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Fluid dynamics in the relativistic regime

Energy-momentum
conservation Conserved charge

vV, T" =0 VuJ" =0

Einstein's equations
1
R, — §Rgm, + Agp, = 81G Ty,

An open problem in physics and mathematics since 1940's:

Prove that the system Einstein + viscous fluid:

- Causal + other properties (e.g, linear stability)

- Mathematically well-posed




Ideal (Euler) relativistic fluid dynamics

Energy-momentum tensor Conserved charge

T = eutu” + P(e,n) A" JH = nut

A,[w = Guv + Uy Uy

Assuming that speed of sound and ¢+ P > 0 uyut = —1

« System is well-posed (Sobolev space H® with s > 5/2)

- Existence, uniqueness, continuous dependence on initial data

» Causal (domain of dependence property in the sense of relativity)



Remember that a system of PDE's is well-posed (Hadamard) when:

1) A solution exists. http://www.math.ucla.edu/~tao/Dispersive/

2) The solution is unique.

3) The solution depends continuously on initial data (e.g., initial
conditions, boundary conditions).

Ex.: v, +u=>0
a) u(0) = 0,u(5) = 1 = unique solution u(xr) = sin(z)
b) u(0) = 0, u(7) = 1 = no solution
¢) u(0) = 0,u(mr) = 0 = infinitely many solutions: u(x) = Asin(z)

Ex.:
(= u,., heat equation ]
¢ u(0,t) =u(l,t) =0 boundary conditions } well-posed
| u(z, 0) = ug(z) initial conditions )
- . %
U = —u backwards heat equation :
t e 4 no continuous dependence
« u(0,t) =u(l,t) boundary conditions .
- " on initial data
u(z,0) = uy(x) initial conditions 4


http://www.math.ucla.edu/~tao/Dispersive/

Mathematical definition of causality (relativity)

See, e.g., Choquet-Bruhat, Wald

Consider a system of (linear or nonlinear) PDE's
N unknowns

Pgp™ =0 {5}y _,

The system is causal if for any point x in the future of

t »™ (z) depends only on J~(z)NX

causal past

FIG. 1: (color online) Illustration of causality. In curved
spacetime J~ (z) looks like a distorted light-cone opening
to the past (blue region); in flat spacetime the cone would
be straight (dotted line). Points inside J~(z) can be
joined to a point z in spacetime by a causal past directed
curve (e.g. the red line). The Cauchy surface ¥ supports
the initial data and the value of the field ¢(z) depends
only on the initial data on J~ (z) N %.




Fluid dynamics in the relativistic regime

 Einstein + Euler equations: Locally well-posed and causal

Choquet-Bruhat 1958, 1966
Lichnerowicz, 1967

 Einstein + Euler equations: Not globally well-posed (schocks occur)

Christodoulou, 2007

What about dissipative fluids? 7+ =1#"  + 7+

idea

(a) Einstein+viscous fluid admit existence + uniqueness of solutions?
(b) Causality?

(c) Stability (at least in the linear regime)?

(d) Does the solution really describe the physics of the system?




Energy-momentum tensor

THY = eubu” + PAFY — not”

Landau
1950's

Conservation law

V. TH =0

This theory™ is acausal  Nonlinear diffusion-like equations
(proven by Pichon, 1965) n 5

oy = —Vu+...
s

also unstable around global equilibrium
(see Hiscock, Lindblom, 1984)

Coupling to Einstein's eqs???
7




Causality does not imply (linear) stability

T = Tijeu + (A + E) 9P (VAC?) -

; > (VeC? +vPee)

4

Dynamic velocity C'* = (e + P)u® Choquet-Bruhat, 2006

V,TH =0  — Principal part: 2(v.vec? +v,voce) + ()\ - %u) VA, C.
Characteristic matrix: %XQX“Cﬁ FaX XPCY a:= % Yy

Characteristic determinant: 2 (2 +a) (x°x.)* =mmsp CAUSAL

However, this system is linearly unstable around

global equilibrium
Bemfica, Disconzi, JN, 2017 8



A brief review of progress in relativistic fluids

 Divergence type theories (Geroch, Lindblom, etc).
* Israel-Stewart-type theories (see Denicol, Grossi, Rischke's talks).

