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Dynamical systems

RG flows Trans-series



Dynamical systems

» Stability analysis around fixed
points in UV and IR (Lyapunov)
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RG flows Trans-series

» Analyze the » Non '
-perturbative
change of the contributions to
coefficients of the solution by

trans-series knowing the IR
as a function fixed point

of the ‘energy’
scale




Results

For Bjorken flow: |
The shear viscous tensor can be written as a trans-

series

U ZOO S k
T — . Fk(O'G_ wwﬁ) w
€
k=0

Each ‘coefficient’ Fk Is the summation of non-
perturbative contributions of the inverse Knudsen
number w=1/(T7) (non-hydrodynamical series)

The differential equation for Fk admits a
Renormalization Group interpretation for a particular
transport coefficient



Dynamical systems point of view:
Gubser flow for IS theory

A. Behtash, CN Cruz, M. Martinez
arXiv:1711.01745
PRD in press
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Dynamical systems point of view:
Gubser flow for IS theory
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No universal
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Dynamical systems point of view:
Gubser flow for IS theory

A. Behtash, CN Cruz, M. Martinez
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Attractor is a 1-d non planar manifold
»In Bjorken you see a unique line cause
the attractor is a 1d planar curve



Dynamical systems point of view:
Gubser flow for IS theory
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» Asymptotic behavior of temperature is not
determined by the Knudsen number



Non-newtonian fluids and rheology
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Tya ™ 10y

This is called shear
thinning and shear thickening
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Tz ™ T0,02) Oy,

Shear viscosity

» Becomes a function of the gradient
of the flow velocity

» can increase or decrease
depending on the size of the
gradient of the flow velocity




Non-newtonian fluids and rheology
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Non-newtonian fluids and rheology

- ‘

o
>
> ~—
>
-

e N

|83 Selected for a Viewpoint in Physics i
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First-Principles Constitutive Equation for Suspension Rheology

J. M. Brader,] M. E. Cates,2 and M. Fuchs'

' Fachbereich Physik, Universitdt Konstanz, D-78457 Konstanz, Germany
2SUPA, School of Physics, The University of Edinburgh, Mayfield Road, Edinburgh EH9 3JZ, United Kingdom
(Received 30 April 2008; published 22 September 2008)

A central aim of theoretical rheology 1s thus to derive
from the underlying microscopic interactions the constitu-
tive equations that relate the stress tensor to the macro-
scopic deformation history of a material. For entangled




Non-newtonian fluids and rheology
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Effective Shear viscosit
Shuryak, Lublinski, Strickland, Florkowski,
Ryblewski, Romatschke, Yan, Blaizot



Kinetic theory model

RTA Boltzmann () f —

Ansatz for f inspired in Lattice Boltzmann
(Romatschke et. al PRC84, 034903, 2011)

T - Nn N N\ |
f(T,pT;pg) — feq. (%) . ?2 Cnl(T) PQ[ ( Ds ) L-gi) (p?)




Asymptotic behaviour of c1 and c2

The distribution function can be expanded
asymptotically (Yan and Blaizot) in w= 1/(t T)

- . 2 o 8 o~ 8
0f = [—pr2 (?nf_T) +X;Cpp4 (631&21’2) —XpCpp3 (91&2T2> +...]P2(cost9)

A - 8
+ [chpp4 (35t2T2> —|—...]P4(COS(9) + ...

Thus asymptotically
H 41 8 1 A
2 3w \s 0 w? IS IS

20 1
Co = TTWQ | T)\l
9 w?




Kinetic theory model

Conservation laws + RTA Boltzmann

dT_|_ T  Tq
dr 37 307

1 2
Orci+— |41 + 01 ——=cic + yici—1| +
T 15 7 (T)

C1 dc ~ 1 . - C1 - 3 ~
| — —) CAé+ —B | — 0
( 20/ dw T w D¢ 5wc 2w7



O. Coustin (Ohio State University)
Duke Math. J. vol 93, No 2, 1998

If you have a non-linear differential
equation of the form

. 1.
y' =fo(z) — Ay — By + g(z,y)
Then
=gt Y Oy
k>0;k|>0

1. Non-resonance condition: A does not have null
etgenvalues

2. Regularity when x — oo



Kinetic theory model

c = Uc
C1 dc A 1 . - C1 ~ 3 ~
1 ) CAe+ —B | —0
( 20/ dw C—I_w DE 5wc 2w7

After some transformations one can show that
(Costin, 2006)

cor(w > >1 zzflclk(a'C( ) w

Clk: (¢ (w ZU' ¢
"¢ (w) = [on G (w)]™ - - [0 ¢ (w)]™

G(w) = e



Comparing asymptotic behaviour

I’'=1 k=0
Crp(oC(w)) = o™ (w) &},
Consider only c1 o n%:o i

At O(1/w) the dominant term of the trans-series is:

i)
=y =t
O(w ) : e ="
On the other hand, the asymptotic expansion of the
distribution function

