

Universiteit Utrecht

JET ENERGY LOSS IN A FLOWING PLASMA

COMBINING QCD, STRINGS, NULL GEODESICS AND VISCOUS HYDRO

With Jasmine Brewer, Krishna Rajagopal and Andrey Sadofyev 1602.04187 (PRL), 1710.03237 and to appear

OUTLINE

Motivation, early work and recent progress

- (weakly coupled) jet energy interacts strongly with QGP
- Succesfully matches observations in hybrid model
- From production (pQCD) to strings to null geodesics in AdS

A simple model

- Four simple examples: energy loss has memory
- Null geodesics in viscous hydrodynamics: formula + subtlety
- Going with or against the flow
- Temperature dependence in Gubser flow

Preliminary results and an easy implementation

• Goal is to provide energy loss formalism valid for flowing plasma

JETS IN QGP

Wilke van der Schee, MIT/Utrecht

TRENDS IN JET ANALYSIS

5/1

ADS/CFT INSPIRED MODEL WORKS:

J. Casalderrey, D. Can Gulhan, J. Guilherme Milhano, D. Pablos and K. Rajagopal, A Hybrid Strong/Weak Coupling Approach to Jet Quenching K. Rajagopal, Presentation Quark Matter 2017

Wilke van der Schee, MIT/Utrecht

JET ENERGY LOSS IN ADS/CFT

Quark-antiquark pairs ~ strings in AdS geometry

Leads to (simplified) model for jet evolution

- String segments quickly follow null geodesics in semi-universal way
- Possible to track null geodesics falling in: determines energy loss
- (analytic formula for specific case, also assuming constant T)

J. Brewer, K. Rajagopal, A. Sadofyev and WS, Jet shape modification in a holographic plasma (2017)

VARYING TEMPERATURE

Energy loss depends on temperature evolution non-linearly:

- First phase agrees with (ultra)local formula (Chesler, Rajagopal)
- Interesting: (final) energy loss much bigger for 2nd profile
- Illustrates `memory-effect': wave function remembers evolution

SECOND EFFECT: FLOW

Flow has not yet been included

- Subtlety in geodesic equation from metric using ideal hydrodynamics:
 - · Geodesic equation contains derivatives of metric
 - Includes a term ~ $-\frac{\partial v_x}{\partial x}$, to be compared with Z^3 (typically very small)
- Two solutions: use viscous hydrodynamics (term cancels), or ignore gradients on level of geodesic equation (as opposed to metric, easier)

Final formula for geodesics in ideal hydrodynamics:

$$Z''(t) = -2\pi^4 T^4 \left(1 - v_{||}\right) Z(t)^3 \left(\frac{1 - v_{||}}{v_{||}^2 + v_{\perp}^2 - 1}\right)$$

(full formula including Z' and viscous terms is known but longer)

$$ds^{2} = -2 u_{\mu} dx^{\mu} dr - r^{2} f(br) u_{\mu} u_{\nu} dx^{\mu} dx^{\nu} + r^{2} P_{\mu\nu} dx^{\mu} dx^{\nu} + 2 r^{2} b F(br) \sigma_{\mu\nu} dx^{\mu} dx^{\nu} + \frac{2}{3} r u_{\mu} u_{\nu} \partial_{\lambda} u^{\lambda} dx^{\mu} dx^{\nu} - r u^{\lambda} \partial_{\lambda} (u_{\nu} u_{\mu}) dx^{\mu} dx^{\nu}$$

Sayantani Bhattacharyya, Veronika Hubeny, Shiraz Minwalla and Mukund Rangamani, Nonlinear Fluid Dynamics from Gravity (2007)

SECOND EFFECT: FLOW

Final formula for geodesics in ideal hydrodynamics:

$$Z''(t) = -2\pi^4 T^4 \left(1 - v_{||}\right) Z(t)^3 \left(\frac{1 - v_{||}}{v_{||}^2 + v_{\perp}^2 - 1}\right)$$

$$\int_{\mathbb{N}} \int_{\mathbb{N}}^{\sqrt[n]{4}} \int_{\mathbb{N}}^{4} \frac{1}{2} \int_{\mathbb{N}}^{2} \frac{1}{1 - v_{||}} \frac{1}{1 - v_{||}} \frac{1}{2} \int_{\mathbb{N}}^{2} \frac{1}{2$$

(Z" essential for energy loss, but not proportional to energy loss)