- Derivation from kinetic theory (see, e.g., DNMR 2012).
- Causality only established in the linear regime.

- No proof (yet?) of well-posedness + causality(nonlinear)+Einstein.
- Display causality issues in the nonlinear regime (HL 1988).

* Lichnerowicz (Einstein+viscous fluid): Causality + well-posedness

_ Proven by M. Disconzi, 2014
- Linearly unstable



A new approach to relativistic viscous hydrodynamics

Bemfica, Disconzi, JN, arXiv:1708.06255 [gr-qc], Disconzi, arXiv:1708.06572 [math.AP]

In the following | will focus on conformally invariant systems and:

(a) Develop a new way to extract a viscous hydrodynamics from
conformal kinetic theory.

(b) Prove existence and uniqueness of the solutions of this new
Einstein+viscous fluid.

(c) Prove causality
(d) Prove linear stability around global equilibrium
(e) Discuss some simple initial applications within heavy ion collisions

10
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Consider a conformal kinetic theory BRSSS, JHEP 2008

. DHMNS, PRL 2014
Erc])ggpann equation transforms homogeneously DHMNS. PRD 2014

2

— 201 :
Weyl transformation: (=7 € I (massless particles)

}””Vuf(ff-'a p) = C[fp, J;ﬂ] — e (}””vuf(:f-'ﬂ p) = C[fp, J;ﬂ])

Perturbative approaches to the Boltzmann equation

D. Hilbert S. Chapman D. Enskog H. Grad

11
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Perturbative approaches to the Boltzmann equation

Introduce a small book keeping parameter — identified with Kn or not

Knudsen number

fi@) =Y ") w— Clfi, fi] = ) a"C™
=0 n=0

Different expansions according to the LHS of Boltzmann equation

Hilbert expansion Chapman-Enskog expansion

a k"V, fi(x) = Clfi, [kl ExD fi + ﬂkm)?{p}fk =C|f, f]

Zeroth order — C[f;go), ;ED)] =0= fk(;g) = fr

equilibrium

12



Hilbert expansion for a conformal fluid

0™ order solution: first approximation for the hydrodynamic fields

ff[”(fﬂ) _ t_,_f.l-:'“'u.ili(T}/Iﬂ]{ﬂ'?}‘i'li[]/lﬂ] 1o /Ty is constant.

{100, To, u.ﬂ} — 0obey ideal hydrodynamic equations

V. J§ = Viu(nouy) = 0= Dny =0
V“T{;LH — Vr“; [Fﬂ (UHUH +

&;’.HJ
; )] =0 — DTy = 0 and D,y Ty = 0.

Higher orders — /" (x) = f{”(x)¢\" (z) (with ¢” = 1)

k'u Iu (fhﬂ}(f) n— 1}) th 1} [(ﬁhﬂ]]

fi




Hilbert expansion for a conformal fluid

Linearized collision operator:

Cig) = | WOKI) £ (67 + 6 - 6 - o7

{1,E,,k"?} is in the kernel of £ L{1, E, k™ =0

Define the inner product: (7, h):fff} hi(z, k)ho(z, k)
k

Self-adjoint Non-positive

(i, LI]) = (dr, L[I]) (P, LI¢#]) < 0

Eigenfunctions with zero eigenvalues

bi(e,k) =1, (e, k) =2+ a0k Ty, U9 (ak) = K%/,




Entropy production in perturbative expansions

In general, the non-equilibrium entropy current is
H-theorem

(full result)

S(z) = A @) (I fu@) — 1) g

Entropy production

Vv,.S8" ——fk(f[f;;,fk] In f;,

— V,S"=—a*(¢}, L[p}"]) + O(c®)

hd valid for the expansions
>0 considered here 15




Hilbert expansion for a conformal fluid — First order

{10, 1o, uﬂ} — obey ideal hydrodynamic equations

Linear integral
operator (Fredholm)

General solution: ‘3512;1) — Q},,ﬁ 4+ qygh

_ inhomogeneous solution
homogeneous solution

' - e . ;!-'.'-{”;']'i.'-’f-f} E”
O = So(w)ihr + vo(a)ya + "'*‘E{:;.}'f.a”:? / fﬁ'rfh' = —:n’”.ﬁ}l =

A(IB) — obtained from inverting the operator in space orthogonal to kernel

16



Fluid always described by {n, €, u,, }

To 1° order: wy = uy, + adu, +O(a?)