O(w™1) : o= N L (Q>o



Comparing asymptotic behaviour
cor(w ZZUulClk ol(w))w

—1 k=0
Cu(o¢(w) =D a"¢™(w) &1} .
One then finds

3
(D) =240
5720 ’

this is not a matching!!!!
it comes from the differential equation itself

So the asymptotic value of the 7nl/s is determined by the
asymptotic value of the associated trans-series



Comparing asymptotic behaviour
cor(w ZZUulClk ol(w))w

=1 k=0
Clk O'C ZG’HCH ul(r,?
n>0

Let’s be brave and promote the renormalized nls
with the associated non-hydrodynamical series

The non-hydrodynamical series keeps track of the
relaxation of non-hydro modes which change the

value of nls = Rheology



Comparing asymptotic behaviour
cor(w ZZUulClk ol(w))w

=1 k=0

Cm (o¢(w ZC"HCH Uz(r/?

n>0

More importantly:

d m\ = 3 d —Sw, b
dw (S)R_ 4OdwC11( W]

RG equation for nls is understood as the evolution
equation of the associated non-hydrodynamical
series



Preliminary results

A. Behtash, CN Cruz, S. Kamata, M. Martinez
Forthcoming

&o=1

<
ppep R ST Y

: /;. — Exact

: i.""f‘:" -=== Bare cle(w‘z) CZIO(W_3)
-2r
i ¥4 Bare ¢1:0(w3) ¢:0(w™%)
3 _ . -==» Reno ¢;:0(w™2) c,:0(w™3)
[ — Reno ¢;:0(w™3) ¢y:0(w™)
0 1 2 3
w

cor(w Z Z Ull,lCl k(oC(w))w

=1 k=0
o0
Cri(o¢(w) = o™ (w) iy -
n>0
P
j | 30
Ly = 25 i
i '.l + 15 7 ‘k','“‘\‘ “\‘
Py og L0 R
?' T 05 S, i,
:'l“. o O O Rl [ ——
' 4 05!

OO 02 04 06 08 1.0

The UV completion of your effective theory depends
on the finer structure (more moments)




Preliminary results
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Forthcoming
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Relating Anisotropic hydrodynamics

and trans-series 1
S Alw)= 3 (T -2)

» Ahydro has successfully R e IS

described and reproduce to .. |

high accuracy the results g

obtained from exact 045 ol

solutions of the Boltzmann = "=

equation. Y08 T
» Nonetheless, it does not oesl

describe higher order INEEY

modes 075 W

Molnar et. al., Heinzet.al = .

-0.85 ‘ ‘
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w

A. Behtash, CN Cruz, M. Martinez
PRD in press

» For conformal systems Ahydro turns out to predict
the same results obtained from the trans-series of the
first non-hydrodynamical mode, i.e., shear viscous
tensor (Conjecture?)



Conclusions

» For the Bjorken flow and RTA Boltzmann

1. The solutions of the moments are written as multi-
parameter trans-series.

» We identify the transport coefficient with the
associated non-hydrodynamical series

1. The evolution equation of the non-hydrodynamical
series Is understood as a RG equation for the
associated transport coefficient

» The comparisons with numerical solutions indicate a
remarkable improvement due to the inclusion of non-
perturbative contributions.



Outlook

» Resurgence analysis of other kinetic models
A. Behtash et. al.
1. Non-conformal systems
2. Finite chemical potential

» Challenges:
1. How to generalize to arbitrarily expanding
geometries in kinetic theory?
2. Phase transitions?
3. Effective action (Lyapunov functionals)
For Gubser flow: Behtash. et. al. PRD 97 044041 (2018)
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Gubser flow

g,uu(x) — e—ZQ(m)ng (:B)

Flat Minkowski space dS, xR

space
Complicated dynamics 3d de Sitter space

ZE‘M:(T,T,¢,77) - QAZ"LL:(,O,H,¢,77)
ds? = —dr? + dr® + v do? + d? w45 = —dp* + cosh” p (d? 4+ sin® Bdo?) + di”

ut = (u" (7, r),u"(7,7),0,0) ‘ ut = (1,0,0,0)
e(T,7) ‘ é(p)



Exact Gubser solution

e In dS3QR the dependence of the distribution function is
restricted by the symmetries of the Gubser flow

f('fj'uaﬁz) — f (pvﬁgbﬁn)

~2

e, = pa + sii CQD 7 » Total momentum in the (6,¢) plane

b _  Momentum along
' the n direction

e« The RT'A Boltzmann equation gets reduced to

0 ./ o . T(p) o o

@_pf (pap?lvpn) — ¢ (f (papéapn) — feq (pp/T(p)))

c = 5%

e« The exact solution to this equation is

o A
f (p 90 By) = Dlp, po) fo (p, B ) + % / dp"T(p") D(p, ') feq (ﬁ"/T(p)>
Lo



Fluid models for the Gubser flow

E-M )
conservation law ‘ - + gtanhﬂ = gtanhp
DNMR theory
T# (8p7_r + % (7?)2 tanh p) + 7= ;lsnT ?’Tﬂ’ﬂ tanh p
IS theory