Corrections due to viscosity:

$$\Delta Z''(t) = -2\pi^4 T^3 \left(\frac{2}{3}\frac{\partial v_x}{\partial x} + 2\left(\frac{\partial v_x}{\partial x} + 2\frac{\partial v_x}{\partial t}\right)T Z(t)\right) Z(t)^3$$

A SIMPLE ALGORITHM

Energy loss from AdS/CFT in a dynamic setting

- Start with several string segments at boundary (~20), with different Z'
 - Z' of endpoint is determined by pQCD opening angle of q/g
 - Z' of other segments is taken from semi-universal curve (slide 6)
- Evolve Z(t) according to simple differential equation
- Straightforward to determine energy outside horizon

Main difference with current dE/dx approaches:

- Need to keep track of ~20 variables per parton,
 i.e. parton wave function more complicated than just energy
- 2nd order equation: memory effect
 - Perhaps similar to L² or L³ scaling of current approaches
- Relatively non-linear interplay of E(x) versus T(t) and v(t)

RESULTS IN GUBSER FLOW

Resulting energy loss in (analytic) simple model for central collision

• Flow has extremely important effect, doubling stopping distance

- Recall old result: $\Delta x_{\text{stop}} = \left[\frac{2^{1/3}}{\sqrt{\pi}} \frac{\Gamma\left(\frac{5}{4}\right)}{\Gamma\left(\frac{3}{4}\right)}\right] \frac{1}{T} \left(\frac{E_*}{\sqrt{\lambda}T}\right)^{1/3}$
- Corrections due to gradients significant, but small

P.M. Chesler, K. Jensen, A. Karch and L.G. Yaffe, Light quark energy loss in strongly-coupled N = 4 supersymmetric Yang-Mills plasma (2008) Andrej Ficnar and Steven Gubser, Finite momentum at string endpoints (2013)

R^{JET}AA COMING FROM NEW FORMULA

Result on nuclear modification factor

- Overall scaling somewhat arbitrary, determined by free parameter
- Effect of including flow significant, viscous contribution smaller
- Result quite similar to hybrid model, but different physics input: dynamic temperature + varying string initial conditions from pQCD

MODIFIED JET SHAPES

Jet shapes have interesting interplay:

- All jets get wider due to black hole
- Selection effect: narrower jets more likely to survive
- Now new effect: jets in flow tend to stay narrower

4/15

ENERGY LOSS VERSUS TEMPERATURE

Are there semi-general lessons for this energy loss?

- Try extracting dependence dE/dx on temperature: rescale T by \tilde{T}
- Numerical finding: different curves collapse when scaling by T^2
 - Up to point where particular jet loses all energy: early time scaling

• (fairly robust, but scaling somewhat dependent on semi-universal curve, e.g. result from different black line gives T^3)

5/15

DISCUSSION

Strong versus weak coupling

- Strings provide well-defined first-principle computation at strong coupling
 - Interaction with medium may well be strongly coupled
- Limitations are clear: q/g production is described by pQCD
 - Can give us insights into initial conditions of strings, i.e. energy + opening angle/jet width
 - Holography misses hard splittings: all radiation is soft, no 3rd jets
 - Likewise extra care is needed for jet radius (R) dependence of results
- A combination likely possible: treat all hard splittings (>10 GeV?) in pQCD, then switch to strings

Provided a simple algorithm for energy loss in a dynamic flowing medium

- Relatively straightforward implementation in e.g. Monte Carlos
- Interesting illustration of memory-effect: temperature evolution matters
- Very strong effects of flow, mild effects of gradient corrections (modulo subtlety)
- Interesting scaling dE/dx ~ T² in specific (realistic) model?

Outlook

- Implementation in Monte Carlo?
- Full understanding initial string condition still somewhat unsatisfactory: 3-jets etc
- Not quite related: back-reaction lost energy on medium: where does E/p go?

JET ANGULAR SPECTRUM

At late times string falls into AdS, straight lines for each σ .

• Stress-energy on boundary due to `collection of AdS point particles': energy e, angle to center θ , $\frac{dP}{d\cos\theta} = \frac{e}{4\pi} \frac{\sin^4(\alpha)}{(1-\cos(\theta)\cos(\alpha))^3}$ AdS angle α

Y. Hatta, E. Iancu, A. Mueller and D. Triantafyllopoulos, Aspects of the UV/IR correspondence: energy broadening and string fluctuations (2010)