- i = 2
n = ng+ aon + O(a®) € = €y+ aoe+ O(fk )

Fixing homogeneous: {&o, Uo,’U(p,)} — {0n, d¢, 5u,u}

Solution of Boltzmann to 1% order in the Hilbert expansion

on e\ on e kmkﬁ) EY
e = fh +fh [(2;——) ‘9'7'11+(— )L»*zﬂu“w ]Jrfh —.G‘(_};A(—h)

0 €n T €0

» Solution asymptotes to a solution of the Boltzmann equation.
» Linear equations for {dn, de, du,, } — not Navier-Stokes theory.

« Convergence of the series? .



Chapman-Enskog expansion
De Groot, van Leeuwen, van Weert, 1980
Local hydro fields {u(z), T (x), u,(x)} in equilibrium are “exact’

f;iq — M/ T—Ex/T __ fr = f,qu + 61

See Israel, Tsumura, Hatsuda, Van, Biro

Define general conditions of fit:

[E};"c?fk =0 fE};”’éfk =0 fE;ﬁWka =0
k k k

n,m,{ — non-negative

* For instance, for Landau n=1, m=2, |I=1. Eckart's n=1,m=2, [=0.

18



— Z ﬁ?Lf-‘EH} th _ Z Q?L(ka)(n}

Unknowns

General expression:

Solubility conditions
(Fredholm)

‘ /EL Df.‘. )

AR

1 1 n— n— n
7 B(Df)™ + =k o " = BV = Lo
k k
/EL (Df,t,) n) _ _ k{u)V{“)fFl_”




Chapman-Enskog expansion — First order

1 kA E kWY, T 0E?
—_E(Df)Y & ) k () k _ o)
z KD i) A S e

Solubility conditions:

The root of all (causal) evil !l vV, = A¥V,

Must solve: NAVIER-STOKES EQS.

kN ; s> Conditions of fit:
vA
2T gzﬂzv(u)zo 20

Llgy’] =




Perturbative expansions: a new hope

Based on DNNR, PRD 2011

Local hydro fields {u(z),T(x), u,(x)} in equilibrium are “exact”
fgq — H/T—Ex/T fr = f]zq + 8

Define general conditions of fit (as before):

fE}‘;"(ka =0 fE};”éfk =0 fEﬁkWéfk =0
k k k

n,m, ¢ — non-negative

How do we bypass Chapman-Enskog's D — » V| ?

21



/ Derivatives of local equilibrium are “small”

ak*V 8+ kMY 40 fo — LI fr] = Cl0 fi, 6 fi

Perturbative series First equation in the hierarchy
5 fi = Z a5 f) KMV 8 fr — L0 f] = —k*V , fE9
n=1 DNNR, PRD (2011)

General term:

RV 81 = LI8FT =) oY 6]

m=0

This should be asymptotic to a solution of Boltzmann
22



Considering only the first equation in the hierarchy

kPV 8 i — L8 fx) = —kFV, f17

Kernel of £ e VMT“V =0 V;,,J’U’ =0

Hilbert space orthogonal to kernel:

(¥, KV w0 fe — L[0fk]) = —(s, KV, f7)

+ derivative expansion at lowest order (“hydrodynamics™)

_ klegy) , DT E. LD T _

) T2



General solution: New terms

o = oh + o - - ~
| | " klokP) DT WDy T

Ak, Bk, (', —» Depend on properties of collision term

Energy-momentum tensor at this order is

A

s

T = (e + A) (u”u” +

) + HV + Q(P}u” + Q(”'}uﬂ

T = —77(7'”’ Y __» Navier-Stokes stress

24



Non-equilibrium correction to equilibrium energy density

A= (€~ 20)e + oo (B2, By)