Anisotropic hydrodynamics

T 4 5 9
87T+TT 3tan p(16 T—T 16}( ))



Non-linear dynamical system
analysis of the IS theory

arXiv:1711.01745



IS theory as a 2d non-autonomous system

IS evolution eqs. can be re-written as T = tanh p

AT T

= - )

dﬁ- 1 4 _2 1 _ ~ 4
R (5’” ()7 4+ T - E)

Be fore continuing, let's remember some basic of flow lines
in the phase space of the dynamical variables

Stable (attractors) Neutral Unstable (repellers)
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node
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IS theory as a 2d non-autonomous system
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IS theory as a 2d non-autonomous system
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IS theory as a 2d non-autonomous system
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Late times:
e Two unstable fixed points

(saddle) and one stable
fized point (sink)

e Stable point correspond to

(T,7) = (0,1/V/5)
= system never reaches

thermal equilibrium.
Steady non-equilibrium
state!!!



IS theory as a 2d non-autonomous system
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Subtle issue of IS theory for Gubser flow

For the Gubser flow IS can be combined into one equation

0,T 2 7
% +§tanhp:%tanhp
4 4
Th ((%7? + 3 (7?)2 tanhp) + 7T = 3 s??f tanh p

19,7 dlog(T)

Alw) = tanhp 7 dlog(coshp)

dA(w)
dw

e

3A(w)+2 4
cw 15

0

Jw (coth2 p—1—A(w)) + §(3A(w) +2)% &

The solution of this ODFE depends on p
e dS3QQR is a curved space whose expansion rate does not

vanish asymptotically (non-equilibrium steady state)
e This did not happen for the O+1 dim. system (Bjorken)



Rethinking IS Egs. as a 3d DOE system

=17

dar 1. dr 4 (1 _, 1 . dr
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Rethinking IS Egs. as a 3d DOE system

dT 1 A dﬁ- 4 1 -9 1 A d’]‘
—_— - T — - = = _ —_— - T il — —_ 2.
T(m—2)T, i3 (5 @ )T UES i 1—7

Basin of attraction for the Gubser flow is 3 dim.
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Lyapunov exponents of IS theory

Lyapunov exponent measures
the distance between two
trajectories in the phase space
Stability of the DOFE’s depend
on the value of the Lyapunov

/ @I =Is©)e*  exponent

x(1) +6(1)

16O () O _ A
dt
FEigenvalues of matrix A determine the stability and
convergence of the solution




Lyapunov exponents of IS theory

We can linearize our 3d system around the fixed points of the
IS theory for the Gubser flow

A 1(7—2) Tr T(7-2) N
Op T’ 3 TTS_ R T—-"1T,
gpi - —¢  TeT 3 53 T — T

P 0 0 —27 (Tc,ﬁ'c,,Tc) T — T,

&

A {— ,— S —§+3—\1/5} —— Stable (sink)



Lyapunov exponents of IS theory

0.01 o

0.001 -

0.0001 -
N

Lyapunov exponents of the attractor are read of f from the
eigenvalues of the matrix

A {—2 —L2 24 L} — Stable (sink)

Attractor: A ~ Tpe tPuq + (% — Tp e P )ug + ug,



Why Is the basin of attraction so interesting?

e M defines the space of fields or paths over which the integral
18 evaluated

» Saddle points (classical path) are determined from the action
principle
05(¢]
0¢
= M s a stable mani fold of integration shaped by the
solutions to the saddle point approximation

=0



Why Is the basin of attraction so interesting?

Using this analogy the partition function for hydrodynamics
A X 2
Zetr (C) :/ DT D7Dt ¢ T () —Vixe)
M

Vis the Lyapunov function which due to stability has to
satis fy

Thus M s the manzi fold whose paths are determined b%/ the
basin of attraction of the hydrodynamical equations!!!!

For The Gubser tlow and IS theory local
Lyapunov function was obtained
see arXIvV:1111, 01745



Determining attractors |

e IS, DNMR and anisotropic hydro equations can be
recombined into a unique equation

3w (coth® p — 1 — A(w)) défuw) +H(A(w),w)=0 (1)

Remember, we evaluate the asymptotic attractor cotth —1]

e The function H depends on the hydro model
His = % (BA(w) + 2)2 4 BAW)+2 4

Cw 15

Hpnmr = 5 (3A(w) + 2)° + (3A(w) + 2) i Rt

HaHydro = % (3A(w) + 2)2 + (3A(w) + 2) [% _ %} _
— 2 4+ 3F(3A(w) +2) .

Attractors are found by a two-step process:

o Finding null-lines with slow-roll down approx. dA/dw=0
o The initial condition for solving (1) is obtained from the

stable solution of the null-line Ai=A+(w—s-00)



Universal attractors for Gubser flow
IS DNMR
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Comparing attractors
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Anzisotropic hydrodynamics matches almost exactly the
exact attractor
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