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OUTLINE
Motivation, early work and recent progress

• (weakly coupled) jet energy interacts strongly with QGP
• Succesfully matches observations in hybrid model
• From production (pQCD) to strings to null geodesics in AdS

A simple model
• Four simple examples: energy loss has memory
• Null geodesics in viscous hydrodynamics: formula + subtlety
• Going with or against the flow
• Temperature dependence in Gubser flow

Preliminary results and an easy implementation
• Goal is to provide energy loss formalism valid for flowing plasma
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JETS IN QGP
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CMS PAPER EXO-12-059
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CMS, Jet properties in PbPb and pp collisions at √sNN = 5.02 TeV (2018)

TRENDS IN JET ANALYSIS
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ADS/CFT INSPIRED MODEL WORKS:
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J. Casalderrey, D. Can Gulhan, J. Guilherme Milhano, D. Pablos and K. Rajagopal, A Hybrid Strong/Weak Coupling Approach to Jet Quenching
K. Rajagopal, Presentation Quark Matter 2017

One parameter fitted
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JET ENERGY LOSS IN ADS/CFT
Quark-antiquark pairs ~ strings in AdS geometry

Leads to (simplified) model for jet evolution
• String segments quickly follow null geodesics in semi-universal way
• Possible to track null geodesics falling in: determines energy loss
• (analytic formula for specific case, also assuming constant T)
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J. Brewer, K. Rajagopal, A. Sadofyev and WS, Jet shape modification in a holographic plasma (2017)
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VARYING TEMPERATURE
Energy loss depends on temperature evolution non-linearly:

• First phase agrees with (ultra)local formula (Chesler, Rajagopal)
• Interesting: (final) energy loss much bigger for 2nd profile
• Illustrates `memory-effect’: wave function remembers evolution
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SECOND EFFECT: FLOW
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Flow has not yet been included
• Subtlety in geodesic equation from metric using ideal hydrodynamics:

• Geodesic equation contains derivatives of metric

• Includes a term ~         , to be compared with Z3 (typically very small)

• Two solutions: use viscous hydrodynamics (term cancels), or ignore 
gradients on level of geodesic equation (as opposed to metric, easier)

Final formula for geodesics in ideal hydrodynamics:

(full formula including Z’ and viscous terms is known but longer)

Sayantani Bhattacharyya, Veronika Hubeny, Shiraz Minwalla and Mukund Rangamani, Nonlinear Fluid Dynamics from Gravity (2007)
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SECOND EFFECT: FLOW
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Final formula for geodesics in ideal hydrodynamics:

(Z’’ essential for energy loss, but not proportional to energy loss)

Corrections due to viscosity:
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A SIMPLE ALGORITHM
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Energy loss from AdS/CFT in a dynamic setting
• Start with several string segments at boundary (~20), with different Z’

• Z’ of endpoint is determined by pQCD opening angle of q/g
• Z’ of other segments is taken from semi-universal curve (slide 6)

• Evolve Z(t) according to simple differential equation
• Straightforward to determine energy outside horizon

Main difference with current dE/dx approaches:
• Need to keep track of ~20 variables per parton,

i.e. parton wave function more complicated than just energy
• 2nd order equation: memory effect

• Perhaps similar to L2 or L3 scaling of current approaches
• Relatively non-linear interplay of E(x) versus T(t) and v(t)
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RESULTS IN GUBSER FLOW
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Resulting energy loss in (analytic) simple model for central collision
Compare no flow, ideal and viscous different starting points

• Flow has extremely important effect, doubling stopping distance

• Recall old result:

• Corrections due to gradients significant, but small

P.M. Chesler, K. Jensen, A. Karch and L.G. Yaffe, Light quark energy loss in strongly-coupled N = 4 supersymmetric Yang-Mills plasma (2008)
Andrej Ficnar and Steven Gubser, Finite momentum at string endpoints (2013)
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RJET
AA COMING FROM NEW FORMULA
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Result on nuclear modification factor
• Overall scaling somewhat arbitrary, determined by free parameter
• Effect of including flow significant, viscous contribution smaller
• Result quite similar to hybrid model, but different physics input: 

dynamic temperature + varying string initial conditions from pQCD
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MODIFIED JET SHAPES
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Jet shapes have interesting interplay:
• All jets get wider due to black hole
• Selection effect: narrower jets more likely to survive

• Now new effect: jets in flow tend to stay narrower
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ENERGY LOSS VERSUS TEMPERATURE
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Are there semi-general lessons for this energy loss?
• Try extracting dependence dE/dx on temperature: rescale T by 
• Numerical finding: different curves collapse when scaling by T2

• Up to point where particular jet loses all energy: early time scaling

• (fairly robust, but scaling somewhat dependent on semi-universal 
curve, e.g. result from different black line gives T3)
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DISCUSSION
Strong versus weak coupling

• Strings provide well-defined first-principle computation at strong coupling
• Interaction with medium may well be strongly coupled

• Limitations are clear: q/g production is described by pQCD
• Can give us insights into initial conditions of strings, i.e. energy + opening angle/jet width
• Holography misses hard splittings: all radiation is soft, no 3rd jets
• Likewise extra care is needed for jet radius (R) dependence of results

• A combination likely possible: treat all hard splittings (>10 GeV?) in pQCD, then 
switch to strings

Provided a simple algorithm for energy loss in a dynamic flowing medium
• Relatively straightforward implementation in e.g. Monte Carlos
• Interesting illustration of memory-effect: temperature evolution matters
• Very strong effects of flow, mild effects of gradient corrections (modulo subtlety)
• Interesting scaling dE/dx ~ T2 in specific (realistic) model?

Outlook
• Implementation in Monte Carlo?
• Full understanding initial string condition still somewhat unsatisfactory: 3-jets etc
• Not quite related: back-reaction lost energy on medium: where does E/p go? 15
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JET ANGULAR SPECTRUM
At late times string falls into AdS, straight lines for each σ.

• Stress-energy on boundary due to `collection of AdS point particles’:
energy e,
angle to center θ,
AdS angle α
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Y. Hatta, E. Iancu, A. Mueller and D. Triantafyllopoulos, Aspects of the UV/IR correspondence: energy broadening and string fluctuations (2010)

Left:
876 GeV (7% loss)
angle ~ 0.01

Right:
462 GeV (52% loss)
angle ~ 0.04
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