TN

Non-equilibrium correction to energy flow obtained from
collision term

D) /

4
QM) — 2E ) + (E3, Ck)

3 313

The specific form of these quantities depends on the conditions of fit

(definition of equilibrium fields)

For Landau's A= Q¥ = () —» causality and stability issues!!

fEk kRS i = 0 25
k



Assume the simplest conformal kinetic theory — o ~ 1/T2

Among (infinitely) many choices, we will use the following “unorthodox”,
though still bonafide, conditions of fit

kaﬁ kP fr, = /kEﬁ B — uuunpt = uyu, ph

fkfk=fkf§q

In this case one finds:

This system has remarkable properties
26



Existence, uniqueness, causality + linear stability proven for the 1% time
In viscous general relativistic hydrodynamics

Bemfica, Disconzi, JN, arXiv:1708.06255 [gr-qc], Disconzi, arXiv:1708.06572 [math.AP]

DT AHY DT DT
THY — (e + 3x—) (u“‘u“ + ) — ot + A (u’“’— + u“’—)

T 3 T T

X = ain, A= azn

Theorem 1. Let T = (X, go, K, €0, €1, V0, V1) be a sufficiently reqular initial data set for Einstein’s equations
coupled to the energy-momentum tensor above. Assume the following: ¥ is compact with no boundary, ey > 0,
n :(0,00) = (0,00) is analytic, and either ay = 4 and az > 4 or a1 > 4 and az = 3a1 /(a1 — 1). Then: (1)
There exists a globally hyperbolic development M of T. (2) Let (g, ¢€,u) be a solution of Einstein’s equations
provided by the globally hyperbolic development M. For any x € M in the future of ¥, (g(x),u(z),e(x))
depends only on IL;(E}n.I () Where J 7 (x) is the causal past of x and i : ¥ — M is the embedding associated
with the globally hyperbolic development M.

Theorem 2. Under the same assumptions regarding a; and az, a statement similar to Theorem 1, i.e.,
existence, uniqueness, and causality holds for solutions of V,T" = 0, with T"" given by the tensor above,
in Minkowski background.

Theorem 3. Consider Theorem 2. The system is also linearly stable around equilibrium (rest and boosted
frame) in a Minkowski background.


https://arxiv.org/abs/1708.06255
https://arxiv.org/abs/1708.06572

Applications: Bjorken flow

Milne coordinates v, = (—1,0,0,0) T —T(7)

Equation of motion: w = 7T and f =1+ 70,T/T

Heller-Spalinski form

_ df (w) ) )
xwf(w)=——=+3xf(w)” + f(w) { w
1.0p
NS L 0N% Attractor |
N PN Y (0" order slow roll){  7/s = 0.08
S o0s PR - _
e r.-‘f X = 4']?
0.7 ’
05! 0. 05 1 5 10 o8



Applications: Gubser flow

~

dS; ® R spacetime wu, = (—1,0,0,0) T — T(p)

Equation of motion (written in 1% order form):

1dT 2 . dF Y 2 . .4
— — 4+ Ztanhp=F \— + 3YF2 + —vFtanh p + TF — —ij(tanh p)? =
7o + 7 tanh p (p) Xdp + 3xF -I-Sx}' anh p + TF 9?}( anhp)” =0
1.2¢ New tensor
n/s = 0.2 1.0} Ideal hydro -
x = 47 _ U.Bi— Navier-Stokes%
5 Y 0.6}
=12 4 o4 | |
0.2} 4 N g
0.0f
_0*2 i PR R T T T T S T 1

29

T<0



Conclusions and Outlook

* New perturbative expansion of Boltzmann equation

* New viscous relativistic energy-momentum tensor

» Existence, uniqueness, causality, linear stability proven
for the 1° time in general relativistic viscous hydrodynamics

» Extension to non-conformal fluids + baryon charge

 Numerical applications in heavy ions and general relativity

30



ADDITIONAL SLIDES
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Definition 8.6 (Strongly causal spacetime)
A spacetime # iz strongly causal if given an arbitrarily chosen event p &
for each U C . open neighborhood of p there exist another open neighborhood

of p, V C U, such that no casual curve intersects it more than once.

