleskov ^{d,a}, Jinfeng Liao ^{a,e,*}

arXiv:1711.02496

(PhD @ IUB) Other collaborators: Yin Jiang (Beihang), Yi Yin (MIT), Elias Lilleskov (REU);

Hui Zhang, Defu Hou (CCNU).

Exciting Progress: See Recent Reviews

Prog. Part. Nucl. Phys. 88, 1 (2016)[arXiv:1511.04050 [hep-ph]].

J. Liao, Pramana 84, no. 5, 901 (2015) [arXiv:1401.2500 [hep-ph]].

Outline

- Introductory Discussions
- The AVFD Framework
- Quantitative Results from AVFD
- Isobaric Collisions
- Summary & Outlook

Introductory Discussions

Chiral Symmetry & SSB

Classical symmetry:

 $egin{aligned} \mathcal{L} &= i ar{\Psi} \gamma^\mu \partial_\mu \Psi \ \mathcal{L} & o i ar{\Psi}_L \gamma^\mu \partial_\mu \Psi_L + i ar{\Psi}_R \gamma^\mu \partial_\mu \Psi_R \ \Lambda_A &: \Psi o e^{i \gamma_5 heta} \Psi \ \partial_\mu J_5^\mu &= 0 \end{aligned}$

QCD & Chiral Symmetry

* Spontaneously broken chiral symmetry in the vacuum is a fundamental property of QCD.

* A chirally symmetric quark-gluon plasma at high temperature is an equally fundamental property of QCD!

Could we see direct experimental evidence for that?

Chiral Anomaly

Chiral anomaly is a fundamental aspect of QFT with chiral fermions.

Classical symmetry:

$$egin{aligned} \mathcal{L} &= i\Psi\gamma^\mu\partial_\mu\Psi\ \mathcal{L} & o iar{\Psi}_L\gamma^\mu\partial_\mu\Psi_L + iar{\Psi}_R\gamma^\mu\partial_\mu\Psi_R\ && \Lambda_A:\Psi o e^{i\gamma_5 heta}\Psi\ && \partial_\mu J_5^\mu = 0 \end{aligned}$$

Broken at QM level:

$$\begin{aligned} \partial_{\mu}J_{5}^{\mu} &= C_{A}\vec{E}\cdot\vec{B} \\ \frac{dQ_{5}}{dt} &= \int_{\vec{x}}C_{A}\vec{E}\cdot\vec{B} \end{aligned}$$

* C_A is universal anomaly coefficient* Anomaly is intrinsically QUANTUM effect

[e.g. pi0—> 2 gamma]

Landau Levels in Magnetic Field

 $E_n^2 = p_z^2 + 2nB$

Lowest-Landau-Level (LLL): LLL is chiral!

Chiral Anomaly

Chiral anomaly is a fundamental aspect of QFT with chiral fermions.

$$\partial_{\mu}J_{5}^{\mu} = C_{A}\vec{E}\cdot\vec{B}$$

 $dQ_{5}/dt = \int_{\vec{x}}C_{A}\vec{E}\cdot\vec{B}$

$$J_5^\mu = J_R^\mu - J_L^\mu$$

Illustrated with Lowest-Landau-Level (LLL) picture: the LLL is chiral!

The Chiral Magnetic Effect

Intuitive Picture of CME

Intuitive understanding of CME:

Magnetic polarization —> correlation between micro. SPIN & EXTERNAL FORCE

Chiral imbalance —> correlation between directions of SPIN & MOMENTUM

Transport current along magnetic field

 $\vec{J} = \frac{Q^2}{2-2} \,\mu_5 \,\vec{B}$

From Anomaly to CME

One may recognize deep connection between CME & anomaly.

$$\partial_{\mu}J_{5}^{\mu} = C_{A}\vec{E}\cdot\vec{B}$$

 $\vec{\mathbf{J}} = \sigma_{5}\mu_{5}\vec{\mathbf{B}}$

The CME conductivity is

- * fixed entirely by quantum anomaly
- * T-even, non-dissipative

* universal from weak to strong coupling

We need to modify hydrodynamics!

New Phase & New Extreme Conditions

The quark-gluon plasma is a type of CHIRAL MATTER, with (approximately) chiral quarks.

Heavy ion collision environment: extremely strong magnetic field and fluid rotation!

[Kharzeev 2004; Kharzeev, McLerran, Warringa, 2008;...]

Summarizing Exp. Search Status

Main challenge: flow-driven background v.s. CME signal

Vary v2 for fixed B: AuAu v.s. UU; Varying event-shape; 2-component subtraction.

Vary B for fixed v2: Isobaric collisions with RuRu v.s. ZrZr Our best guess for now:

Encouraging experimental evidence for CME in QGP — can we quantitatively compute CME signal?

