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INntroguction

Hydronization: the process of reaching a
stage of evolution where “hydrodynamics

WOrks”.

* Proceeds by the decay of transients,
leaving long-lived excitations.

e \ery convenient to use special variables,
which behave universally at late times,
leading to attractor behaviour.

For SYM, transients exhibit
damped-oscillatory behaviour, which
can be seen In numerical solutions at

INntermediate times.
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Out there, where most non-hydro
modes have decayed



Role of the gradient expansion
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Navier-Stokes theory
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needs a “UV-completion” to cure its acausality (MIS, BRSSS, aHYDRO, ...)
e This introduces non-hydrodynamic modes which act as a regulator

 No unigue way to do this

 Domain of applicability of hydrodynamics: regulator independence



Standard approach: MIS, BRSSS, ... can be matched to the
least damped QNM
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The choice determines the non-hydrodynamic sector (transient behaviour)

The gradient expansion: matching hydrodynamics to a microscopic theory

Bonus: divergent gradient expansions carry information about the non-hydro sector.



Bjorken flow

* As a function of the “clock variable” w = 71" ~ 7/7-7T the pressure anisotropy
Pr —Pr,

D
IS very special: it shows universal behaviour at late times:
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independently of initial conditions.
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 Because of the simple scaling form this takes, one can further rescale
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so the leading behaviour is even independent of the model.

* [or this observable a special attractor solution exists.



The attractor in BRSSS hydrodynamics

Evolution equation
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12 3w 8C,

N terms of dimensionless transport coefficients
C.. =Tr., C,=mn/s, Cx, =T\/n

Gradient expansion solution
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Note: the attractor depends on the values of /
0

the transport coefficients.

T
Question: how closely can one model the

attractor of a microscopic theory?
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Asymptotic behaviour in BRSSS

40 9 Singularities of the analytic
continuation of the Borel
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Borel transform method:

* Branch point location determined by 7.

n=1 * Cannot integrate over the real line

Aresummed (W) = w /C d§ e Ap(€) » Complex ambiguity



The ambiguity Is resolved by incorporating “trans-series sectors”
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* [he exponentially-suppressed corrections: transient, non-nydrodynamic modes.
* The coefficients in the trans-series sectors are related by resurgence relations.

 [he complex trans-series parameter c is partially fixed by consistency. The
remaining freedom is a single real integration constant.

 The “perturbative” sector has no memory of the initial conditions

* The exponential decay shows how the solution “forgets” the initial conditions.



Borel summation with oscillating transients

N=4 SYM , D HJSW hydro
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* The pattern of divergence in SYM ang HJSW hydro is almost identical
 No singularities on the real axis; ignore instanton sectors

e |dea: use HIJSW hydro as a testbed for the Borel summation of the hydro series



Borel sum in HJSW

We adopt HJSW as a testing ground:

Attractor
e Use 240 terms of the series 4y Borel
* [he result can be compared to the L3
numerically determined attractor Tl
o

 The summation breaks down forw < 0.3, <«
but gets better for larger values of w.

» Could be improved by including
trans-series sectors, but this would
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require determining appropriate values of
frans series parameters.

Next: proceed in the same way to sum the
series for N=4 SYM



Attractor in N=4 SYM

Hydro 1 —ydro-
6= Numerics Numerics
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* Very early hydronization 9530w — 276
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* Pressure anisotropy at hydrodynamization high 3975w? — 570w + 120

* [he difference between the attractor and hydro-1 is parameter dependent
* Behaviour for small w hard to get this way



‘\‘ MIS attractor
\ SYM attractor
\ Gradient expansion, order1
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Comparing attractors: the BRSSS attractor tracks the SYM attractor very closely: is
reaches the MIS attractor as soon as the calculation makes sense.




Seeing the transients in SYM plasma

The QNM can be seen in the Borel-Pade plot. They can also be seen directly in
numerical solutions of Bjorken flow obtained using AdS/CFT.

The form of the trans-series correction IS

A(w) ~ AH(w)+e_%91ww5 d_, (w) cos (%QR@U — By log(w)) + ®_ (w) sin (§QRUJ — By log(w))_
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IS the “1-Instanton” sector series, which we can
approximate by a constant.

But we do not really know the universal part.




To see that the transient, damped oscillations can be resolved with the existing
numerical methods we can consider pairs of solutions; their difference will not
involve the universal, hydrodynamic part:
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Ay (w)—As(w) ~ e~

Here all the parameters are fixed y
apart from the two amplitudes, which .
reflect the initial conditions and differ — A A
from one pair of solution to another. o :
The two amplitudes appearing in the O AN
formula above can then be fitted to ) P\
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Alternatively, instead of looking at differences of solutions, we can try to subtract
the universal part (“hydro to all orders”) by estimating it using the gradient
expansion.

Can we just remove the universal part 6
by subtracting first or second order of 4

the gradient expansion?
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Instead, we can try to use the estimate of “all-order hydro” provided by the attractor
calculated as the Borel sum of the truncated gradient expansion:

A(w)—A* (w) ~ e~ 5w, Br | 1(+) og (;QRw — B log(w)> + ) gin (;QRU} — B} log(w)>
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summary

Hydrodynamics can be formulated based on very general arguments and
matched to microscopic theories by comparing gradient expansions.

The emergence of hydrodynamic behaviour is governed by the decay of
non-nydrodynamic modes rather than local equilibration.

Universal observables which exhibit attractor benhaviour provide a clean
way to study the decay of transients.

The naive Borel sum provides a reasonable approximation to the attractor.

The least-damped QNM can be seen directly in the late time behaviour of
numerical solutions of Bjorken flow.