Definition 8.7 (Inextendible causal curve)

A causal curve v is called future {resp. past) inextendible if @ is impossible
to find an event p € # such that for all U C ., U neighborhood of p, there
exist a t' such that ~(t) € U for all £ =1 [respt < t')

In more concrete words, this means that ¢ has no future (resp. past) endpoint.

Definition 8.10 (Domains of dependence)

Let s be a closed achronal set. The set D7 (&) (resp. D™ (&) of all spacetime
events p such that every past (resp. future) inestendible cousal curve passing
through p intersects & is called the future (resp. past) domain of dependence
of . The set Diaf) = D7 (&) U D™ (&), union of the past and of the future
domains of dependence s the domain of dependence of &

Definition 8.11 (Cauchy surface and global hyperbolicity)

Let o C W be an achronal set such that D{&) = #. Then & is called o
Cauchy surface (we instead use the denomination partial Canchy surface for
a closed achronal set without edge). A spacetime # which admits o Cauchy
surface is called plobally hyperbolic,

32



Theorem 2.2, Let I = (E, gy, &, €p, €1, Vg, ) be an initial data set for the VECF system. Assume
that X 1s compact with no boundary, and that ¢y > 0. Suppose that x and A are given by (1.5),
where 1 : (0,00) = (0,00) is analytic, and assume that a, = 4 and a; > 4. Finally, assume that
the initial data is in G©)(X) for some 1< s < . Then:

1) There exists a globally hyperbolic development M of T.

2) M is causal, in the following sense. Let (g,¢,u) be a solution to the VECF system provided by
the globally hyperbolic development M. For any p € M in the future of £, (g(p), u(p), e(p)) depends
only on T| ()0~ (5)? where J™(p) is the causal past of p and i : X — M is the embedding associated
with the globally hyperbolic development M.

Theorem 2.3. Let T be given by (1.1) with g being the Minkowski metric. Suppose that x and
A satisfy (1.5), with a) = 4, as 2 4, where 1 : (0,00) = (0,00) s o given analytic function. Let
ep,€1 : R = R and vy, v : B3 — R? belong to G¥)(R®) for some 1 < s < I, and assume that
ey = Cy > 0, where Cy is a constant.

Then, there exists a T > 0, a function e : [0,T)xR3 = (0,00), and a vector fieldu : [0, T)xR3 —
R*, such that (e,u) satisfies equations (1.2) and (1.4) in [0,T) x R?, €(0,) = ey, pe(0,:) = ¢y,
u(0,:) = ug, and Gyu(0,:) = uy, where dy is the derivative with respect to the first coordinate
in [0,T) x R3. This solution belongs to G>)([0,T) x B%) and is unique in this class. Finally,
the solution is causal, in the following sense. For any p € [0,T) x R3, (e(p),u(p)) depends only
on '[:Eg,El,l?g,ﬂl}hmnzn}._u_{p], where J~(p) is the causal past of p (with respect to the Minkowski

metric).

See Disconzi, arXiv:1708.06572 [math.AP]
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Analytic functions obey (o = multi-index):
0°fF| < Clal+1 g

The Gevrey class 4(9), o > 1, consists of C functions that obey the
weaker inequality:

0%f| < CleH1(al)7.

Advantage: large class of functions, including compactly supported (not
determined by values on an open set).

The larger the o, the larger the space. Larger o: more general results.
7(‘”) — Sobolev space.

~(9): used in the study of non-relativistic viscous fluids; also have had
applications in General Relativity (magneto-hydrodynamics).

M. Disconzi

Sobolev H,

1712 =D 1187ull?

7|<s
34



Characteristics.