The AVFD Framework

From Micro. Laws To Macro. Phenomena

Micro. Laws:

Macro. Phenomena:

Symmetry; Lagrangian; Conservation laws; Thermodynamics; Phase transitions; Transport; Hydrodynamics;

Would chiral anomaly, usually considered at microscopic level, manifest itself MACROSCOPICALLY in a many-body system of chiral fermions? If so, how?

Many-body physics of chiral anomaly: General interest and broad impact! e.g. semimetals, neutrinos in supernovae, Compact stars, cosmology, plasma physics, ...

Emergence in Hydrodynamic Context

Symmetry	Micro. Conservation Law	Emergent Macro. Hydro
translational invariance	energy and momentum conserved	$\partial_{\mu}T^{\mu\nu} = 0$
phase invariance	charge conserved	$\partial_{\mu}J^{\mu}=0$

 $\mathcal{L} \to \mathcal{L}$

Emergence in Hydrodynamic Context

Symmetry	Micro. Conservation Law	Emergent Macro. Hydro
translational invariance	energy and momentum conserved	$\partial_{\mu}T^{\mu\nu} = 0$
phase invariance	charge conserved	$\partial_{\mu}J^{\mu}=0$

WHAT ABOU "HALF"-SYMMETRY??? i..e ANOMALY?!

- classical symmetry that is broken in quantum theory

Hydrodynamics That Knows Left & Right

Microscopic quantum anomaly emerges as macroscopic anomalous hydrodynamic currents!

It would be remarkable to actually "see" this new hydrodynamics at work in real world materials!

AVFD: Anomalous-Viscous Fluid Dynamics

The AVFD Framework

[[]We now also have MUSIC-AVFD!]

The AVFD Framework

The Charge Separation from AVFD

B field ⊗ μ₅ ⇒ current ⇒ dipole (charge separation) dN_±/dφ ∝ 1 + 2 a_{1±}sin(φ – ψ_{RP}) + ...

The Charge Separation from AVFD

B field $\otimes \mu_5 \Rightarrow \text{current} \Rightarrow \text{dipole} (\text{charge separation})$ $dN_{\pm}/d\phi \propto 1 + 2 a_{1\pm} \sin(\phi - \psi_{RP}) + ...$

 $H_{SS}-H_{OS} \leftrightarrow 2(a_1)^2$

Detailed Results from AVFD

arXiv:1611.04586

arXiv:1711.02496

The Influence of the Magnetic Field

Strong influence by B field evolution; Significant theoretical uncertainty!

The Axial Charge Initial Condition

Very sensitive to initial axial charge; Significant theoretical uncertainty!

The Influence of the Viscous Transport

First calibration for the influence of the viscous transport on charge separation signal!

AVFD Predictions v.s Experimental Data

Table 1. Centrality dependence of magnetic field peak strength and the initial chirality imbalance. The n_5/s shown here is obtained with a saturation scale $Q_s^2 = 1.25 \text{GeV}^2$.

Isobaric Collisions

arXiv:1611.04586

arXiv:1711.02496

Using Isobaric Collisions for CME Search

The Magnetic Fields and Signals of Isobars

Summary & Outlook

Summary

Relaxation of Anomalous Current ?

Electric Field Induced Transport

Interesting to explore E/B induced transport in CuAu collisions

Toward EBE-AVFD: Stay Tuned!

Backup Slides

Strong EM Fields in Heavy Ion Collisions

• Strongest B field (and strong E field as well) naturally arises! [Kharzeev,McLerran,Warringa;Tuichin; Skokov,et al; Bzdak-Skokov; Deng-Huang; Bloczynski-Huang-Zhang-Liao; Skokov-McLerran; ...]

• "Out-of-plane" orientation (approximately)

Experimental Observable

charge separation \Rightarrow charge dept. two-particle correlation

$$\gamma = \langle \cos(\varDelta\phi_i + \varDelta\phi_j) \rangle = \langle \cos\varDelta\phi_i \cos\varDelta\phi_j \rangle - \langle \sin\varDelta\phi_i \sin\varDelta\phi_j \rangle$$

- $\delta = \langle \cos(\varDelta \phi_i \varDelta \phi_j) \rangle = \langle \cos \varDelta \phi_i \cos \varDelta \phi_j \rangle + \langle \sin \varDelta \phi_i \sin \varDelta \phi_j \rangle$
- $\gamma = \kappa v_2 F H$ F: Bulk Background $\delta = F + H$ H: Possible Pure CME Signal = $(a_{1,CME})^2$

The Vector Charge Initial Condition

Insensitive to nonzero vector charge density

The Influence of the Resonance Decays

Considerable impact from resonance decays; Must be included for quantitative results!

Toward MUSIC-AVFD MUSIC(2+1) + AVFD versus VISH(2+1) + AVFD

Special thanks to: MUSIC by McGill-BNL Group

Pre-Hydro CME ??