Consider the linear differential operator:

d%u
Ox"dx”

Lu=2a""(x) + b(x, du)

or, more generally (e«=multi-index),

Lu = Z a*(x)0\%y + b(x, 0™y, ..., du, u).

|a|=m

We define the characteristic cone Vi of L at T}M by

h(x, &) = Z a%(x)&q = 0.

|a|=m

h(x, &) (=characteristic polynomial) is a homogeneous polynomial of

degree m.

M. Disconzi
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Hyperbolic polynomials (Leray).

h(x, &) is called a hyperbolic polynomial (at x) if there exists ( € Ty M
such that every line through ( that does not pass through the origin
intersects Vi at m real distinct points (m =degree of h= order of L).

In this case, the set of ( € T,)M with this property forms the interior of
two opposite convex half-cones Ff.

The differential operator L is called hyperbolic (at x) if h(x, &) is
hyperbolic.

Dualizing, one obtains Cf C TxM. For example

Ci={ve TyM|{(v) >0forall CeTl}}.

Y = {p(x) = 0} € M1 is characteristic for L if

Z a“(x)0ap = 0.

|a[=m

M. Disconzi
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Wave equation: characteristics.

Consider Lu = upr — uxx, € = (£0,&1). Then:

& — & =0= & = +&1.
&

I'x and Cx are both given by the “light-cone”.

M. Disconzi

37



Hyperbolic and weakly hyperbolic operators.

Hyperbolic operators (sometimes called strictly hyperbolic) have a Cauchy
problem that is well-posed in Sobolev spaces.

When the definition of a hyperbolic polynomial is weakened to:

there exists ( € T; M such that every line through ( that does not pass
through the origin intersects V, at m, not necessarily distinct, real points,

we obtain weakly hyperbolic polynomials and operators (m =degree of

h=order of L).

Weakly hyperbolic operators are well-posed in Gevrey spaces, but there are
counter-examples to well-posed in Sobolev spaces.

M. Disconzi
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Definition 2.1. An initial data set for the VECF system consists of a three-dimensional smooth
manifold ¥, a Riemannian metric gy on X, a symmetric two-tensor £ on ¥, two real-valued functions
gg and €, defined on ¥, and two vector fields vy and v, on X, such that the Einstein constraint
equations are satisfied.

As is customary, we shall write (1.3) in trace-reversed form and in harmonic coordinates. More
precisely, we consider the reduced Einstein equations given by

g#p‘aﬁugﬂﬁ = Bﬂﬁ(afi aﬂ'! 55?), (3.1]
where above and henceforth we adopt the following:

A.2. The Cauchy problem. Let a = a(z, ﬁk}, x € X, be a linear differential operator of order k.
We can write

a(z,8%) = ) aa(2)0?,

lal<k
where & = (ag, @1, @9, ...,0,) is a multi-index. Let p(z, 8*) be the principal part of a(z, 8%), i.e.,
p(z,0") = 3" aa(z)o".
|| =k

At each point £ € X and for each co-vector £ € T7 X, where T*X is the cotangent bundle of X,
we can associate a polynomial of order k in the cotangent space T, X obtained by replacing the
derivatives by & € T X. More precisely, for each k" order derivative in a(z,8%), i.e.,

glal
T 015005} 0zy2 - - Oz
|ce] = k, we associate the polynomial M. Disconzi
= e 62
where £ = (£0,&1,£2,...,&n) € T7 X, forming in this way the polynomial
p(e.€) = ) aa(2)e™.

|ex|=F

50:

Clearly, p(z,£) is a homogeneous polynomial of degree k. It is called the characteristic polynomial
(at z) of the operator a. 39
The cone V(p) of p in T X is defined by the equation

p(z,€) =0.



Definition A.5. With the above notation, p(z,£) is called a hyperbolic polynomial (at z) if there
exists ¢ € T;X such that every straight line through ¢ that does not contain the origin intersects
the cone V(p) at k real distinct points. The differential operator a(z,3%) is called a hyperbolic
operator (at z) if p(z,£) is hyperbolic.

Leray proved in [16] that if p(z,€) is hyperbolic at «, then the set of points { satisfying the
condition of Definition A.5 forms the interior of two opposite half-cones Iy " (a), 'y (a), with
I's*(a) non-empty, with boundaries that belong to Vy(p) .

Remark A.6. An equivalent definition of hyperbolic polynomials is as follows [4]: p(z,£) is hy-
perbolic at z if for each non-zero £ = (£&;,...,&,) € T;X, the equation p(xz,£) = 0 has k distinct

real roots & = &(&1, -, £x).

With applications to systems in mind, we next consider the N x N diaponal linear differential
operator matrix

al(z,8%) ... 0
Agoy=|
0 coe @z, 85V
Each a’/(z,8%), J=1,...,N is a linear differential operator of order k.
Definition A.7. The operator A(z,d) is called Leray-Ohya hyperbolic (at z) if:

(i) The characteristic polynomial p/(x, £) of each a’(z, %) is a product of hyperbolic polyno-
mials, i.e.

plf{xs ‘E) = pJ!l{x!E} e pJ,T-J ($!£J: J = ]: ney f"‘r:

where each p™¥(x,£), ¢=1,...,ry, J=1,...,N, is a hyperbolic polynomial. M DISCOﬂZI
(ii) The two opposite convex half-cones,

N T N r
Iyt (4) = () Tt @), and Ty (4) = () () I3 (™),

J=1g=1 J=1g=1

have a non-empty interior. Here, I‘}’i(a'f"fj are the half-cones associated with the hyperbolic
polynomials p4(z, &), ¢=1,...,r;, J=1,...,N.

Remark A.8. When the above hyperbolicity properties hold for every x, we call the corresponding
operators hyperbolic (we can also talk about hyperbolicity in an open set, a certain region, ete.).
When we say that an operator is Leray-Ohya hyperbolic on the whole space (or in an open set,
etc.), this means not only that Definition A.7 applies for every z, but also that the numbers r; and
the degree of the polynomials p’9(x,£), ¢ =1,...,r;, J =1,..., N, do not change with z.
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NONLINEAR PATHOLOGIES IN RELATIVISTIC HEAT-CONDUCTING FLUID THEORIES

William A, HISCOCK and Lee LINDBLOM
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Hyperbolicity and stability are analyzed in the nonlinear regimes of two theories of relativistic heat-conducting fluids. Both
theories are found to be unstable and non-hyperbolic for sufficiently large deviations from equilibrium. One of these theories (an
extended hydrodynamic theory) is well behaved for small (but finite) deviations from equilibrium.

In summary, we have examined the properties of
hyperbolicity and stability in extremely simplified
but fully nonlinear versions of Eckart’s theory and
the Israel-Stewart theory of relativistic dissipative
fluids. We have shown that Eckart’s theory continues
to display the generic instability and acausal, non-
hyperbolic behavior that first appeared in the anal-
ysis of the linear equations. The Israel-Stewart the-
ory (with g given by its kinetic theory value) fails
to be hyperbolic for states of the fluid that are not
sufficiently close to equilibrium |g|/p>0.08898. In
addition the spatially homogeneous solutions in this
theory are thermodynamically unstable for all initial
values of |g|/p>0.50308. Further investigation of
the stability of the entire class of solutions will have
to be performed before it will be possible to deter-
mine whether or not there is as close a relationship
between hyperbolicity and stability in the nonlinear
theory as there was in the linear regime.
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High density QCD matter: From the lab to the sky
Neutron star mergers
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Viscous fluid dynamics + strong gravitational fields

Important problem in physics and mathematics
(Relativistic Navier-Stokes equations are acausal and unstable)

Viscous effects in neutron star mergers
Duez et al PRD (2004), Shibata et al. PRD (2017), Alford et al. PRL (2018)
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Relativistic Boltzmann Equation

Special (general) relativity classical statistics
kﬁvgfk — W(ppwkkf)fpfp’ _ W(ppwkkf)fkfk’
k.i'pp.f k.i'ppf
~— YT — ~— YT —
Gain Loss

« 1% analytical solution, since 1872, for an expanding gas
(also in curved spacetime).

Bazow, Denicol, Heinz, Martinez, JN, PRL (2016) 43
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